
Scheduling
Don Porter

CSE 506

Housekeeping

ò  Paper reading assigned for next Thursday

ò  Lab 2 due next Friday

Lecture goals

ò  Understand low-level building blocks of a scheduler

ò  Understand competing policy goals

ò  Understand the O(1) scheduler

ò  CFS next lecture

ò  Familiarity with standard Unix scheduling APIs

Undergrad review

ò  What is cooperative multitasking?

ò  Processes voluntarily yield CPU when they are done

ò  What is preemptive multitasking?

ò  OS only lets tasks run for a limited time, then forcibly context
switches the CPU

ò  Pros/cons?

ò  Cooperative gives more control; so much that one task can hog
the CPU forever

ò  Preemptive gives OS more control, more overheads/complexity

Where can we preempt a
process?

ò  In other words, what are the logical points at which the
OS can regain control of the CPU?

ò  System calls

ò  Before

ò  During (more next time on this)

ò  After

ò  Interrupts

ò  Timer interrupt – ensures maximum time slice

(Linux) Terminology

ò  mm_struct – represents an address space in kernel

ò  task – represents a thread in the kernel

ò  A task points to 0 or 1 mm_structs

ò  Kernel threads just “borrow” previous task’s mm, as they
only execute in kernel address space

ò  Many tasks can point to the same mm_struct

ò  Multi-threading

ò  Quantum – CPU timeslice

Outline

ò  Policy goals

ò  Low-level mechanisms

ò  O(1) Scheduler

ò  CPU topologies

ò  Scheduling interfaces

Policy goals

ò  Fairness – everything gets a fair share of the CPU

ò  Real-time deadlines

ò  CPU time before a deadline more valuable than time after

ò  Latency vs. Throughput: Timeslice length matters!

ò  GUI programs should feel responsive

ò  CPU-bound jobs want long timeslices, better throughput

ò  User priorities

ò  Virus scanning is nice, but I don’t want it slowing things down

No perfect solution

ò  Optimizing multiple variables

ò  Like memory allocation, this is best-effort

ò  Some workloads prefer some scheduling strategies

ò  Nonetheless, some solutions are generally better than
others

Context switching

ò  What is it?

ò  Swap out the address space and running thread

ò  Address space:

ò  Need to change page tables

ò  Update cr3 register on x86

ò  Simplified by convention that kernel is at same address
range in all processes

ò  What would be hard about mapping kernel in different
places?

Other context switching
tasks

ò  Swap out other register state

ò  Segments, debugging registers, MMX, etc.

ò  If descheduling a process for the last time, reclaim its
memory

ò  Switch thread stacks

Switching threads

ò  Programming abstraction:

 /* Do some work */

 schedule(); /* Something else runs */

 /* Do more work */

How to switch stacks?

ò  Store register state on the stack in a well-defined format

ò  Carefully update stack registers to new stack

ò  Tricky: can’t use stack-based storage for this step!

Example

Thread 1
(prev)

Thread 2
(next)

/* eax is next->thread_info.esp */!
/* push general-purpose regs*/!
push ebp!
mov esp, eax!
pop ebp!
/* pop other regs */!

ebp

esp

eax

regs

ebp

regs

ebp

Weird code to write

ò  Inside schedule(), you end up with code like:

switch_to(me, next, &last);!

/* possibly clean up last */!

ò  Where does last come from?

ò  Output of switch_to

ò  Written on my stack by previous thread (not me)!

How to code this?

ò  Pick a register (say ebx); before context switch, this is a
pointer to last’s location on the stack

ò  Pick a second register (say eax) to stores the pointer to the
currently running task (me)

ò  Make sure to push ebx after eax

ò  After switching stacks:

ò  pop ebx /* eax still points to old task*/

ò  mov (ebx), eax /* store eax at the location ebx points to */

ò  pop eax /* Update eax to new task */

Outline

ò  Policy goals

ò  Low-level mechanisms

ò  O(1) Scheduler

ò  CPU topologies

ò  Scheduling interfaces

Strawman scheduler

ò  Organize all processes as a simple list

ò  In schedule():

ò  Pick first one on list to run next

ò  Put suspended task at the end of the list

ò  Problem?

ò  Only allows round-robin scheduling

ò  Can’t prioritize tasks

Even straw-ier man

ò  Naïve approach to priorities:

ò  Scan the entire list on each run

ò  Or periodically reshuffle the list

ò  Problems:

ò  Forking – where does child go?

ò  What about if you only use part of your quantum?

ò  E.g., blocking I/O

O(1) scheduler

ò  Goal: decide who to run next, independent of number of
processes in system

ò  Still maintain ability to prioritize tasks, handle partially
unused quanta, etc

O(1) Bookkeeping

ò  runqueue: a list of runnable processes

ò  Blocked processes are not on any runqueue

ò  A runqueue belongs to a specific CPU

ò  Each task is on exactly one runqueue

ò  Task only scheduled on runqueue’s CPU unless migrated

ò  2 *40 * #CPUs runqueues

ò  40 dynamic priority levels (more later)

ò  2 sets of runqueues – one active and one expired

O(1) Intuition

ò  Take the first task off the lowest-numbered runqueue on
active set

ò  Confusingly: a lower priority value means higher priority

ò  When done, put it on appropriate runqueue on expired
set

ò  Once active is completely empty, swap which set of
runqueues is active and expired

ò  Constant time, since fixed number of queues to check;
only take first item from non-empty queue

How is this better than a
sorted list?

ò  Remember partial quantum use problem?

ò  Process uses half of its timeslice and then blocks on disk

ò  Once disk I/O is done, where to put the task?

ò  Simple: task goes in active runqueue at its priority

ò  Higher-priority tasks go to front of the line once they
become runnable

Time slice tracking

ò  If a process blocks and then becomes runnable, how do
we know how much time it had left?

ò  Each task tracks ticks left in ‘time_slice’ field

ò  On each lock tick: current->time_slice--!

ò  If time slice goes to zero, move to expired queue

ò  Refill time slice

ò  Schedule someone else

ò  An unblocked task can use balance of time slice

ò  Forking halves time slice with child

More on priorities

ò  100 = highest priority

ò  139 = lowest priority

ò  120 = base priority

ò  “nice” value: user-specified adjustment to base priority

ò  Selfish (not nice) = -20 (I want to go first)

ò  Really nice = +19 (I will go last)

Base time slice

ò  “Higher” priority tasks get longer time slices

ò  And run first

time =
(140− prio)*20ms prio <120

(140− prio)*5ms prio ≥120

#

$
%

&
%

Goal: Responsive UIs

ò  Most GUI programs are I/O bound on the user

ò  Unlikely to use entire time slice

ò  Users get annoyed when they type a key and it takes a
long time to appear

ò  Idea: give UI programs a priority boost

ò  Go to front of line, run briefly, block on I/O again

ò  Which ones are the UI programs?

Idea: Infer from sleep time

ò  By definition, I/O bound applications spend most of
their time waiting on I/O

ò  We can monitor I/O wait time and infer which programs
are GUI (and disk intensive)

ò  Give these applications a priority boost

ò  Note that this behavior can be dynamic

ò  Ex: GUI configures DVD ripping, then it is CPU-bound

ò  Scheduling should match program phases

Dynamic priority

dynamic priority = max (100, min (static priority − bonus + 5,
139))

ò  Bonus is calculated based on sleep time

ò  Dynamic priority determines a tasks’ runqueue

ò  This is a heuristic to balance competing goals of CPU
throughput and latency in dealing with infrequent I/O

ò  May not be optimal

Rebalancing tasks

ò  As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

ò  What if all the processes on CPU 0 exit, and all of the
processes on CPU 1 fork more children?

ò  We need to periodically rebalance

ò  Balance overheads against benefits

ò  Figuring out where to move tasks isn’t free

Idea: Idle CPUs rebalance

ò  If a CPU is out of runnable tasks, it should take load
from busy CPUs

ò  Busy CPUs shouldn’t lose time finding idle CPUs to take
their work if possible

ò  There may not be any idle CPUs

ò  Overhead to figure out whether other idle CPUs exist

ò  Just have busy CPUs rebalance much less frequently

Average load

ò  How do we measure how busy a CPU is?

ò  Average number of runnable tasks over time

ò  Available in /proc/loadavg

Rebalancing strategy

ò  Read the loadavg of each CPU

ò  Find the one with the highest loadavg

ò  (Hand waving) Figure out how many tasks we could take

ò  If worth it, lock the CPU’s runqueues and take them

ò  If not, try again later

Locking note

ò  If CPU A locks CPU B’s runqueue to take some work:

ò  CPU B must lock its runqueues in the common case that
no one is rebalancing

ò  Cf. Hoard and per-CPU heaps

ò  Idiosyncrasy: runqueue locks are acquired by one task
and released by another

ò  Usually this would indicate a bug!

Why not rebalance?

ò  Intuition: If things run slower on another CPU

ò  Why might this happen?

ò  NUMA (Non-Uniform Memory Access)

ò  Hyper-threading

ò  Multi-core cache behavior

ò  Vs: Symmetric Multi-Processor (SMP) – performance on
all CPUs is basically the same

SMP

ò  All CPUs similar, equally “close” to memory

CPU CPU CPU CPU

Memory

NUMA

ò  Want to keep execution near memory; higher migration costs

CPU CPU CPU CPU

Memory Memory

Node Node

Hyper-threading

ò  Precursor to multi-core

ò  A few more transistors than Intel knew what to do with,
but not enough to build a second core on a chip yet

ò  Duplicate architectural state (registers, etc), but not
execution resources (ALU, floating point, etc)

ò  OS view: 2 logical CPUs

ò  CPU: pipeline bubble in one “CPU” can be filled with
operations from another; yielding higher utilization

Hyper-threaded
scheduling

ò  Imagine 2 hyper-threaded CPUs

ò  4 Logical CPUs

ò  But only 2 CPUs-worth of power

ò  Suppose I have 2 tasks

ò  They will do much better on 2 different physical CPUs
than sharing one physical CPU

ò  They will also contend for space in the cache

ò  Less of a problem for threads in same program. Why?

Multi-core

ò  More levels of caches

ò  Migration among CPUs sharing a cache preferable

ò  Why?

ò  More likely to keep data in cache

Scheduling Domains

ò  General abstraction for CPU topology

ò  “Tree” of CPUs

ò  Each leaf node contains a group of “close” CPUs

ò  When an idle CPU rebalances, it starts at leaf node and
works up to the root

ò  Most rebalancing within the leaf

ò  Higher threshold to rebalance across a parent

Outline

ò  Policy goals

ò  Low-level mechanisms

ò  O(1) Scheduler

ò  CPU topologies

ò  Scheduling interfaces

Setting priorities

ò  setpriority(which, who, niceval) and getpriority()

ò  Which: process, process group, or user id

ò  PID, PGID, or UID

ò  Niceval: -20 to +19 (recall earlier)

ò  nice(niceval)

ò  Historical interface (backwards compatible)

ò  Equivalent to:

ò  setpriority(PRIO_PROCESS, getpid(), niceval)

Scheduler Affinity

ò  sched_setaffinity and sched_getaffinity

ò  Can specify a bitmap of CPUs on which this can be
scheduled

ò  Better not be 0!

ò  Useful for benchmarking: ensure each thread on a
dedicated CPU

yield

ò  Moves a runnable task to the expired runqueue

ò  Unless real-time (more later), then just move to the end of
the active runqueue

ò  Several other real-time related APIs

Summary

ò  Understand competing scheduling goals

ò  Understand how context switching implemented

ò  Understand O(1) scheduler + rebalancing

ò  Understand various CPU topologies and scheduling
domains

ò  Scheduling system calls

