Read-Copy Update
(RCU)

Don Porter
CSE 506

RCU 1n a nutshell

Think about data structures that are mostly read,
occasionally written

Like the Linux dcache

RW locks allow concurrent reads

Still require an atomic decrement of a lock counter
Atomic ops are expensive

Idea: Only require locks for writers; carefully update data
structure so readers see consistent views of data

Motivation
(from Paul McKenney’s Thesis)

oe4d e

Performance of RW
lock only marginally
better than mutex

|
=Lle Searches per Microsecond

Principle (1/2)

+ Locks have an acquire and release cost

Substantial, since atomic ops are expensive

+ For short critical regions, this cost dominates
performance

Principle (2/2)

Reader/writer locks may allow critical regions to execute
in parallel

But they still serialize the increment and decrement of
the read count with atomic instructions

Atomic instructions performance decreases as more CPUs
try to do them at the same time

The read lock itself becomes a scalability bottleneck,
even if the data it protects is read 99% of the time

ILock-free data structures

+ Some concurrent data structures have been proposed that
don’t require locks

+ They are difficult to create i1f one doesn’t already suit
your needs; highly error prone

+ Can eliminate these problems

RCU: Split the difference

+ One of the hardest parts of lock-free algorithms is
concurrent changes to pointers

So just use locks and make writers go one-at-a-time
<+ But, make writers be a bit careful so readers see a
consistent view of the data structures

+ If 99% of accesses are readers, avoid performance-killing
read lock in the common case

Example: Linked lists

This implementation
needs a lock

C

B’s next
pointer 1s
uninitialized;
Reader gets a
Readergoesto B BN ,0e fault

T

Example: Linked lists

Garbage
collect C after

all readers
finished

Reader goes to C or
B---either 1s ok

Example recap

Notice that we first created node B, and set up all
outgoing pointers

Then we overwrite the pointer from A

No atomic instruction needed
Either traversal 1s safe

In some cases, we may need a memory barrier

Key 1dea: Carefully update the data structure so that a
reader can never follow a bad pointer

(Garbage collection

+ Part of what makes this safe 1s that we don’t immediately
free node C
A reader could be looking at this node

If we free/overwrite the node, the reader tries to follow
the ‘next’ pointer

Uh-oh

+ How do we know when all readers are finished using it?

Hint: No new readers can access this node: it 1S now
unreachable

(Quiescence

Trick: Linux doesn’t allow a process to sleep while traversing
an RCU-protected data structure

Includes kernel preemption, I/0 waiting, etc.

Idea: If every CPU has called schedule() (quiesced), then it is
safe to free the node

Each CPU counts the number of times it has called schedule()
Put a to-be-freed item on a list of pending frees

Record timestamp on each CPU
Once each CPU has called schedule, do the free

Quiescence, cont

+ There are some optimizations that keep the per-CPU
counter to just a bit

Intuition: All you really need to know is if each CPU has
called schedule() once since this list became non-empty

Details left to the reader

[Limitations

+ No doubly-linked lists
+ Can’t immediately reuse embedded list nodes

Must wait for quiescence first

So only useful for lists where an item’s position doesn’t
change frequently

+ Only a few RCU data structures in existence

Nonetheless

+ Linked lists are the workhorse of the Linux kernel
+ RCU lists are increasingly used where appropriate

+ Improved performance!

API

Drop 1n replacement for read_lock:

rcu_read_lock()
Wrappers such as rcu_assign_pointer() and
rcu_dereference_pointer() include memory barriers

Rather than immediately free an object, use
call_rcu(object, delete_fn) to do a deferred deletion

From McKenney and Walpole, Introducing
Technology into the Linux Kernel: A Case Study

2000 T T T T 1

1800 - -
1600 - -
1400 | =
1200 - -
1000 - -
800 - -
600 - =
400 |- B
200 | .

0 | | | | |
2002 2003 2004 2005 2006 2007 2008 2009

Year

RCU API Uses

Figure 2: RCU API Usage in the Linux Kernel

Summary

L L

<+ Understand intuition of RCU
<+ Understand how to add/delete a list node in RCU

-+ Pros/cons of RCU ——=

