11/23/11

Read-Copy Update
(RCU)

Don Porter
CSE 506

. B

RCU 1n a nutshell

+ Think about data structures that are mostly read,
occasionally written
4+ Like the Linux dcache

+ RW locks allow concurrent reads

4+ Still require an atomic decrement of a lock counter
+ Atomic ops are expensive

+ Idea: Only require locks for writers; carefully update data
structure so readers see consistent views of data

Hash Table Searches per Microsecond

35

30

25

20

Motivation
(from Paul McKenney’s Thesis)

T T
"ideal"

"global"

"globalrw"

Performance of RW

lock only marginally

better than mutex
lock

Principle (1/2)

+ Locks have an acquire and release cost

<4 Substantial, since atomic ops are expensive

+ For short critical regions, this cost dominates
performance




11/23/11

Principle (2/2)

+ Reader/writer locks may allow critical regions to execute
in parallel

+ But they still serialize the increment and decrement of
the read count with atomic instructions

4+ Atomic instructions performance decreases as more CPUs
try to do them at the same time

+ The read lock itself becomes a scalability bottleneck,
even if the data it protects is read 99% of the time

Lock-free data structures

. » .

+ Some concurrent data structures have been proposed that
don’t require locks

+ They are difficult to create if one doesn’t already suit
your needs; highly error prone

+ Can eliminate these problems

RCU: Split the difference

+ One of the hardest parts of lock-free algorithms is
concurrent changes to pointers
4+ So just use locks and make writers go one-at-a-time
<+ But, make writers be a bit careful so readers see a
consistent view of the data structures

+ If 99% of accesses are readers, avoid performance-killing
read lock in the common case

Example: Linked lists

| This implementation '
needs a lock

A CHEH

B’s next
pointer is
uninitialized;
Reader gets a
page fault

Reader goes to B




11/23/11

Example: Linked lists

»

.

Garbage
collect C after
all readers
finished

Reader goes to C or
B---either is ok

Example recap

x e w e

+ Notice that we first created node B, and set up all
outgoing pointers

+ Then we overwrite the pointer from A

+ No atomic instruction needed
4+ Either traversal is safe
+ In some cases, we may need a memory barrier

+ Key idea: Carefully update the data structure so that a
reader can never follow a bad pointer

Garbage collection

> o - A

<+ Part of what makes this safe is that we don’t immediately
free node C
4+ A reader could be looking at this node

+ If we free/overwrite the node, the reader tries to follow
the ‘next’ pointer

+ Uh-oh

+ How do we know when all readers are finished using it?

4+ Hint: No new readers can access this node: it is now
unreachable

Quiescence

x e w ———

+ Trick: Linux doesn’t allow a process to sleep while traversing
an RCU-protected data structure
4+ Includes kernel preemption, I/0 waiting, etc.

+ Idea: If every CPU has called schedule() (quiesced), then it is
safe to free the node
+ Each CPU counts the number of times it has called schedule()
+ Put a to-be-freed item on a list of pending frees
+ Record timestamp on each CPU
4+ Once each CPU has called schedule, do the free




11/23/11

Quiescence, cont

- > - S

+ There are some optimizations that keep the per-CPU
counter to just a bit

+ Intuition: All you really need to know is if each CPU has
called schedule() once since this list became non-empty

+ Details left to the reader

Limitations

@ .o
+ No doubly-linked lists
+ Can’t immediately reuse embedded list nodes

<+ Must wait for quiescence first

4+ So only useful for lists where an item’s position doesn’t
change frequently

+ Only a few RCU data structures in existence

Nonetheless

e .o
+ Linked lists are the workhorse of the Linux kernel
+ RCU lists are increasingly used where appropriate

+ Improved performance!

API

coo oo
+ Drop in replacement for read_lock:

4+ rcu_read_lock()

4+ Wrappers such as rcu_assign_pointer() and
rcu_dereference_pointer() include memory barriers

+ Rather than immediately free an object, use
call_rcu(object, delete_fn) to do a deferred deletion




11/23/11

From McKenney and Walpole, Introducing
Technology into the Linux Kernel: A Case Study

c@o .o
2000 T T T T T T

1800 -
1600 |~ -
1400 -1
1200 -1
1000 -

800 |- -
600 |- g
400 |- -

200 —

0 1 1 1 1 1

2002 2003 2004 2005 2006 2007 2008 2009
Year

#RCU API Uses

Figure 2: RCU API Usage in the Linux Kernel

Summary

o0o oo
4 Understand intuition of RCU
+ Understand how to add/delete a list node in RCU

+ Pros/cons of RCU




