
Page Frame Reclaiming
Don Porter

CSE 506

Last time…

ò  We saw how you go from a file or process to the
constituent memory pages making it up

ò  Where in memory is page 2 of file “foo”?

ò  Or, where is address 0x1000 in process 100?

ò  Today, we look at reverse mapping:

ò  Given page X, what has a reference to it?

ò  Then we will look at page reclamation:

ò  Which page is the best candidate to reuse?

Physical page
management

ò  Reminder: Similar to JOS, Linux stores physical page
descriptors in an array

ò  Contents are somewhat different, but same idea

Shared memory

ò  Recall: A vma represents a region of a process’s virtual
address space

ò  A vma is private to a process

ò  Yet physical pages can be shared

ò  The pages caching libc in memory

ò  Even anonymous application data pages can be shared,
after a copy-on-write fork()

ò  So far, we have elided this issue. No longer!

Anonymous memory

ò  When anonymous memory is mapped, a vma is created

ò  Pages are added on demand (laziness rules!)

ò  When the first page is added, an anon_vma structure is
also created

ò  vma and page descriptor point to anon_vma

ò  anon_vma stores all mapping vmas in a circular linked list

ò  When a mapping becomes shared (e.g., COW fork),
create a new VMA, link it on the anon_vma list

Example

Physical memory

Process A Process B

Virtual memory

Page Tables

Physical page descriptors

vma vma
anon
vma

Reverse mapping

ò  Suppose I pick a physical page X, what is it being used
for?

ò  Many ways you could represent this

ò  Remember, some systems have a lot of physical memory

ò  So we want to keep fixed, per-page overheads low

ò  Can dynamically allocate some extra bookkeeping

Linux strategy

ò  Add 2 fields to each page descriptor

ò  _mapcount: Tracks the number of active mappings

ò  -1 == unmapped

ò  0 == single mapping (unshared)

ò  1+ == shared

ò  mapping: Pointer to the owning object

ò  Address space (file/device) or anon_vma (process)

ò  Least Significant Bit encodes the type (1 == anon_vma)

Anonymous page lookup

ò  Given a physical address, page descriptor index is just simple
division by page size

ò  Given a page descriptor:

ò  Look at _mapcount to see how many mappings. If 0+:

ò  Read mapping to get pointer to the anon_vma

ò  Be sure to check, mask out low bit

ò  Iterate over vmas on the anon_vma list

ò  Linear scan of page table entries for each vma

ò  vma-> mm -> pgdir

Example

Physical memory

Process A Process B

Virtual memory

Page Tables

Physical page descriptors

vma vma
anon
vma

Page 0x10000
Divide by 0x1000 (4k)

Page 0x10
_mapcount: 1

mapping:
(anon vma + low bit)

foreach vma

Linear scan
of page tables

File vs. anon mappings

ò  Given a page mapping a file, we store a pointer in its page
descriptor to the inode address space

ò  Linear scan of the radix tree to figure out what offset in the file
is being mapped

ò  Now to find all processes mapping the file…

ò  So, let’s just do the same thing for files as anonymous
mappings, no?

ò  Could just link all VMAs mapping a file into a linked list on the
inode’s address_space.

ò  2 complications:

Complication 1

ò  Not all file mappings map the entire file

ò  Many map only a region of the file

ò  So, if I am looking for all mappings of page 4 of a file a
linear scan of each mapping may have to filter vmas that
don’t include page 4

Complication 2

ò  Intuition: anonymous mappings won’t be shared much

ò  How many children won’t exec a new executable?

ò  In contrast, (some) mapped files will be shared a lot

ò  Example: libc

ò  Problem: Lots of entries on the list + many that might not
overlap

ò  Solution: Need some sort of filter

Priority Search Tree

ò  Idea: binary search tree that uses overlapping ranges as
node keys

ò  Bigger, enclosing ranges are the parents, smaller ranges are
children

ò  Not balanced (in Linux, some uses balance them)

ò  Use case: Search for all ranges that include page N

ò  Most of that logarithmic lookup goodness you love from
tree-structured data!

Figure 17-2
(from Understanding the Linux Kernel)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 17: Page Frame Reclaiming

retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers
that neither of them include the page.

We won’t be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We’ll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the shared.
prio_tree_node field of each memory region descriptor. The shared.vm_set data struc-
ture is used—as an alternative to shared.prio_tree_node—to insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and
removed by executing the vma_prio_tree_insert() and vma_prio_tree_remove() func-
tions; both of them receive as their parameters the address of a memory region
descriptor and the address of a PST root. Queries on the PST can be performed by exe-
cuting the vma_prio_tree_foreach macro, which implements a loop over all memory
region descriptors that includes at least one page in a specified range of linear
addresses.

The try_to_unmap_file() function

The try_to_unmap_file() function is invoked by try_to_unmap() to perform the
reverse mapping of mapped pages. This function is quite simple to describe when the
memory mapping is linear (see the section “Memory Mapping” in Chapter 16). In
this case, it performs the following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose
root is stored in the page->mapping->i_mmap field. For each vm_area_struct
descriptor found by the macro, the function invokes try_to_unmap_one() to try
to clear the Page Table entry of the memory region that contains the page (see
the earlier section “Reverse Mapping for Anonymous Pages”). If for some reason
this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates immediately.

Figure 17-2. A simple example of priority search tree

radix size heap

(a) (b)

0 1 2 3 4 5

0,5,5
0,2,2
0,4,4
2,3,5
2,0,2
1,2,3
0,0,0

0,0,0 0,2,2 1,2,3 2,0,2

0,5,5

0,4,4 2,3,5

ò  Radix – start of interval, heap = last page

ò  Calculate size with math – handy memoize

PST + vmas

ò  Each node in the PST contains a list of vmas mapping
that interval

ò  Only one vma for unusual mappings

ò  So what about duplicates (ex: all programs using libc)?

ò  A very long list on the (0, filesz, filesz) node

ò  I.e., the root of the tree

Reverse lookup, review

ò  Given a page, how do I find all mappings?

Problem 2: Reclaiming

ò  Until there is a problem, kernel caches and processes can
go wild allocating memory

ò  Sometimes there is a problem, and the kernel needs to
reclaim physical pages for other uses

ò  Low memory, hibernation, free memory below a “goal”

ò  Which ones to pick?

ò  Goal: Minimal performance disruption on a wide range of
systems (from phones to supercomputers)

Types of pages

ò  Unreclaimable – free pages (obviously), pages pinned in
memory by a process, temporarily locked pages, pages
used for certain purposes by the kernel

ò  Swappable – anonymous pages, tmpfs, shared IPC
memory

ò  Syncable – cached disk data

ò  Discardable – unused pages in cache allocators

General principles

ò  Free harmless pages first

ò  Steal pages from user programs, especially those that haven’t
been used recently

ò  When a page is reclaimed, remove all references at once

ò  Removing one reference is a waste of time

ò  Temporal locality: get pages that haven’t been used in a while

ò  Laziness: Favor pages that are “cheaper” to free

ò  Ex: Waiting on write back of dirty data takes time

Another view

ò  Suppose the system is bogging down because memory is
scarce

ò  The problem is only going to go away permanently if a
process can get enough memory to finish

ò  Then it will free memory permanently!

ò  When the OS reclaims memory, we want to avoid
harming progress by taking away memory a process
really needs to make progress

ò  If possible, avoid this with educated guesses

LRU lists

ò  All pages are on one of 2 LRU lists: active or inactive

ò  Intuition: a page access causes it to be switched to the
active list

ò  A page that hasn’t been accessed in a while moves to the
inactive list

How to detect use?

ò  Tag pages with “last access” time

ò  Obviously, explicit kernel operations (mmap, mprotect,
read, etc.) can update this

ò  What about when a page is mapped?

ò  Remember those hardware access bits in the page table?

ò  Periodically clear them; if they don’t get re-set by the
hardware, you can assume the page is “cold”

ò  If they do get set, it is “hot”

Big picture

ò  Kernel keeps a heuristic “target” of free pages

ò  Makes a best effort to maintain that target; can fail

ò  Kernel gets really worried when allocations start failing

ò  In the worst case, starts out-of-memory (OOM) killing
processes until memory can be reclaimed

Editorial

ò  Choosing the “right” pages to free is a problem without a
lot of good science behind it

ò  Many systems don’t cope well with low-memory
conditions

ò  But they need to get better

ò  (Think phones and other small devices)

ò  Important problem – perhaps an opportunity?

Summary

ò  Reverse mappings for shared:

ò  Anonymous pages

ò  File-mapping pages

ò  Basic tricks of page frame reclaiming

ò  LRU lists

ò  Free cheapest pages first

ò  Unmap all at once

ò  Etc.

