H WA ¢ ,,qZ..,\.
e 4 "
&) ,w
D
o | » oy -
: - * «.AJ Y,
t ,
. ! A
+ b
4\ :
™ >

” o ‘...,,¢.0>

4 S 4

£ ﬂ
. r &

4 Lo
AN e
s ;

ol
‘f.ﬂ - s »
i ;
B
] ¥ b g
.)
-
LY
> "
Y
Lol

T .

. .' - ot { w
- Gy
! & g

4 . Y

_ W
a1 ‘ @
i .
| A
ol \‘V.r -

- . o
)‘ + N

- s
| o 1 -
% ——l .
¢ . *8

I VFaat a2 Y/7at a2k a2t 2

Recap

+ Last time we talked about optimizing disk I/O
scheduling

Someone throws requests over the wall, we service them

<+ Now: Look at the other side of this “wall”

Today: Focus on writing back dirty data

Holding dirty data

+ Most OSes keep updated file data in memory for “a
while” before writing it back

Ie., “dirty” data

+ Why?

Principle of locality: If I wrote a file page once, I may
write 1t again soon.

+ Idea: Reduce number of disk I/0 requests with batching

Today’s problem

+ How do I keep track of which pages are dirty?
+ Sub-problems:

How do I ensure they get written out eventually?
+ Preferably within some reasonable bound?

How do I map a page back to a disk block?

Starting point

+ Just like JOS, Linux represents physical memory with an
array of page structs

Obviously, not the exact same contents, but same 1dea

+ Some memory used for I/O mapping, device buffers, etc.

Other memory associated with processes, files

+ How to represent these associations?

For today, interested in “What pages go with this process/
file/etc?”

Tomorrow: What file does this page go to?

Simple model

+ Each page needs:

A reference to the file/process/etc. it belongs to
+ Assume for simplicity no page sharing

An offset within the file/process/etc
+ Unifying abstraction: the address space

Each file inode has an address space (0—file size)
So do block devices that cache data in RAM (0---dev size)

The (anonymous) virtual memory of a process has an
address space (0—4GB on x86)

Address space
representation

We saw before that a process uses a list and tree of VM
area structs (VMASs) to represent its address space

A VMA can be anonymous (no file backing)

Or it can map (part of) a file
Page table stores association with physical page

Good solution:

Sparse, like most process address spaces

Scalable: can efficiently represent large address spaces

Tracking file pages

<+ What data structure to use for a file?

No page tables for files
+ For example: What page stores the first 4k of file “foo”

<+ What data structure to use?

Hint: Files can be small, or very, very large

The Radix Tree

+ A space-optimized trie

Trie: Rather than store entire key in each node, traversal of
parent(s) builds a prefix, node just stores suffix

+ Especially useful for strings

Prefix less important for file offsets, but does bound key
storage space

+ More important: A tree with a branching factor k > 2

Faster lookup for large files (esp. with tricks)
4+ Note: Linux’s use of the Radix tree 1s constrained

A bit more detail

+ Assume an upper bound on file size when building the
radix tree

Can rebuild later if we are wrong

+ Specifically: Max size 1s 256k, branching factor (k) = 64
+ 256k / 4k pages = 64 pages

So we need a radix tree of height 1 to represent these
pages

Tree of height 1

+ Root has 64 slots, can be null, or a pointer to a page

+ Lookup address X:

Shift off low 12 bits (offset within page)
Use next 6 bits as an index into these slots (26 = 64)
If pointer non-null, go to the child node (page)

If null, page doesn’t exist

Tree of height n

Similar story:

Shift off low 12 bits

At each child shift off 6 bits from middle (starting at 6 * (distance to the
bottom — 1) bits) to find which of the 64 potential children to go to

Use fixed height to figure out where to stop, which bits to use for offset

Observations:

“Key” at each node implicit based on position in tree

Lookup time constant in height of tree

+ In a general-purpose radix tree, may have to check all k children, for higher
lookup cost

Fixed heights

+ If the file size grows beyond max height, must grow the tree

+ Relatively simple: Add another root, previous tree becomes
first child

+ Scaling in height:

1: 2°((6*1) +12) = 256 KB
2: 27((6*2) + 12) = 16 MB
3: 27((6*3) + 12) = 1 GB
4: 27((6*4) + 12) = 16 GB
5: 27 (6*5) + 12) = 4 TB

Back to address spaces

+ Each address space for a file cached in memory includes
a radix tree

Radix tree 1s sparse: pages not in memory are missing

+ Radix tree also supports tags: such as dirty

A tree node is tagged if at least one child also has the tag
+ Example: I tag a file page dirty

Must tag each parent in the radix tree as dirty

When I am finished writing page back, I must check all
siblings; if none dirty, clear the parent’s dirty tag

When does Linux write
pages back?

+ Synchronously: When a program calls a sync system call
+ Asynchronously:

Periodically writes pages back

Ensures that they don’t stay in memory too long

Sync system calls

sync() — Flush all dirty buffers to disk

fsync(fd) — Flush all dirty buffers associated with this file
to disk (including changes to the inode)

fdatasync(fd) — Flush only dirty data pages for this file to
disk

Don’t bother with the inode

How to implement sync?

+ Goal: keep overheads of finding dirty blocks low

A naive scan of all pages would work, but expensive
Lots of clean pages

+ Idea: keep track of dirty data to minimize overheads

A bit of extra work on the write path, of course

How to implement sync?

+ Background: Each file system has a super block

All super blocks 1n a list
+ Each super block keeps a list of dirty inodes

+ Inodes and superblocks both marked dirty upon use

Simple traversal

for each s in superblock list:
if (s->dirty) writeback s
for 1 1n 1node list:
if (1->dirty) writeback 1
if (1->radix_root->dirty) :

// Recursively traverse tree writing
// dirty pages and clearing dirty flag

Asynchronous flushing

+ Kernel thread(s): pdflush

Recall: a kernel thread 1s a task that only runs in the
kernel’s address space

2-8 threads, depending on how busy/idle threads are

+ When pdflush runs, it is given a target number of pages
to write back

Kernel maintains a total number of dirty pages

Administrator configures a target dirty ratio (say 10%)

pdflush

When pdflush is scheduled, it figures out how many
dirty pages are above the target ratio

Writes back pages until it meets its goal or can’t write
more back

(Some pages may be locked, just skip those)

Same traversal as sync() + a count of written pages

Usually quits earlier

How long dirty?

+ Linux has some 1inode-specific bookkeeping about when
things were dirtied

+ pdflush also checks for any inodes that have been dirty
longer than 30 seconds

Writes these back even if quota was met

+ Not the strongest guarantee I've ever seen...

Mapping pages to disk
blocks

+ Most disks have 512 byte blocks; pages are generally 4K

Some new “green” disks have 4K blocks
Per page 1n cache — usually 8 disk blocks
<+ When blocks don’t match, what do we do?

Simple answer: Just write all 8!

But this 1s expensive — if only one block changed, we only
want to write one block back

Bufter head

+ Simple idea: for every page backed by disk, store an extra
data structure for each disk block, called a buffer head

+ If a page stores 8 disk blocks, it has 8 buffer heads

+ Example: write() system call for first 5 bytes

Look up first page in radix tree
Modify page, mark dirty
Only mark first buffer head dirty

More on buffer heads

+ On write-back (sync, pdflush, etc), only write dirty buffer
heads

+ To look up a given disk block for a file, must divide by
buffer heads per page

Ex: disk block 25 of a file 1s in page 3 in the radix tree

+ Note: memory mapped files mark all 8 buffer heads
dirty. Why?

Can only detect write regions via page faults

Raw device caching

+ For simplicity, we’ve focused on file data
+ The page cache can also cache raw device blocks

Disks can have an address space + radix tree too!

+ Why?

On-disk metadata (inodes, directory entries, etc)
File data may not be stored in block-aligned chunks
+ Think extreme storage optimizations

Other block-level transformations between FS and disk (e.g.,
encryption, compression, deduplication)

Summary

+ Seen how mappings of files/disks to cache pages are
tracked
And how dirty pages are tagged
Radix tree basics

+ When and how dirty data 1s written back to disk

+ How difference between disk sector and page sizes are
handled

