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The Page Cache 
Don Porter 

CSE 506 

Recap 

ò  Last time we talked about optimizing disk I/O 
scheduling 

ò  Someone throws requests over the wall, we service them 

ò  Now: Look at the other side of  this “wall” 

ò  Today: Focus on writing back dirty data 

Holding dirty data 

ò  Most OSes keep updated file data in memory for “a 
while” before writing it back 

ò  I.e., “dirty” data 

ò  Why? 

ò  Principle of  locality: If  I wrote a file page once, I may 
write it again soon.  

ò  Idea: Reduce number of  disk I/O requests with batching 

Today’s problem 

ò  How do I keep track of  which pages are dirty? 

ò  Sub-problems: 

ò  How do I ensure they get written out eventually? 

ò  Preferably within some reasonable bound? 

ò  How do I map a page back to a disk block? 
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Starting point 

ò  Just like JOS, Linux represents physical memory with an 
array of  page structs 

ò  Obviously, not the exact same contents, but same idea 

ò  Some memory used for I/O mapping, device buffers, etc. 

ò  Other memory associated with processes, files 

ò  How to represent these associations? 

ò  For today, interested in “What pages go with this process/
file/etc?”   

ò  Tomorrow: What file does this page go to? 

Simple model 

ò  Each page needs: 

ò  A reference to the file/process/etc. it belongs to 

ò  Assume for simplicity no page sharing 

ò  An offset within the file/process/etc 

ò  Unifying abstraction: the address space 

ò  Each file inode has an address space (0—file size) 

ò  So do block devices that cache data in RAM (0---dev size) 

ò  The (anonymous) virtual memory of  a process has an 
address space (0—4GB on x86) 

Address space 
representation 

ò  We saw before that a process uses a list and tree of  VM 
area structs (VMAs) to represent its address space 

ò  A VMA can be anonymous (no file backing) 

ò  Or it can map (part of) a file 

ò  Page table stores association with physical page 

ò  Good solution: 

ò  Sparse, like most process address spaces 

ò  Scalable: can efficiently represent large address spaces 

Tracking file pages 

ò  What data structure to use for a file? 

ò  No page tables for files 

ò  For example: What page stores the first 4k of  file “foo” 

ò  What data structure to use? 

ò  Hint: Files can be small, or very, very large 
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The Radix Tree 

ò  A space-optimized trie 

ò  Trie: Rather than store entire key in each node, traversal of  
parent(s) builds a prefix, node just stores suffix 

ò  Especially useful for strings 

ò  Prefix less important for file offsets, but does bound key 
storage space 

ò  More important: A tree with a branching factor k > 2 

ò  Faster lookup for large files (esp. with tricks) 

ò  Note: Linux’s use of  the Radix tree is constrained 

A bit more detail 

ò  Assume an upper bound on file size when building the 
radix tree 

ò  Can rebuild later if  we are wrong 

ò  Specifically: Max size is 256k, branching factor (k) = 64 

ò  256k / 4k pages = 64 pages 

ò  So we need a radix tree of  height 1 to represent these 
pages 

Tree of  height 1 

ò  Root has 64 slots, can be null, or a pointer to a page 

ò  Lookup address X: 

ò  Shift off  low 12 bits (offset within page) 

ò  Use next 6 bits as an index into these slots (2^6 = 64) 

ò  If  pointer non-null, go to the child node (page) 

ò  If  null, page doesn’t exist 

Tree of  height n 

ò  Similar story: 

ò  Shift off  low 12 bits 

ò  At each child shift off  6 bits from middle (starting at 6 * (distance to the 
bottom – 1) bits) to find which of  the 64 potential children to go to 

ò  Use fixed height to figure out where to stop, which bits to use for offset 

ò  Observations: 

ò  “Key” at each node implicit based on position in tree 

ò  Lookup time constant in height of  tree 

ò  In a general-purpose radix tree, may have to check all k children, for higher 
lookup cost 
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Fixed heights 

ò  If  the file size grows beyond max height, must grow the tree 

ò  Relatively simple: Add another root, previous tree becomes 
first child 

ò  Scaling in height: 

ò  1: 2^( (6*1) +12) = 256 KB 

ò  2: 2^( (6*2) + 12) = 16 MB 

ò  3: 2^( (6*3) + 12) = 1 GB 

ò  4: 2^( (6*4) + 12) = 16 GB 

ò  5: 2^( (6*5) + 12) = 4 TB 

Back to address spaces 

ò  Each address space for a file cached in memory includes 
a radix tree 

ò  Radix tree is sparse: pages not in memory are missing 

ò  Radix tree also supports tags: such as dirty 

ò  A tree node is tagged if  at least one child also has the tag 

ò  Example: I tag a file page dirty 

ò  Must tag each parent in the radix tree as dirty 

ò  When I am finished writing page back, I must check all 
siblings; if  none dirty, clear the parent’s dirty tag 

When does Linux write 
pages back? 

ò  Synchronously: When a program calls a sync system call 

ò  Asynchronously: 

ò  Periodically writes pages back 

ò  Ensures that they don’t stay in memory too long 

Sync system calls 

ò  sync() – Flush all dirty buffers to disk 

ò  fsync(fd) – Flush all dirty buffers associated with this file 
to disk (including changes to the inode) 

ò  fdatasync(fd) – Flush only dirty data pages for this file to 
disk 

ò  Don’t bother with the inode 
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How to implement sync? 

ò  Goal: keep overheads of  finding dirty blocks low 

ò  A naïve scan of  all pages would work, but expensive 

ò  Lots of  clean pages 

ò  Idea: keep track of  dirty data to minimize overheads 

ò  A bit of  extra work on the write path, of  course 

How to implement sync? 

ò  Background: Each file system has a super block 

ò  All super blocks in a list 

ò  Each super block keeps a list of  dirty inodes 

ò  Inodes and superblocks both marked dirty upon use 

Simple traversal 

for each s in superblock list: 

 if  (s->dirty) writeback s 

 for i in inode list: 

  if  (i->dirty) writeback i 

  if  (i->radix_root->dirty) : 

   // Recursively traverse tree writing  
   // dirty pages and clearing dirty flag  

Asynchronous flushing 

ò  Kernel thread(s): pdflush 

ò  Recall: a kernel thread is a task that only runs in the 
kernel’s address space 

ò  2-8 threads, depending on how busy/idle threads are 

ò  When pdflush runs, it is given a target number of  pages 
to write back 

ò  Kernel maintains a total number of  dirty pages 

ò  Administrator configures a target dirty ratio (say 10%) 
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pdflush 

ò  When pdflush is scheduled, it figures out how many 
dirty pages are above the target ratio 

ò  Writes back pages until it meets its goal or can’t write 
more back 

ò  (Some pages may be locked, just skip those) 

ò  Same traversal as sync() + a count of  written pages 

ò  Usually quits earlier 

How long dirty? 

ò  Linux has some inode-specific bookkeeping about when 
things were dirtied 

ò  pdflush also checks for any inodes that have been dirty 
longer than 30 seconds 

ò  Writes these back even if  quota was met 

ò  Not the strongest guarantee I’ve ever seen… 

Mapping pages to disk 
blocks 

ò  Most disks have 512 byte blocks; pages are generally 4K 

ò  Some new “green” disks have 4K blocks 

ò  Per page in cache – usually 8 disk blocks 

ò  When blocks don’t match, what do we do? 

ò  Simple answer: Just write all 8! 

ò  But this is expensive – if  only one block changed, we only 
want to write one block back 

Buffer head 

ò  Simple idea: for every page backed by disk, store an extra 
data structure for each disk block, called a buffer_head 

ò  If  a page stores 8 disk blocks, it has 8 buffer heads 

ò  Example: write() system call for first 5 bytes 

ò  Look up first page in radix tree 

ò  Modify page, mark dirty 

ò  Only mark first buffer head dirty 
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More on buffer heads 

ò  On write-back (sync, pdflush, etc), only write dirty buffer 
heads 

ò  To look up a given disk block for a file, must divide by 
buffer heads per page 

ò  Ex: disk block 25 of  a file is in page 3 in the radix tree 

ò  Note: memory mapped files mark all 8 buffer_heads 
dirty.  Why? 

ò  Can only detect write regions via page faults 

Raw device caching 

ò  For simplicity, we’ve focused on file data 

ò  The page cache can also cache raw device blocks 

ò  Disks can have an address space + radix tree too! 

ò  Why? 

ò  On-disk metadata (inodes, directory entries, etc) 

ò  File data may not be stored in block-aligned chunks 

ò  Think extreme storage optimizations 

ò  Other block-level transformations between FS and disk (e.g., 
encryption, compression, deduplication) 

Summary 

ò  Seen how mappings of  files/disks to cache pages are 
tracked 

ò  And how dirty pages are tagged 

ò  Radix tree basics 

ò  When and how dirty data is written back to disk 

ò  How difference between disk sector and page sizes are 
handled 


