
11/14/11	

1	

The Page Cache
Don Porter

CSE 506

Recap

ò  Last time we talked about optimizing disk I/O
scheduling

ò  Someone throws requests over the wall, we service them

ò  Now: Look at the other side of this “wall”

ò  Today: Focus on writing back dirty data

Holding dirty data

ò  Most OSes keep updated file data in memory for “a
while” before writing it back

ò  I.e., “dirty” data

ò  Why?

ò  Principle of locality: If I wrote a file page once, I may
write it again soon.

ò  Idea: Reduce number of disk I/O requests with batching

Today’s problem

ò  How do I keep track of which pages are dirty?

ò  Sub-problems:

ò  How do I ensure they get written out eventually?

ò  Preferably within some reasonable bound?

ò  How do I map a page back to a disk block?

11/14/11	

2	

Starting point

ò  Just like JOS, Linux represents physical memory with an
array of page structs

ò  Obviously, not the exact same contents, but same idea

ò  Some memory used for I/O mapping, device buffers, etc.

ò  Other memory associated with processes, files

ò  How to represent these associations?

ò  For today, interested in “What pages go with this process/
file/etc?”

ò  Tomorrow: What file does this page go to?

Simple model

ò  Each page needs:

ò  A reference to the file/process/etc. it belongs to

ò  Assume for simplicity no page sharing

ò  An offset within the file/process/etc

ò  Unifying abstraction: the address space

ò  Each file inode has an address space (0—file size)

ò  So do block devices that cache data in RAM (0---dev size)

ò  The (anonymous) virtual memory of a process has an
address space (0—4GB on x86)

Address space
representation

ò  We saw before that a process uses a list and tree of VM
area structs (VMAs) to represent its address space

ò  A VMA can be anonymous (no file backing)

ò  Or it can map (part of) a file

ò  Page table stores association with physical page

ò  Good solution:

ò  Sparse, like most process address spaces

ò  Scalable: can efficiently represent large address spaces

Tracking file pages

ò  What data structure to use for a file?

ò  No page tables for files

ò  For example: What page stores the first 4k of file “foo”

ò  What data structure to use?

ò  Hint: Files can be small, or very, very large

11/14/11	

3	

The Radix Tree

ò  A space-optimized trie

ò  Trie: Rather than store entire key in each node, traversal of
parent(s) builds a prefix, node just stores suffix

ò  Especially useful for strings

ò  Prefix less important for file offsets, but does bound key
storage space

ò  More important: A tree with a branching factor k > 2

ò  Faster lookup for large files (esp. with tricks)

ò  Note: Linux’s use of the Radix tree is constrained

A bit more detail

ò  Assume an upper bound on file size when building the
radix tree

ò  Can rebuild later if we are wrong

ò  Specifically: Max size is 256k, branching factor (k) = 64

ò  256k / 4k pages = 64 pages

ò  So we need a radix tree of height 1 to represent these
pages

Tree of height 1

ò  Root has 64 slots, can be null, or a pointer to a page

ò  Lookup address X:

ò  Shift off low 12 bits (offset within page)

ò  Use next 6 bits as an index into these slots (2^6 = 64)

ò  If pointer non-null, go to the child node (page)

ò  If null, page doesn’t exist

Tree of height n

ò  Similar story:

ò  Shift off low 12 bits

ò  At each child shift off 6 bits from middle (starting at 6 * (distance to the
bottom – 1) bits) to find which of the 64 potential children to go to

ò  Use fixed height to figure out where to stop, which bits to use for offset

ò  Observations:

ò  “Key” at each node implicit based on position in tree

ò  Lookup time constant in height of tree

ò  In a general-purpose radix tree, may have to check all k children, for higher
lookup cost

11/14/11	

4	

Fixed heights

ò  If the file size grows beyond max height, must grow the tree

ò  Relatively simple: Add another root, previous tree becomes
first child

ò  Scaling in height:

ò  1: 2^((6*1) +12) = 256 KB

ò  2: 2^((6*2) + 12) = 16 MB

ò  3: 2^((6*3) + 12) = 1 GB

ò  4: 2^((6*4) + 12) = 16 GB

ò  5: 2^((6*5) + 12) = 4 TB

Back to address spaces

ò  Each address space for a file cached in memory includes
a radix tree

ò  Radix tree is sparse: pages not in memory are missing

ò  Radix tree also supports tags: such as dirty

ò  A tree node is tagged if at least one child also has the tag

ò  Example: I tag a file page dirty

ò  Must tag each parent in the radix tree as dirty

ò  When I am finished writing page back, I must check all
siblings; if none dirty, clear the parent’s dirty tag

When does Linux write
pages back?

ò  Synchronously: When a program calls a sync system call

ò  Asynchronously:

ò  Periodically writes pages back

ò  Ensures that they don’t stay in memory too long

Sync system calls

ò  sync() – Flush all dirty buffers to disk

ò  fsync(fd) – Flush all dirty buffers associated with this file
to disk (including changes to the inode)

ò  fdatasync(fd) – Flush only dirty data pages for this file to
disk

ò  Don’t bother with the inode

11/14/11	

5	

How to implement sync?

ò  Goal: keep overheads of finding dirty blocks low

ò  A naïve scan of all pages would work, but expensive

ò  Lots of clean pages

ò  Idea: keep track of dirty data to minimize overheads

ò  A bit of extra work on the write path, of course

How to implement sync?

ò  Background: Each file system has a super block

ò  All super blocks in a list

ò  Each super block keeps a list of dirty inodes

ò  Inodes and superblocks both marked dirty upon use

Simple traversal

for each s in superblock list:

 if (s->dirty) writeback s

 for i in inode list:

 if (i->dirty) writeback i

 if (i->radix_root->dirty) :

 // Recursively traverse tree writing
 // dirty pages and clearing dirty flag

Asynchronous flushing

ò  Kernel thread(s): pdflush

ò  Recall: a kernel thread is a task that only runs in the
kernel’s address space

ò  2-8 threads, depending on how busy/idle threads are

ò  When pdflush runs, it is given a target number of pages
to write back

ò  Kernel maintains a total number of dirty pages

ò  Administrator configures a target dirty ratio (say 10%)

11/14/11	

6	

pdflush

ò  When pdflush is scheduled, it figures out how many
dirty pages are above the target ratio

ò  Writes back pages until it meets its goal or can’t write
more back

ò  (Some pages may be locked, just skip those)

ò  Same traversal as sync() + a count of written pages

ò  Usually quits earlier

How long dirty?

ò  Linux has some inode-specific bookkeeping about when
things were dirtied

ò  pdflush also checks for any inodes that have been dirty
longer than 30 seconds

ò  Writes these back even if quota was met

ò  Not the strongest guarantee I’ve ever seen…

Mapping pages to disk
blocks

ò  Most disks have 512 byte blocks; pages are generally 4K

ò  Some new “green” disks have 4K blocks

ò  Per page in cache – usually 8 disk blocks

ò  When blocks don’t match, what do we do?

ò  Simple answer: Just write all 8!

ò  But this is expensive – if only one block changed, we only
want to write one block back

Buffer head

ò  Simple idea: for every page backed by disk, store an extra
data structure for each disk block, called a buffer_head

ò  If a page stores 8 disk blocks, it has 8 buffer heads

ò  Example: write() system call for first 5 bytes

ò  Look up first page in radix tree

ò  Modify page, mark dirty

ò  Only mark first buffer head dirty

11/14/11	

7	

More on buffer heads

ò  On write-back (sync, pdflush, etc), only write dirty buffer
heads

ò  To look up a given disk block for a file, must divide by
buffer heads per page

ò  Ex: disk block 25 of a file is in page 3 in the radix tree

ò  Note: memory mapped files mark all 8 buffer_heads
dirty. Why?

ò  Can only detect write regions via page faults

Raw device caching

ò  For simplicity, we’ve focused on file data

ò  The page cache can also cache raw device blocks

ò  Disks can have an address space + radix tree too!

ò  Why?

ò  On-disk metadata (inodes, directory entries, etc)

ò  File data may not be stored in block-aligned chunks

ò  Think extreme storage optimizations

ò  Other block-level transformations between FS and disk (e.g.,
encryption, compression, deduplication)

Summary

ò  Seen how mappings of files/disks to cache pages are
tracked

ò  And how dirty pages are tagged

ò  Radix tree basics

ò  When and how dirty data is written back to disk

ò  How difference between disk sector and page sizes are
handled

