5

Networking (2 parts)

<+ Goals:

Review networking basics
Discuss APIs

Trace how a packet gets from the network device to the
application (and back)

Understand Receive livelock and NAPI

g to 7 layer diagram

(from Understanding Linux Network Internals)

= = ogo
7 Application
6 Presentation 5 Application Message
5 Session
4 Transport 4 | Transport (TCP/UDP/...) | Segment
3 Network 3 Internet (IPv4, IPv6) Datagram/packet
: Data link Link layer or
1/2 Host-to-network Frame
1 Physical (Ethernet,. . .)
oSl TCP/IP

Figure 13-1. OSI and TCP/IP models

<+ Frame: hardware

<+ Packet: IP

-+ Segment: TCP/UDP ——i=

e

Message: Application

Nomenclature

L L

e e

TCP/IP Reality

+ The OSI model 1s great for undergrad courses
+ TCP/IP (or UDP) 1s what the majority of programs use

Some random things (like networked disks) just use
ethernet + some custom protocols

Ethernet
(or 802.2 or 802.3)

+ All slight variations on a theme (3 different standards)
+ Simple packet layout:

Header: Type, source MAC address, destination MAC
address, length, (and a few other fields)

Data block (payload)
Checksum

+ Higher-level protocols “nested” inside payload

+ “Unreliable” — no guarantee a packet will be delivered

Ethernet History

+ Onginally designed for a shared wire (e.g., coax cable)
<+ Each device listens to all traffic

Hardware filters out traffic intended for other hosts
+ l.e., different destination MAC address

Can be put 1in “promiscuous” mode, and record
everything (called a network sniffer)

+ Sending: Device hardware automatically detects 1f
another device 1s sending at same time

Random back-off and retry

Early competition

+ Token-ring network: Devices passed a “token” around

Device with the token could send; all others listened
Like the “talking stick” in a kindergarten class
+ Send latencies increased proportionally to the number of
hosts on the network
Even if they weren’t sending anything (still have to pass
the token)

+ Ethernet has better latency under low contention and
better throughput under high

Switched networks

<+ Modern ethernets are switched

<+ What 1s a hub vs. a switch?

Both are a box that links multiple computers together

Hubs broadcast to all plugged-in computers (let computers
filter traffic)

Switches track who 1s plugged in, only send to expected
recipient

+ Makes sniffing harder ®

Internet Protocol (IP)

<+ 2 flavors: Version 4 and 6

Version 4 widely used 1n practice---today’s focus

+ Provides a network-wide unique device address (IP
address)

+ This layer 1s responsible for routing data across multiple
ethernet networks on the internet
Ethernet packet specifies its payload is IP

At each router, payload 1s copied into a new point-to-point
ethernet frame and sent along

Transmission Control
Protocol (TCP)

+ Higher-level protocol that layers end-to-end reliability,
transparent to applications

Lots of packet acknowledgement messages, sequence
numbers, automatic retry, etc.

Pretty complicated
+ Applications on a host are assigned a port number

A simple integer from 0-64k
Multiplexes many applications on one device

Ports below 1k reserved for privileged applications

User Datagram Protocol
(UDP)

+ The simple alternative to TCP

None of the frills (reliability guarantees)
+ Same port abstraction (1-64k)

But different ports
I.e., TCP port 22 1sn’t the same port as UDP port 22

Some well-known ports

L L

+ 80— http
<+ 22 —ssh

4 53-DNS

).
Y

- SMTP

y

Example

(from Understanding Linux Network Internals)

Message

Transport header Jexamples/example1.htm! | ()

4 Transport layer payload

Src port=5000

Network header Dst port=80 /examples/example1.htm/

Network layer payload

Src port=5000

Link layer header Dst port=80 /examples/example1.htm/

\ ¢ Link layer payload

Src MAC=00:20:ed:76:00:01
Dst MAC=00:20:ed:76:00:02
Internet protocol=IPv4

Src port=5000

Dst port=80 /examples/example1.htm/

Src MAC=00:20:ed:76:00:03
Dst MAC=00:20:ed:76:00:04
Internet protocol=IPv4

Src port=5000

Dst port=80 /examples/example1.htm/

Figure 13-4. Headers compiled by layers: (a...d) on Host X as we travel down the stack; (e) on
Router RT1

Networking APIs

Programmers rarely create ethernet frames

Most applications use the socket abstraction

Stream of messages or bytes between two applications

Applications still specify: protocol (TCP vs. UDP), remote host
address

%+ Whether reads should return a stream of bytes or distinct
messages

While many low-level details are abstracted, programmers
must understand basics of low-level protocols

Sockets, cont.

One application 1s the server, or listens on a pre-
determined port for new connections

The client connects to the server to create a message
channel

The server accepts the connection, and they begin
exchanging messages

Creation APIs

int socket(domain, type, protocol) — create a file handle
representing the communication endpoint
Domain 1s usually AF_INET (IP4), many other choices
Type can be STREAM, DGRAM, RAW
Protocol — usually 0
int bind(fd, addr, addrlen) — bind this socket to a specific
port, specified by addr

Can be INADDR_ANY (don’t care what port)

Server APIs

int listen(fd, backlog) — Indicate you want incoming
connections

Backlog 1s how many pending connections to buffer until
dropped
int accept(fd, addr, len, flags) — Blocks until you get a
connection, returns where from 1n addr

Return value 1s a new file descriptor for child

If you don’t like 1t, just close the new fd

Client APIs

+ Both client and server create endpoints using socket()

Server uses bind, listen, accept
Client uses connect(fd, addr, addrlen) to connect to server

<+ Once a connection 1s established:

Both use send/recv

Pretty self-explanatory calls

Linux implementation

+ Sockets implemented in the kernel

So are TCP, UDP and IP

+ Benefits:
Application doesn’t need to be scheduled for TCP ACKSs,
retransmit, etc.
Kernel trusted with correct delivery of packets

+ A single system call (1386):

sys_socketcall(call, args)

4+ Has a sub-table of calls, like bind, connect, etc.

Plumbing

+ Each message 1s put in a sk_buff structure

+ Between socket/application and device, the sk_buff is
passed through a stack of protocol handlers

These handlers update internal bookkeeping, wrap
payload in their headers, etc.

4+ At the bottom 1s the device 1tself, which sends/receives
the packets

sk_buff
(from Understanding Linux Networking Internals)
- - L

>
e headroom =
>

Data

tailroom

head
data
tail

end

struct sk_buff

Figure 2-2. head/end versus data/tail pointers

Again, 1n more detail

L L

+ Let’s walk through how a newly received packet 1s
processed

Interrupt handler

+ “Top half” responsible to:

Allocate a buffer (sk_buff)
Copy received data into the buffer

Initialize a few fields

Call “bottom half” handler

+ In some cases, sk_buff can be pre-allocated, and network
card can copy data in (DMA) before firing the interrupt

Lab 6 will follow this design

Quick review

+ Why top and bottom halves?

To minimize time in an interrupt handler with other
interrupts disabled
Gives kernel more scheduling flexibility

Simplifies service routines (defer complicated operations
to a more general processing context)

Digression: Softirgs

+ A hardware IRQ 1s the hardware interrupt line

Also used for hardware “top half”
+ Soft IRQ 1s the associated software “interrupt” handler

Or, “bottom half”

+ How are these implemented in Linux?

Softirgs

+ Kernel’s view: per-CPU work lists

Tuples of <function, data>

+ At the right time, call function(data)

Right time: Return from exceptions/interrupts/sys. calls

Also, each CPU has a kernel thread ksoftirqd_ CPU# that
processes pending requests

ksoftirqd is nice +19. What does that mean?

+ Lowest priority — only called when nothing else to do

Softirgs, cont.

+ Device programmer’s view:

Only one instance of a softirq function will run on a CPU
at a time

+ Doesn’t need to be reentrant

+ If interrupted, won’t be called again by interrupt handler
Subsequent calls enqueued!

One instance can run on each CPU concurrently, though

+ Must use locks

Tasklets

+ For the faint of heart (and faint of locking prowess)
+ Constrained to only run one at a time on any CPU

Useful for poorly synchronized device drivers
+ Say those that assume a single CPU in the 90’s

Downside: If your driver uses tasklets, and you have
multiple devices of the same type---the bottom halves of
different devices execute serially

Softirg priorities

+ Actually, there are 6 queues per CPU; processed in
priority order:
HI_SOFTIRQ (high/first)
TIMER
NET TX
NET RX
SCSI
TASKLET (low/last)

Observation 1

+ Devices can decide whether their bottom half is higher
or lower priority than network traffic (HI or TASKLET)

Example: Video capture device may want to run its
bottom half at HI, to ensure quality of service

Example: Printer may not care

Observation 2

+ Transmit traffic prioritized above receive. Why?

The ability to send packets may stem the tide of incoming
packets

+ Obviously eliminates retransmit requests based on timeout

+ Can also send “back-off” messages

Receive bottom half

+ For each pending sk_buff:

Pass a copy to any taps (sniffers)
Do any MAC-layer processing, like bridging
Pass a copy to the appropriate protocol handler (e.g., IP)

+ Recur on protocol handler until you get to a port

Perform some handling transparently (filtering, ACK, retry)
+ If good, deliver to associated socket
+ If bad, drop

Socket delivery

+ Once the bottom half/protocol handler moves a payload
1nto a socket:

Check and see if the task is blocked on input for this
socket

If so, wake 1t up

+ Read/recv system calls copy data into application

Socket sending

+ Send/write system calls copy data into socket

Allocate sk_buff for data
Be sure to leave plenty of head and tail room!
+ System call does protocol handling during application’s
timeslice
Note that receive handling done during ksoftirqd timeslice

+ Last protocol handler enqueues a softirq to transmit

Transmission

+ Softirg can go ahead and invoke low-level driver to do a
send

+ Interrupt usually signals completion

Interrupt handler just frees the sk_buff

Switching gears

+ We’ve seen the path network data takes through the
kernel in some detail

+ Now, let’s talk about how network drivers handle heavy
loads

Our cup runneth over

Suppose an interrupt fires every time a packet comes in

This takes N ms to process the interrupt

What happens when packets arrive at a frequency
approaching or exceeding N?

You spend all of your time handling interrupts!

Will the bottom halves for any of these packets get
executed?

No. They are lower-priority than new packets

Receive livelock

+ The condition that the system never makes progress
because it spends all of its time starting to process new
packets

+ Real problem: Hard to prioritize other work over
interrupts

+ Principle: Better to process one packet to completion
than to run just the top half on a million

Shedding load

If you can’t process all incoming packets, you must drop
some

Principle: If you are going to drop some packets, better
do it early!

If you quit taking packets off of the network card, the
network card will drop packets once its buffers get full

Idea

Under heavy load, disable the network card’s interrupts
Use polling instead

Ask if there 1s more work once you’ve done the first batch

This allows a packet to make it all the way through all of
the bottom half processing, the application, and get a
response back out

Ensuring some progress! Yay!

Why not poll all the time?

+ If polling 1s so great, why even bother with interrupts?

+ Latency: When incoming traffic 1s rare, we want high-
priority, latency-sensitive applications to get their data
ASAP

General 1mnsight

+ If the expected input rate 1s low, interrupts are better

+ When the expected input rate gets above a certain
threshold, polling 1s better

+ Just need to figure out a way to dynamically switch
between the two methods...

Why haven’t we seen this
before?

Why don’t disks have this problem?
Inherently rate limited

If the CPU 1s bogged down processing previous disk
requests, 1t can’t 1ssue more

An external CPU can generate all sorts of network
Inputs

Linux NAPI

+ Or New API. Seriously.

+ Every driver provides a poll() method that does the low-
level receive

Called 1n first step of softirq RX function
+ Top half just schedules poll() to do the receive as softirq

Can disable the interrupt under heavy loads; use timer
interrupt to schedule a poll

Bonus: Some rare NICs have a timer; can fire an interrupt
periodically, only if something to say!

NAPI

+ Guaves kernel control to throttle network input

+ Slow adoption — means some measure of driver rewriting

+ Backwards compatibility solution:

Old top half still creates sk_buffs and puts them 1n a queue
Queue assigned to a fake “backlog” device
Backlog poll device is scheduled by NAPI softirq

Interrupts can still be disabled

NAPI Summary

+ Too much input 1s a real problem

+ NAPI lets kernel throttle interrupts until current packets
processed

+ Softirq priorities let some devices run their bottom halves
before net TX/RX

Net TX handled before RX

General summary

+ Networking basics and APIs
+ Idea of plumbing from socket to driver

Through protocol handlers and softirq poll methods
+ NAPI and input throttling

