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Housekeeping 

ò  Thanks to those answering mailing list questions! 

ò  New TAs: Chia-Che Tsai and Connor Fitzsimons 

ò  Office hours posted or will be soon 

ò  Send email to cs506ta@cs.stonybrook.edu for help 

ò  Enrollment 

ò  I emailed most of  the waiting list about your current 
status 

ò  Adding more students as space becomes available 



Note 

ò  Next Tuesday’s class has a reading assignment 



Lecture goal 

ò  Understand the hardware tools available for irregular 
control flow. 

ò  I.e., things other than a branch in a running program 

ò  Building blocks for context switching, device 
management, etc. 



Two types of  interrupts 

ò  Synchronous: will happen every time an instruction 
executes (with a given program state) 

ò  Divide by zero 

ò  System call 

ò  Bad pointer dereference 

ò  Asynchronous: caused by an external event 

ò  Usually device I/O 

ò  Timer ticks (well, clocks can be considered a device) 



Intel nomenclature 

ò  Interrupt – only refers to asynchronous interrupts 

ò  Exception – synchronous control transfer 

ò  Note: from the programmer’s perspective, these are 
handled with the same abstractions 



Why do we need 
interrupts? 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



x86 interrupt overview 

ò  Each type of  interrupt is assigned an index from 0—255. 

ò  0—31 are for processor interrupts; generally fixed by Intel 

ò  E.g., 14 is always for page faults 

ò  32—255 are software configured 

ò  32—47 are for device interrupts (IRQs) in JOS 

ò  Most device’s IRQ line can be configured  

ò  Look up APICs for more info (Ch 4 of  Bovet and Cesati) 

ò  0x80 issues system call in Linux (more on this later) 



Software interrupts 

ò  The int <num> instruction allows software to raise an 
interrupt 

ò  0x80 is just a Linux convention.  JOS uses 0x30. 

ò  There are a lot of  spare indices 

ò  You could have multiple system call tables for different 
purposes or types of  processes! 

ò  Windows does: one for the kernel and one for win32k 



Software interrupts, cont 

ò  OS sets ring level required to raise an interrupt 

ò  Generally, user programs can’t issue an int 14 (page 
fault manually) 

ò  An unauthorized int instruction causes a general 
protection fault 

ò  Interrupt 13 



What happens (generally): 

ò  Control jumps to the kernel 

ò  At a prescribed address (the interrupt handler) 

ò  The register state of  the program is dumped on the kernel’s 
stack 

ò  Sometimes, extra info is loaded into CPU registers 

ò  E.g., page faults store the address that caused the fault in the 
cr2 register 

ò  Kernel code runs and handles the interrupt 

ò  When handler completes, resume program (see iret instr.) 



How it works (HW) 

ò  How does HW know what to execute? 

ò  Where does the HW dump the registers; what does it use 
as the interrupt handler’s stack? 



How is this configured? 

ò  Kernel creates an array of  Interrupt descriptors in 
memory, called Interrupt Descriptor Table, or IDT 

ò  Can be anywhere in physical memory 

ò  Pointed to by special register (idtr) 

ò  c.f., segment registers and gdtr and ldtr!

ò  Entry 0 configures interrupt 0, and so on 



Interrupt Descriptor 

ò  Code segment selector 

ò  Almost always the same (kernel code segment) 

ò  Recall, this was designed before paging on x86! 

ò  Segment offset of  the code to run 

ò  Kernel segment is “flat”, so this is just the linear address 

ò  Privilege Level (ring) 

ò  Interrupts can be sent directly to user code.  Why? 

ò  Present bit – disable unused interrupts 

ò  Gate type (interrupt or trap/exception) – more in a bit 



Interrupt Descriptors, ctd. 

ò  In-memory layout is a bit confusing 

ò  Like a lot of  the x86 architecture, many interfaces were 
later deprecated 

ò  Worth comparing Ch 9.5 of  the i386 manual with inc/
mmu.h in the JOS source code 



How it works (HW) 

ò  How does HW know what to execute? 

ò  Interrupt descriptor table specifies what code to run and at 
what privilege 

ò  This can be set up once during boot for the whole system 

ò  Where does the HW dump the registers; what does it use 
as the interrupt handler’s stack? 

ò  Specified in the Task State Segment 



Task State Segment (TSS) 

ò  Another segment, just like the code and data segment 

ò  A descriptor created in the GDT (cannot be in LDT) 

ò  Selected by special task register (tr) 

ò  Unlike others, has a hardware-specified layout 

ò  Lots of  fields for rarely-used features 

ò  Two features we care about in a modern OS: 

ò  1) Location of  kernel stack (fields ss0/esp0) 

ò  2) I/O Port privileges (more in a later lecture) 



TSS, cont. 

ò  Simple model: specify a TSS for each process 

ò  Optimization (JOS):  

ò  Our kernel is pretty simple (uniprocessor only) 

ò  Why not just share one TSS and kernel stack per-process? 

ò  Linux generalization: 

ò  One TSS per CPU 

ò  Modify TSS fields as part of  context switching 



Summary 

ò  Most interrupt handling hardware state set during boot 

ò  Each interrupt has an IDT entry specifying: 

ò  What code to execute, privilege level to raise the interrupt 

ò  Stack to use specified in the TSS 



Comment 

ò  Again, segmentation rears its head 

ò  You can’t program OS-level code on x86 without getting 
your hands dirty with it 

ò  Helps to know which features are important when 
reading the manuals 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



High-level goal 

ò  Respond to some event, return control to the appropriate 
process 

ò  What to do on: 

ò  Network packet arrives 

ò  Disk read completion 

ò  Divide by zero 

ò  System call 



Interrupt Handlers 

ò  Just plain old kernel code 



Complication: 

ò  What happens if  I’m in an interrupt handler, and 
another interrupt comes in? 

ò  Note: kernel stack only changes on privilege level change 

ò  Nested interrupts just push the next frame on the stack 

ò  What could go wrong? 

ò  Violate code invariants 

ò  Deadlock 

ò  Exhaust the stack (if  too many fire at once) 



Bottom Line: 

ò  Interrupt service routines must be reentrant or 
synchronize 

ò  Period. 



Hardware interrupt sync. 

ò  While a CPU is servicing an interrupt on a given IRQ 
line, the same IRQ won’t raise another interrupt until the 
routine completes 

ò  Bottom-line: device interrupt handler doesn’t have to 
worry about being interrupted by itself  

ò  A different device can interrupt the handler 

ò  Problematic if  they share data structures 

ò  Like a list of  free physical pages… 

ò  What if  both try to grab a lock for the free list? 



Disabling interrupts 

ò  An x86 CPU can disable I/O interrupts 

ò  Clear bit 9 of  the EFLAGS register (IF Flag) 

ò  cli and sti instructions clear and set this flag 

ò  Before touching a shared data structure (or grabbing a 
lock), an interrupt handler should disable I/O interrupts 



Gate types 

ò  Recall: an IDT entry can be an interrupt or an exception 
gate 

ò  Difference? 

ò  An interrupt gate automatically disables all other 
interrupts (i.e., clears and sets IF on enter/exit) 

ò  An exception gate doesn’t 

ò  This is just a programmer convenience: you could do the 
same thing in software 



Exceptions 

ò  You can’t mask exceptions 

ò  Why not? 

ò  Can’t make progress after a divide-by-zero 

ò  Double and Triple faults detect faults in the kernel 

ò  Do exception handlers need to be reentrant? 

ò  Not if  your kernel has no bugs (or system calls in itself) 

ò  In certain cases, Linux allows nested page faults 

ò  E.g., to detect errors copying user-provided buffers 



Summary 

ò  Interrupt handlers need to synchronize, both with locks 
(multi-processor) and by disabling interrupts (same 
CPU) 

ò  Exception handlers can’t be masked 

ò  Nested exceptions generally avoided 



Challenge 2 

ò  Pretend a single CPU… 

ò  If  my disk interrupt handler takes a long time to run, 

ò  And disables interrupts, 

ò  What happens to new network packets that come in? 

ò  They get buffered until space is full; then dropped… 

ò  Suggestions? 



Halving interrupt handlers 

ò  Modern OSes divide interrupt handlers into a top and 
bottom half  

ò  Top half  does all tasks that must be done now 

ò  Schedules rest in bottom half  

ò  Bottom half  runs in a kernel thread 

ò  Work can be scheduled by system priority! 



Example 

ò  Network packet arrives, placed in buffer, CPU 
interrupted 

ò  What has to be done as soon as possible? 

ò  Move the packet out of  the buffer so more packets can be 
received 

ò  What can be deferred? 

ò  Delivering the data to an application 



More on the example 

ò  Some cases where it makes sense to do work earlier 

ò  Time-sensitive, protocol level responses (e.g., TCP ACK) 

ò  Firewall filtering 

ò  Why schedule pointless work later? 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



System call “interrupt” 

ò  Originally, system calls issued using int instruction 

ò  Dispatch routine was just an interrupt handler 

ò  Like interrupts, system calls are arranged in a table 

ò  See arch/x86/kernel/syscall_table*.S in Linux source 

ò  Program selects the one it wants by placing index in eax 
register 

ò  Arguments go in the other registers by calling convention 

ò  Return value goes in eax!



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



Around P4 era… 

ò  Processors got very deeply pipelined 

ò  Pipeline stalls/flushes became very expensive 

ò  Cache misses can cause pipeline stalls 

ò  System calls took twice as long from P3 to P4 

ò  Why? 

ò  IDT entry may not be in the cache 

ò  Different permissions constrain instruction reordering 



Idea 

ò  What if  we cache the IDT entry for a system call in a 
special CPU register? 

ò  No more cache misses for the IDT! 

ò  Maybe we can also do more optimizations 

ò  Assumption: system calls are frequent enough to be 
worth the transistor budget to implement this 

ò  What else could you do with extra transistors that helps 
performance? 



Intel: sysenter/sysexit 

ò  These instructions use MSRs (machine specific registers) 
to store: 

ò  Syscall entry point and code segment 

ò  Kernel stack 

ò  Syscall return address 

ò  Implication: system calls must be issued from a few 
kernel-approved addresses 

ò  i.e., in libc 



Pros and cons of  fixed 
return point 

ò  Pros: 

ò  Indeed faster than int instruction  

ò  Security arguments:  

ò  Easier to sandbox a program (prevent illegal system calls) 

ò  Limits ability of  a program to issue errant system calls 

ò  Cons: Programmer inconvenience 

ò  Can’t just drop an ‘int 0x80’ in my program anymore 

ò  Tighter contract between program and kernel 

ò  Also, not all x86 CPUs have this instruction 



More on compatibility 

ò  Not all CPUs have sysenter!

ò  We don’t want every program to have to encode 
knowledge about every x86 CPU model 

ò  And we don’t want to break backwards-compatibility 

 



Linus’s “disgusting” 
solution  

ò  Kernel can support both sysenter and int (for legacy 
programs) 

ò  Kernel figures out what CPU supports (since it has to 
anyway) 

ò  Creates a page with the optimal system call instruction 
(and a standard function call preamble and epilogue) 

ò  Always mapped at a fixed address in programs 

ò  Replace int 0x80 with a call <addr>!



vdso 

ò  This page is called the Virtual Dynamic Shared Object 
(vdso) 

ò  Libc and other programs reserve this address in their link 
tables 

ò  Kernel is responsible for mapping it in during exec!

ò  Solves part of  the compatibility problem 



AMD: syscall/sysret 

ò  Same basic idea as sysenter/sysexit, but without a fixed 
return point 

ò  Programmers suffered with the fixed return point for the 
performance win, but didn’t like it 

ò  More of  a drop-in replacement for int 0x80!

ò  Trade a bit of  the performance win for a big convenience 
win 

ò  Everyone loved it and adopted it wholesale 

ò  Even Intel! 



Aftermath (pt 1) 

ò  If  every recent x86 CPU has syscall, why bother with 
sysenter? 

ò  Good question.  Most don’t! 

ò  All 64-bit CPUs have syscall!

ò  Only really need vdso for 32-bit programs 



Aftermath (pt. 2) 

ò  Getpid() on my desktop machine (recent AMD 6-core): 

ò  Int 80: 371 cycles 

ò  Syscall: 231 cycles 

ò  So system calls are definitely faster as a result! 



In JOS 

ò  You will use the int instruction to implement system calls 

ò  There is a challenge problem in lab 3 (i.e., extra credit) to 
use systenter/sysexit  

ò  Note that there are some more details about register 
saving to deal with 

ò  Syscall/sysret is a bit too trivial for extra credit 

ò  But still cool if  you get it working! 



Summary 

ò  Interrupt handlers are specified in the IDT 

ò  Understand when nested interrupts can happen 

ò  And how to prevent them when unsafe 

ò  Understand top and bottom halves of  interrupt handlers 

ò  Understand optimized system call instructions 

ò  Be able to explain vdso, syscall vs. sysinter vs. int 80 


