
11/14/11	

1	

Device I/O
Programming

Don Porter
CSE 506

Overview

ò  Many artifacts of hardware evolution

ò  Configurability isn’t free

ò  Bake-in some reasonable assumptions

ò  Initially reasonable assumptions get stale

ò  Find ways to work-around going forward

ò  Keep backwards compatibility

ò  General issues and abstractions

PC Hardware Overview

ò  From wikipedia

ò  Replace AGP with PCIe

ò  Northbridge being
absorbed into CPU on
newer systems

ò  This topology is (mostly)
abstracted from
programmer

I/O Ports

ò  Initial x86 model: separate memory and I/O space

ò  Memory uses virtual addresses

ò  Devices accessed via ports

ò  A port is just an address (like memory)

ò  Port 0x1000 is not the same as address 0x1000

ò  Different instructions – inb, inw, outl, etc.

11/14/11	

2	

More on ports

ò  A port maps onto input pins/registers on a device

ò  Unlike memory, writing to a port has side-effects

ò  “Launch” opcode to /dev/missiles

ò  So can reading!

ò  Memory can safely duplicate operations/cache results

ò  Idiosyncrasy: composition doesn’t necessarily work

ò  outw 0x1010 <port> != outb 0x10 <port>

 outb 0x10 <port+1>

Parallel port (+I/O ports)
(from Linux Device Drivers)

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 9: Communicating with Hardware

The parallel connector is not isolated from the computer’s internal cir-
cuitry, which is useful if you want to connect logic gates directly to the
port. But you have to be careful to do the wiring correctly; the parallel
port circuitry is easily damaged when you play with your own custom
circuitry, unless you add optoisolators to your circuit. You can choose
to use plug-in parallel ports if you fear you’ll damage your motherboard.

The bit specifications are outlined in Figure 9-1. You can access 12 output bits and 5
input bits, some of which are logically inverted over the course of their signal path.
The only bit with no associated signal pin is bit 4 (0x10) of port 2, which enables
interrupts from the parallel port. We use this bit as part of our implementation of an
interrupt handler in Chapter 10.

A Sample Driver
The driver we introduce is called short (Simple Hardware Operations and Raw
Tests). All it does is read and write a few 8-bit ports, starting from the one you select
at load time. By default, it uses the port range assigned to the parallel interface of the
PC. Each device node (with a unique minor number) accesses a different port. The
short driver doesn’t do anything useful; it just isolates for external use as a single
instruction acting on a port. If you are not used to port I/O, you can use short to get

Figure 9-1. The pinout of the parallel port

Input line
Output line

3 2

17 16

Bit #

Pin #

noninverted
inverted

1

13

14

25

49 8 7 6 5 3 2
27 6 5 4 3 1 0

Data port: base_addr + 0

Status port: base_addr + 1 11 10 12 13 15
27 6 5 4 3 1 0

1617 14 1
27 6 5 4 3 1 0

Control port: base_addr + 2

irq enable

KEY

Port permissions

ò  Can be set with IOPL flag in EFLAGS

ò  Or at finer granularity with a bitmap in task state
segment

ò  Recall: this is the “other” reason people care about the
TSS

Buses

ò  Buses are the computer’s “plumbing” between major
components

ò  There is a bus between RAM and CPUs

ò  There is often another bus between certain types of
devices

ò  For inter-operability, these buses tend to have standard
specifications (e.g., PCI, ISA, AGP)

ò  Any device that meets bus specification should work on a
motherboard that supports the bus

11/14/11	

3	

Clocks
(again, but different)

ò  CPU Clock Speed: What does it mean at electrical level?

ò  New inputs raise current on some wires, lower on others

ò  How long to propagate through all logic gates?

ò  Clock speed sets a safe upper bound

ò  Things like distance, wire size can affect propagation time

ò  At end of a clock cycle read outputs reliably

ò  May be in a transient state mid-cycle

ò  Not talking about timer device, which raises interrupts at
wall clock time; talking about CPU GHz

Clock imbalance

ò  All processors have a clock

ò  Including the chips on every device in your system

ò  Network card, disk controller, usb controler, etc.

ò  And bus controllers have a clock

ò  Think now about older devices on a newer CPU

ò  Newer CPU has a much faster clock cycle

ò  It takes the older device longer to reliably read input from
a bus than it does for the CPU to write it

More clock imbalance

ò  Ex: a CPU might be able to write 4 different values into a
device input register before the device has finished one clock
cycle

ò  Driver writer needs to know this

ò  Read from manuals

ò  Driver must calibrate device access frequency to device
speed

ò  Figure out both speeds, do math, add delays between ops

ò  You will do this in lab 6! (outb 0x80 is handy!)

CISC silliness?

ò  Is there any good reason to use dedicated instructions
and address space for devices?

ò  Why not treat device input and output registers as
regions of physical memory?

11/14/11	

4	

Simplification

ò  Map devices onto regions of physical memory

ò  Hardware basically redirects these accesses away from
RAM at same location (if any), to devices

ò  A bummer if you “lose” some RAM

ò  Win: Cast interface regions to a structure

ò  Write updates to different areas using high-level languages

ò  Still subject to timing, side-effect caveats

Optimizations

ò  How does the compiler (and CPU) know which regions
have side-effects and other constraints?

ò  It doesn’t: programmer must specify!

Optimizations (2)

ò  Recall: Common optimizations (compiler and CPU)

ò  Out-of-order execution

ò  Reorder writes

ò  Cache values in registers

ò  When we write to a device, we want the write to really
happen, now!

ò  Do not keep it in a register, do not collect $200

ò  Note: both CPU and compiler optimizations must be disabled

volatile keyword

ò  A volatile variable cannot be cached in a register

ò  Writes must go directly to memory

ò  Reads must always come from memory/cache

ò  volatile code blocks cannot be reordered by the compiler

ò  Must be executed precisely at this point in program

ò  E.g., inline assembly

ò  __volatile__ means I really mean it!

11/14/11	

5	

Compiler barriers

ò  Inline assembly has a set of clobber registers

ò  Hand-written assembly will clobber them

ò  Compiler’s job is to save values back to memory before
inline asm; no caching anything in these registers

ò  “memory” says to flush all registers

ò  Ensures that compiler generates code for all writes to
memory before a given operation

CPU Barriers

ò  Advanced topic: Don’t need details

ò  Basic idea: In some cases, CPU can issue loads and
stores out of program order (optimize perf)

ò  Subject to many constraints on x86 in practice

ò  In some cases, a “fence” instruction is required to ensure
that pending loads/stores happen before the CPU moves
forward

ò  Rarely needed except in device drivers and lock-free data
structures

Configuration

ò  Where does all of this come from?

ò  Who sets up port mapping and I/O memory mappings?

ò  Who maps device interrupts onto IRQ lines?

ò  Generally, the BIOS

ò  Sometimes constrained by device limitations

ò  Older devices hard-coded IRQs

ò  Older devices may only have a 16-bit chip

ò  Can only access lower memory addresses

ISA memory hole

ò  Recall the “memory hole” from lab 2?

ò  640 KB – 1 MB

ò  Required by the old ISA bus standard for I/O mappings

ò  No one in the 80s could fathom > 640 KB of RAM

ò  Devices sometimes hard-coded assumptions that they
would be in this range

ò  Generally reserved on x86 systems (like JOS)

ò  Strong incentive to save these addresses when possible

11/14/11	

6	

New hotness: PCI

ò  Hard-coding things is bad

ò  Willing to pay for flexibility in mapping devices to IRQs
and memory regions

ò  Guessing what device you have is bad

ò  On some devices, you had to do something to create an
interrupt, and see what fired on the CPU to figure out
what IRQ you had

ò  Need a standard interface to query configurations

More flexibility

ò  PCI addressing (both memory and I/O ports) are
dynamically configured

ò  Generally by the BIOS

ò  But could be remapped by the kernel

ò  Configuration space

ò  256 bytes per device (4k per device in PCIe)

ò  Standard layout per device, including unique ID

ò  Big win: standard way to figure out my hardware, what to
load, etc.

PCI Configuration Layout
From device driver book

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 12: PCI Drivers

Configuration Registers and Initialization
In this section, we look at the configuration registers that PCI devices contain. All
PCI devices feature at least a 256-byte address space. The first 64 bytes are standard-
ized, while the rest are device dependent. Figure 12-2 shows the layout of the device-
independent configuration space.

As the figure shows, some of the PCI configuration registers are required and some
are optional. Every PCI device must contain meaningful values in the required regis-
ters, whereas the contents of the optional registers depend on the actual capabilities
of the peripheral. The optional fields are not used unless the contents of the required
fields indicate that they are valid. Thus, the required fields assert the board’s capabil-
ities, including whether the other fields are usable.

It’s interesting to note that the PCI registers are always little-endian. Although the
standard is designed to be architecture independent, the PCI designers sometimes
show a slight bias toward the PC environment. The driver writer should be careful
about byte ordering when accessing multibyte configuration registers; code that
works on the PC might not work on other platforms. The Linux developers have
taken care of the byte-ordering problem (see the next section, “Accessing the Config-
uration Space”), but the issue must be kept in mind. If you ever need to convert data
from host order to PCI order or vice versa, you can resort to the functions defined in
<asm/byteorder.h>, introduced in Chapter 11, knowing that PCI byte order is little-
endian.

Figure 12-2. The standardized PCI configuration registers

- Required Register

- Optional Register

Vendor
ID

0 x 0 0 x 1 0 x 2 0 x 3 0 x 4 0 x 5 0 x 6 0 x 7 0 x 8 0 x 9 0 x a 0 x b 0 x c 0 x d 0 x e 0 x f

Device
ID

Command
Reg.

Status
Reg.

Revis-
ion
ID

Class Code Cache
Line

Latency
Timer

Header
Type

BIST
0 x 0 0

Base
Address 20 x 1 0

Base
Address 3

Base
Address 1

Base
Address 0

CardBus
CIS pointer0 x 2 0

Subsytem
Vendor ID

Base
Address 5

Base
Address 4

Subsytem
Device ID

0 x 3 0
Expansion ROM

Base Address Reserved IRQ
Line

IRQ
Pin

Min_Gnt Max_Lat

PCI Overview

ò  Most desktop systems have 2+ PCI buses

ò  Joined by a bridge device

ò  Forms a tree structure (bridges have children)

11/14/11	

7	

PCI Layout
From Linux Device Drivers

This is the Title of the Book, eMatter Edition
Copyright © 2010 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 12: PCI Drivers

device and function number), as three values (bus, device, and function), or as four
values (domain, bus, device, and function); all the values are usually displayed in
hexadecimal.

For example, /proc/bus/pci/devices uses a single 16-bit field (to ease parsing and sort-
ing), while /proc/bus/busnumber splits the address into three fields. The following
shows how those addresses appear, showing only the beginning of the output lines:

$ lspci | cut -d: -f1-3
0000:00:00.0 Host bridge
0000:00:00.1 RAM memory
0000:00:00.2 RAM memory
0000:00:02.0 USB Controller
0000:00:04.0 Multimedia audio controller
0000:00:06.0 Bridge
0000:00:07.0 ISA bridge
0000:00:09.0 USB Controller
0000:00:09.1 USB Controller
0000:00:09.2 USB Controller
0000:00:0c.0 CardBus bridge
0000:00:0f.0 IDE interface
0000:00:10.0 Ethernet controller
0000:00:12.0 Network controller
0000:00:13.0 FireWire (IEEE 1394)
0000:00:14.0 VGA compatible controller
$ cat /proc/bus/pci/devices | cut -f1
0000
0001
0002
0010
0020
0030

Figure 12-1. Layout of a typical PCI system

PCI Bus 0 PCI Bus 1
Host Bridge PCI Bridge

ISA Bridge

CardBus Bridge

RAM CPU

PCI Addressing

ò  Each peripheral listed by:

ò  Bus Number (up to 256 per domain or host)

ò  A large system can have multiple domains

ò  Device Number (32 per bus)

ò  Function Number (8 per device)

ò  Function, as in type of device, not a subroutine

ò  E.g., Video capture card may have one audio function and
one video function

ò  Devices addressed by a 16 bit number

PCI Interrupts

ò  Each PCI slot has 4 interrupt pins

ò  Device does not worry about how those are mapped to
IRQ lines on the CPU

ò  An APIC or other intermediate chip does this mapping

ò  Bonus: flexibility!

ò  Sharing limited IRQ lines is a hassle. Why?

ò  Trap handler must demultiplex interrupts

ò  Being able to “load balance” the IRQs is useful

Direct Memory Access
(DMA)

ò  Simple memory read/write model bounces all I/O
through the CPU

ò  Fine for small data, totally awful for huge data

ò  Idea: just write where you want data to go (or come
from) to device

ò  Let device do bulk data transfers into memory without
CPU intervention

ò  Interrupt CPU on I/O completion (asynchronous)

11/14/11	

8	

DMA Buffers

ò  DMA buffers must be physically contiguous

ò  Like page tables and IDTs, we are dealing with physical
addresses

ò  Some buses (SBus) can use virtual addresses; most (PCI)
use physical (avoid page translation overheads)

Ring buffers

ò  Many devices pre-allocate a “ring” of buffers

ò  Think network card

ò  Device writes into ring; CPU reads behind

ò  If ring is well-sized to the load:

ò  No dynamic buffer allocation

ò  No stalls

ò  Trade-off between device stalls (or dropped packets) and
memory overheads

IOMMU

ò  It is a pain to allocate physically contiguous regions

ò  Idea: “virtual addresses” for devices

ò  We can take random physical pages and make them look
contiguous to the device

ò  Called “Bus address” for clarity

ò  New to the x86 (called VT-d)

ò  Until very recently, x86 kernels just suffered

A note on memory
protection

ò  If I can write to a network card’s control register and tell
it where to write the next packet

ò  What if I give it an address used for something else?

ò  Like another process’s address space

ò  Nothing stops this

ò  DMA privilege effectively equals privilege to write to any
address in physical memory!

11/14/11	

9	

Why does x86 suddenly
care about IOMMUs?

ò  Virtualization! (VT-d)

ò  Scenario: system with 4 NICs, 4 VMs

ò  Without IOMMU: Hypervisor must mediate all network
traffic

ò  With IOMMU: Each VM can have a different virtual bus
address space

ò  Looks like a single NIC; can only issue DMAs for its own
memory (not other VM’s memory)

ò  No Hypervisor mediation needed!

VT-d Limitations

ò  IOMMU device restrictions are all-or-nothing

ò  Can’t share a network card

ò  Although some devices may fix this too

ò  VT-d is only for devices on the PCI-Express bus

ò  Usually just graphics and high-end network cards

ò  Legacy PCI devices are behind a bridge

ò  All-or-nothing for an entire bridge

ò  Similarly, no per-disk access control

ò  All-or-nothing for disk controller (which multiplexes disks)

Summary

ò  How to access devices: ports or memory

ò  Issues with CPU optimizations, timing delays, etc.

ò  Overview of PCI bus

ò  Overview of DMA and protection issues

ò  IOMMU and use for virtualization

