
11/23/11	

1	

Memory Consistency
Don Porter

CSE 506

Difficult topic

ò  Memory consistency models are difficult to understand

ò  Knowing when and how to use memory barriers in your
programs takes a long time to master

ò  I read the long version of this paper about once a year

ò  Started in graduate architecture, still mastering this

ò  Even if you can’t master this material, it is worth
conveying some intuitions and getting you started on the
path

ò  Multi-core programming is increasingly common

Background

ò  In the 90s, people were figuring out how to build and
program shared memory multi-processors

ò  Several hardware and compiler optimizations that
worked well on single-CPU systems were causing
“heisen-bugs” in correct parallel code

ò  Disabling all optimizations made this code correct, but
slow

ò  Various consistency models strike different balances
between optimization and programmability

Simple example

/* Pre condition: flag = 0 */

x = a + b

flag = 1
a isn’t in the cache yet.
(or ALU is busy, etc)

This line is independent of the one above.
Execute first, since result is identical

11/23/11	

2	

Extended to multi-
processors

/* Pre condition: flag = 0 */

Thread 1

x = a + b

flag = 1

Thread 2

while (! flag) { 1; }

val = x

flag is acting as a barrier to
synchronize read of x after x

was written

Distinction

ò  Compiler/CPU can figure out when instructions can be
safely reordered within a given thread

ò  Hard to figure out when the order is meaningful to
coordinate with other threads

ò  If you want optimizations (and you do), programmer
MUST give hardware and compiler some hints

ò  Hard to design hints that average programmer can
successfully give the hardware

Definitions

ò  Cache coherence: The protocol by which writes to one
cache invalidate or update other caches

ò  Memory consistency model: How are updates to
memory published from one CPU to another

ò  Reordering between CPU and cache/memory?

ò  Are cache updates/invalidations delivered atomically?

ò  Coherence protocol detail that impacts consistency

ò  Distinction between coherence and consistency muddled

Intuition

ò  On a bus-based multi-processor system (nearly all current
x86 CPUs), a write to the cache immediately invalidates
other caches

ò  Making the write visible to other CPUs

ò  But, the update could spend some time in a write buffer
or register on the CPU

ò  If a later write goes to the cache first, these will become
visible to another CPU out of program order

11/23/11	

3	

Sequential Consistency

ò  Simplest possible model

ò  Every program instruction is executed in order

ò  No buffered memory writes

ò  Only one CPU writes to memory at a time

ò  Given a write to address x, all cached values of x are
invalidated before any CPU can write anything else

ò  Simple to reason about

Sequential is too slow

ò  CPUs want to pipeline instructions

ò  Hide high latency instructions

ò  Sequential consistency prevents these optimizations

ò  And these optimizations are harmless in the common
case

Relaxed consistency

ò  If the common case is that reordering is safe, make the
programmer tell the CPU when reordering is unsafe

ò  Details of the model specify what can be reordered

ò  Many different proposed models

ò  Barrier (or fence): common consistency abstraction

ò  Every memory access before this barrier must be visible to
other CPUs before any memory access after the barrier

ò  Confusing to use in practice

Total Store Order (TSO)

ò  Model adopted in nearly all x86 CPUs

ò  All stores leave the CPU in program order

ò  CPU may load “ahead” of an unrelated store

ò  Ex: x = 1; y = z;

ò  CPU may load z from memory before x is stored

ò  CPU may not reorder load and store of same variable

ò  Atomic instructions are treated like a barrier

11/23/11	

4	

TSO benefits

ò  Since nearly all locks involve an atomic write, the CPU
will never reorder a critical region with a lock

ò  If you use locks, you rarely need to worry about
consistency issues

ò  When do you worry about memory consistency?

ò  Custom synchronization / lock-free data structures

ò  Device drivers

5a Example

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2

Register3 = A

Register4 = flag1

Register 1 = 1, R2 = 0, R3 = 2, R4 = 0

Both CPUs forward
write of A

internally before
globally visible

Reorder
Load of R2,
R4 ahead of

stores

5a Example + barriers

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1

barrier

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2

barrier

Register3 = A

Register4 = flag1

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

Flag writes must
be globally

visible before A
is written (TSO) Store A must be

visible before
flag reads

Must be a
sequential
ordering of

store A’s

5a Example: order 1

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1 (1)

barrier

Register1 = A

Register2 = flag2 (2)

Thread 2

flag2 = 1

A = 2 (3)

barrier

Register3 = A

Register4 = flag1

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

11/23/11	

5	

5a Example: order 2

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1 (3)

barrier

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2 (1)

barrier

Register3 = A

Register4 = flag1 (2)

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

Summary

ò  Identifying where to put memory barriers is hard

ò  Takes a lot of practice and careful thought

ò  Looks easy until you try it alone

ò  But, CPUs would be super-slow on sequential
consistency

ò  Understand: Why relaxed consistency? What is TSO?
Roughly when do developers need barriers?

ò  Advice: Take grad architecture; read this paper yearly

