
11/14/11	

1	

Block Device Scheduling
Don Porter

CSE 506

Quick Recap

ò  CPU Scheduling

ò  Balance competing concerns with heuristics

ò  What were some goals?

ò  No perfect solution

ò  Today: Block device scheduling

ò  How different from the CPU?

ò  Focus primarily on a traditional hard drive

ò  Extend to new storage media

Block device goals

ò  Throughput

ò  Latency

ò  Safety – file system can be recovered after a crash

ò  Fairness – surprisingly, very little attention is given to
storage access fairness

ò  Hard problem – solutions usually just prevent starvation

ò  Disk quotas for space fairness

Caching

ò  Obviously, the number 1 trick in the OS designer’s
toolbox is caching disk contents in RAM

ò  More on the page cache next time

ò  Latency – can be hidden by pre-reading data into RAM

ò  And keeping any free RAM full of disk contents

ò  Doesn’t help synchronous reads (that miss in RAM cache)
or synchronous writes

11/14/11	

2	

Caching + throughput

ò  Assume that most reads and writes to disk are
asynchronous

ò  Dirty data can be buffered and written at OS’s leisure

ò  Most reads hit in RAM cache – most disk reads are read-
ahead optimizations

ò  Key problem: How to optimally order pending disk I/O
requests?

ò  Hint: it isn’t first-come, first-served

Another view of the
problem

ò  Between page cache and disk, you have a queue of
pending requests

ò  Requests are a tuple of (block #, read/write, buffer addr)

ò  You can reorder these as you like to improve throughput

ò  What reordering heuristic to use? If any?

A note on safety

ò  In Linux, and other OSes, the I/O scheduler can reorder
requests arbitrarily

ò  It is the file system’s job to keep unsafe I/O requests out
of the scheduling queues

Dangerous I/Os

ò  What can make an I/O request unsafe?

ò  File system bookkeeping has invariants on disk

ò  Example: Inodes point to file data blocks; data blocks are
also marked as free in a bitmap

ò  Updates must uphold these invariants

ò  Ex: Write an update to the inode, then the bitmap

ò  What if the system crashes between writes?

ò  Block can end up in two files!!!

11/14/11	

3	

3 Simple Rules
(Courtesy of Ganger and McKusick, “Soft Updates” paper)

ò  Never write a pointer to a structure until it has been initialized

ò  Ex: Don’t write a directory entry to disk until the inode has
been written to disk

ò  Never reuse a resource before nullifying all pointers to it

ò  Ex: Before re-allocating a block to a file, write an update to the
inode that references it

ò  Never reset the last pointer to a live resource before a new
pointer has been set

ò  Ex: Renaming a file – write the new directory entry before the
old one (better 2 links than none)

A note on safety

ò  It is the file system’s job to keep unsafe I/O requests out
of the scheduling queues

ò  While these constraints are simple, enforcing them in the
average file system is surprisingly difficult

ò  Journaling helps by creating a log of what you are in the
middle of doing, which can be replayed

ò  (Simpler) Constraint: Journal updates must go to disk
before FS updates

A simple disk model

ò  Disks are slow. Why?

ò  Moving parts << circuits

ò  Programming interface: simple array of sectors (blocks)

ò  Physical layout:

ò  Concentric circular “tracks” of blocks on a platter

ò  E.g., sectors 0-9 on innermost track, 10-19 on next track, etc.

ò  Disk arm moves between tracks

ò  Platter rotates under disk head to align w/ requested sector

3 key latencies

ò  Seek delay: time the disk arm takes to move to a different
track

ò  Rotational delay: time the disk head waits for the platter
to rotate desired sector under it

ò  Note: disk rotates continuously at constant speed

ò  I/O delay: time it takes to read/write a sector

11/14/11	

4	

Observations

ò  Latency of a given operation is a function of current disk
arm and platter position

ò  Each request changes these values

ò  Idea: build a model of the disk

ò  Maybe use delay values from measurement or manuals

ò  Use simple math to evaluate latency of each pending
request

ò  Greedy algorithm: always select lowest latency

Example formula

ò  s = seek latency, in time/track

ò  r = rotational latency, in time/sector

ò  i = I/O latency, in seconds

ò  Time = (Δtracks * s) + (Δsectors * r) + I

ò  Note: Δsectors can only be calculated after seek is
finished. Why?

Problem with greedy?

ò  “Far” requests will starve

ò  Disk head may just hover around the “middle” tracks

Elevator Algorithm

ò  Require disk arm to move in continuous “sweeps” in and
out

ò  Reorder requests within a sweep

ò  Ex: If disk arm is moving “out,” reorder requests between
the current track and the outside of disk in ascending
order (by block number)

ò  A request for a sector the arm has already passed must be
ordered after the outermost request, in descending order

11/14/11	

5	

Elevator Algo, pt. 2

ò  This approach prevents starvation

ò  Sectors at “inside” or “outside” get service after a bounded time

ò  Reasonably good throughput

ò  Sort requests to minimize seek latency

ò  Can get hit with rotational latency pathologies (How?)

ò  Simple to code up!

ò  Programming model hides low-level details; difficult to do fine-
grained optimizations in practice

Pluggable Schedulers

ò  Linux allows the disk scheduler to be replaced

ò  Just like the CPU scheduler

ò  Can choose a different heuristic that favors:

ò  Fairness

ò  Real-time constraints

ò  Performance

Complete Fairness Queue
(CFQ)

ò  Idea: Add a second layer of queues (one per process)

ò  Round-robin promote them to the “real” queue

ò  Goal: Fairly distribute disk bandwidth among tasks

ò  Problems?

ò  Overall throughput likely reduced

ò  Ping-pong disk head around

Deadline Scheduler

ò  Associate expiration times with requests

ò  As requests get close to expiration, make sure they are
deployed

ò  Constrains reordering to ensure some forward progress

ò  Good for real-time applications

11/14/11	

6	

Anticipatory Scheduler

ò  Idea: Try to anticipate locality of requests

ò  If process P tends to issue bursts of requests for close disk
blocks,

ò  When you see a request from P, wait a bit and see if more
come in before scheduling them

Optimizations at
Cross-purposes

ò  The disk itself does some optimizations:

ò  Caching

ò  Write requests can sit in a volatile cache for longer than
expected

ò  Reordering requests internally

ò  Can’t assume that requests are serviced in-order

ò  Dependent operations must wait until first finishes

ò  Bad sectors can be remapped to “spares”

ò  Problem: disk arm flailing on an old disk

Disks aren’t everything

ò  Flash is increasing in popularity

ò  Different types with slight variations (NAND, NOR, etc)

ò  No moving parts – who cares about block ordering
anymore?

ò  Can only write to a block of flash ~100k times

ò  Can read as much as you want

More in a Flash

ò  Flash reads are generally fast, writes are more expensive

ò  Prefetching has little benefit

ò  Queuing optimizations can take longer than a read

ò  New issue: wear leveling – need to evenly distribute
writes

ò  Flash devices usually have a custom, log-structured FS

ò  Group random writes

11/14/11	

7	

Even newer hotness

ò  Byte-addressible, persistent RAMs (BPRAM)

ò  Phase-Change Memory (PCM), Memristors, etc.

ò  Splits the difference between RAM and flash:

ò  Byte-granularity writes (vs. blocks)

ò  Fast reads, slower, high-energy writes

ò  Doesn’t need energy to hold state (DRAM refresh)

ò  Wear an issue (bytes get stuck at last value)

ò  Still in the lab, but getting close

Important research topic

ò  Most work on optimizing storage accessed is tailored to
hard drives

ò  These heuristics are not easily adapted to new media

ò  Future systems will have a mix of disks, flash, PRAM,
DRAM

ò  Does it even make sense to treat them all the same?

Summary

ò  Performance characteristics of disks, flash, BPRAM

ò  Disk scheduling heuristics

ò  Safety constraints for file systems

