
Process Address Spaces
and

Binary Formats
Don Porter – CSE 506

Housekeeping

ò  Lab deadline extended to Wed night (9/14)

ò  Enrollment finalized – if you still want in, email me

ò  All students should have VMs at this point

ò  Email Don if you don’t have one

ò  TA office hours posted

ò  Private git repositories should be setup soon

Review

ò  We’ve seen how paging and segmentation work on x86

ò  Maps logical addresses to physical pages

ò  These are the low-level hardware tools

ò  This lecture: build up to higher-level abstractions

ò  Namely, the process address space

Definitions (can vary)

ò  Process is a virtual address space

ò  1+ threads of execution work within this address space

ò  A process is composed of:

ò  Memory-mapped files

ò  Includes program binary

ò  Anonymous pages: no file backing

ò  When the process exits, their contents go away

Problem 1: How to
represent?

ò  What is the best way to represent the components of a
process?

ò  Common question: is mapped at address x?

ò  Page faults, new memory mappings, etc.

ò  Hint: a 64-bit address space is seriously huge

ò  Hint: some programs (like databases) map tons of data

ò  Others map very little

ò  No one size fits all

Sparse representation

ò  Naïve approach might would be to represent each page

ò  Mark empty space as unused

ò  But this wastes OS memory

ò  Better idea: only allocate nodes in a data structure for
memory that is mapped to something

ò  Kernel data structure memory use proportional to
complexity of address space!

Linux: vm_area_struct

ò  Linux represents portions of a process with a vm_area_struct,
or vma

ò  Includes:

ò  Start address (virtual)

ò  End address (first address after vma) – why?
ò  Memory regions are page aligned

ò  Protection (read, write, execute, etc) – implication?

ò  Different page protections means new vma

ò  Pointer to file (if one)

ò  Other bookkeeping

Simple list representation
Process Address Space 0 0xffffffff

vma
/bin/ls

start end

next

vma
anon
(data)

vma
libc.so

mm_struct
(process)

Simple list

ò  Linear traversal – O(n)

ò  Shouldn’t we use a data structure with the smallest O?

ò  Practical system building question:

ò  What is the common case?

ò  Is it past the asymptotic crossover point?

ò  If tree traversal is O(log n), but adds bookkeeping overhead,
which makes sense for:

ò  10 vmas: log 10 =~ 3; 10/2 = 5; Comparable either way

ò  100 vmas: log 100 starts making sense

Common cases

ò  Many programs are simple

ò  Only load a few libraries

ò  Small amount of data

ò  Some programs are large and complicated

ò  Databases

ò  Linux splits the difference and uses both a list and a red-
black tree

Red-black trees

ò  (Roughly) balanced tree

ò  Read the wikipedia article if you aren’t familiar with
them

ò  Popular in real systems

ò  Asymptotic == worst case behavior

ò  Insertion, deletion, search: log n

ò  Traversal: n

Optimizations

ò  Using an RB-tree gets us logarithmic search time

ò  Other suggestions?

ò  Locality: If I just accessed region x, there is a reasonably
good chance I’ll access it again

ò  Linux caches a pointer in each process to the last vma
looked up

ò  Source code (mm/mmap.c) claims 35% hit rate

Demand paging

ò  Creating a memory mapping (vma) doesn’t necessarily
allocate physical memory or setup page table entries

ò  What mechanism do you use to tell when a page is needed?

ò  It pays to be lazy!

ò  A program may never touch the memory it maps.
ò  Examples?

ò  Program may not use all code in a library

ò  Save work compared to traversing up front

ò  Hidden costs? Optimizations?
ò  Page faults are expensive; heuristics could help performance

Linux APIs

ò  mmap(void *addr, size_t length, int prot, int flags, int fd,
 off_t offset);

ò  munmap(void *addr, size_t length);

ò  How to create an anonymous mapping?

ò  What if you don’t care where a memory region goes (as
long as it doesn’t clobber something else)?

Example 1:

ò  Let’s map a 1 page (4k) anonymous region for data, read-
write at address 0x40000

ò  mmap(0x40000, 4096, PROT_READ|PROT_WRITE,
 MAP_ANONYMOUS, -1, 0);

ò  Why wouldn’t we want exec permission?

Insert at 0x40000
0x1000-0x4000

mm_struct
(process)

0x20000-0x21000 0x100000-0x10f000

1)  Is anything already mapped at 0x40000-0x41000?
2)  If not, create a new vma and insert it
3)  Recall: pages will be allocated on demand

Scenario 2

ò  What if there is something already mapped there with
read-only permission?

ò  Case 1: Last page overlaps

ò  Case 2: First page overlaps

ò  Case 3: Our target is in the middle

Case 1: Insert at 0x40000
0x1000-0x4000

mm_struct
(process)

0x20000-0x41000 0x100000-0x10f000

1)  Is anything already mapped at 0x40000-0x41000?
2)  If at the end and different permissions:

1)  Truncate previous vma
2)  Insert new vma

3)  If permissions are the same, one can replace pages
and/or extend previous vma

Case 3: Insert at 0x40000
0x1000-0x4000

mm_struct
(process)

0x20000-0x50000 0x100000-0x10f000

1)  Is anything already mapped at 0x40000-0x41000?
2)  If in the middle and different permissions:

1)  Split previous vma
2)  Insert new vma

Unix fork()

ò  Recall: this function creates and starts a copy of the process;
identical except for the return value

ò  Example:

int pid = fork();!

if (pid == 0) {!

!// child code!

} else if (pid > 0) { !

!// parent code!

} else // error!

Copy-On-Write (COW)

ò  Naïve approach would march through address space and
copy each page

ò  Like demand paging, lazy is better. Why?

ò  Most processes immediately exec() a new binary
without using any of these pages

How does COW work?

ò  Memory regions:

ò  New copies of each vma are allocated for child during fork

ò  As are page tables

ò  Pages in memory:

ò  In page table (and in-memory representation), clear write bit, set
COW bit

ò  Is the COW bit hardware specified?

ò  No, OS uses one of the available bits in the PTE

ò  Make a new, writeable copy on a write fault

Idiosyncrasy 1: Stacks
Grow Down

ò  In Linux/Unix, as you add frames to a stack, they
actually decrease in virtual address order

ò  Example:
main()

foo()

bar()

Stack “bottom” – 0x13000

0x12600

0x12300

0x11900

Exceeds stack
page OS allocates

a new page

Problem 1: Expansion

ò  Recall: OS is free to allocate any free page in the virtual
address space if user doesn’t specify an address

ò  What if the OS allocates the page below the “top” of the
stack?

ò  You can’t grow the stack any further

ò  Out of memory fault with plenty of memory spare

ò  OS must reserve stack portion of address space

ò  Fortunate that memory areas are demand paged

ò  Unix has been around longer than paging

ò  Remember data segment abstraction?

ò  Unix solution:

ò  Stack and heap meet in the middle

ò  Out of memory when they meet

Heap Stack

Feed 2 Birds with 1 Scone

Data Segment

Grows Grows

But now we have paging

ò  Unix and Linux still have a data segment abstraction

ò  Even though they use flat data segmentation!

ò  sys_brk() adjusts the endpoint of the heap

ò  Still used by many memory allocators today

Windows Comparison

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess,
 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,
 __in DWORD flAllocationType,
 __in DWORD flProtect);

ò  Library function applications program to

ò  Provided by ntdll.dll – the rough equivalent of Unix libc

ò  Implemented with an undocumented system call

Windows Comparison

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess,
 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,
 __in DWORD flAllocationType,
 __in DWORD flProtect);

ò  Programming environment differences:

ò  Parameters annotated (__out, __in_opt, etc), compiler
checks

ò  Name encodes type, by convention

ò  dwSize must be page-aligned (just like mmap)

Windows Comparison

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess,
 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,
 __in DWORD flAllocationType,
 __in DWORD flProtect);

ò  Different capabilities

ò  hProcess doesn’t have to be you! Pros/Cons?

ò  flAllocationType – can be reserved or committed

ò  And other flags

Reserved memory

ò  An explicit abstraction for cases where you want to
prevent the OS from mapping anything to an address
region

ò  To use the region, it must be remapped in the committed
state

ò  Why?

ò  My speculation: Gives the OS more information for
advanced heuristics than demand paging

Part 1 Summary

ò  Understand what a vma is, how it is manipulated in
kernel for calls like mmap

ò  Demand paging, COW, and other optimizations

ò  brk and the data segment

ò  Windows VirtualAllocEx() vs. Unix mmap()

Part 2: Program Binaries

ò  How are address spaces represented in a binary file?

ò  How are processes loaded?

ò  How are multiple architectures/personalities handled?

Linux: ELF

ò  Executable and Linkable Format

ò  Standard on most Unix systems

ò  And used in JOS

ò  You will implement part of the loader in lab 3

ò  2 headers:

ò  Program header: 0+ segments (memory layout)

ò  Section header: 0+ sections (linking information)

Helpful tools

ò  readelf - Linux tool that prints part of the elf headers

ò  objdump – Linux tool that dumps portions of a binary

ò  Includes a disassembler; reads debugging symbols if
present

Key ELF Segments

ò  For once, not the same thing as hardware segmentation

ò  Similar idea, though

ò  .text – Where read/execute code goes

ò  Can be mapped without write permission

ò  .data – Programmer initialized read/write data

ò  Ex: a global int that starts at 3 goes here

ò  .bss – Uninitialized data (initially zero by convention)

ò  Many other segments

Sections

ò  Also describe text, data, and bss segments

ò  Plus:

ò  Procedure Linkage Table (PLT) – jump table for libraries

ò  .rel.text – Relocation table for external targets

ò  .symtab – Program symbols

How ELF Loading Works

ò  execve(“foo”, …)

ò  Kernel parses the file enough to identify whether it is a
supported format

ò  If static elf, it loads the text, data, and bss sections, then
drops into the program

ò  If it is a dynamic elf, it instead loads the dynamic linker
and drops into that

ò  If something else, it loads the specified linker (dynamic elf
is somewhat a special case of this)

Dynamic Linking

ò  Rather than start at main(), start at a setup routine

ò  As long as the setup routine is self-contained, it can:

ò  1) Walk the headers to identify needed libraries

ò  2) Issue mmap() calls to map in said libraries

ò  3) Do other bookkeeping

ò  4) Call main()

Position-Independent
Code

ò  Quick definition anyone?

ò  How implemented?

ò  Intuition: All jump targets and calls must be PC-relative

ò  Or relative to the start of the section (i.e., dedicate a
register to hold a base address that is added to a jump
target)

ò  Libraries (shared objects) must be position-independent

How to call a .so function?
(from a program)

ò  If the linker doesn’t know where a function will end up,
it creates a relocation

ò  Index into the symbol table, location of call in code, type

ò  Part of loading: linker marches through each relocation
and overwrites the call target

ò  But I thought .text was read-only?

ò  Linker must modify page permissions, or kernel must
set .text copy-on-write

How to call a .so function?
(from another .so)

ò  Compiler creates a jump table for all external calls

ò  Called the plt; entries point to a global offset table (got)
entry

ò  got stores location where a symbol was loaded in memory

ò  Lazily resolved (laziness is a virtue, remember?)

ò  Initially points to a fixup routine in the linker

ò  First time it is called, it figures out the relocation

ò  Overwrites appropriate got entry

Windows PE (portable
executable, or .exe)

ò  Import and Export Table (not just an import table)

ò  Setup routines called when:

ò  The dll is loaded into a process

ò  Unloaded

ò  When a thread enters and exits

ò  DLLs are generally not position independent

ò  Loading one at the non-preferred address requires code
fixup (called rebasing)

Recap

ò  Goal is to convey intuitions about how programs are set
up in Linux and Windows

ò  OS does preliminary executable parsing, maps in
program and maybe dynamic linker

ò  Linker does needed fixup for the program to work

Advanced Topics

ò  How to handle other binary formats

ò  How to run 32-bit executables on a 64-bit OS?

Non-native formats

ò  Most binary formats are identified in the first few bytes
with a magic string

ò  Windows .exe files start with ascii characters “MZ”, for its
designer Mark Zbikowski

ò  Interpreted languages (sh, perl, python) use “#!” followed
by the path to the interpreter

ò  Assuming the magic text can be found easily, Linux
allows an interpreter to be associated with a format

ò  Like the ELF linker, this gets started upon exec

Ex: Other Unix Flavors

ò  The APIs on most Unix programs are quite similar

ò  POSIX interfaces can just call Linux libc directly

ò  Others may require a shim, or small bits of code to
emulate expected differences on the host platform

Ex: WINE

ò  The same strategy is used to emulate Windows on Linux

ò  WINE includes reimplementations of Windows low-
level libraries on Linux system calls

ò  And a “dynamic linker” that emulates the one in ntdll

Linux32 on 64-bit Linux

ò  64-bit x86 chips can run in 32-bit mode

ò  ELF can identify target architecture

ò  What does the OS need to do for 32-bit programs?

ò  Set up 32-bit page tables

ò  Keep old system call table around

ò  Add shims for calling convention and other low-level ops

ò  Have 32-bit binaries and libraries on disk

FatELF

ò  Experimental new feature (not in kernel yet)

ò  Rather than one .text, .bss, etc, have:

ò  .text-x86, .text-x86-64, .text-arm, etc.

ò  Kernel/linker select appropriate sections for architecture

ò  Wastes some disk space, but no memory

ò  Saves human effort

ò  Same idea as Apple’s Universal Binary format

Summary

ò  We’ve seen a lot of details on how programs are
represented:

ò  In the kernel when running

ò  On disk in an executable file

ò  And how they are bootstrapped in practice

ò  Will help with lab 3

