Process Address Spaces
and
Binary Formats

Don Porter — CSE 506



Housekeeping

+ Lab deadline extended to Wed night (9/14)

+ Enrollment finalized — if you still want in, email me

+ All students should have VMs at this point

Email Don if you don’t have one
+ TA office hours posted

+ Private git repositories should be setup soon



Review

+ We've seen how paging and segmentation work on x86

Maps logical addresses to physical pages
These are the low-level hardware tools

+ This lecture: build up to higher-level abstractions

+ Namely, the process address space



Definitions (can vary)

+ Process is a virtual address space

1+ threads of execution work within this address space

+ A process 1s composed of:

Memory-mapped files

+ Includes program binary

Anonymous pages: no file backing

+ When the process exits, their contents go away



Problem 1: How to
represent?

+ What 1s the best way to represent the components of a
process?

Common question: 1s mapped at address x?

+ Page faults, new memory mappings, etc.

+ Hint: a 64-bit address space is seriously huge
+ Hint: some programs (like databases) map tons of data

Others map very little

<+ No one size fits all



Sparse representation

+ Naive approach might would be to represent each page

Mark empty space as unused
But this wastes OS memory

+ Better idea: only allocate nodes in a data structure for
memory that 1s mapped to something

Kernel data structure memory use proportional to
complexity of address space!



Linux: vm area struct

+ Linux represents portions of a process with a vm_area_struct,
or vma

<+ Includes:

Start address (virtual)

End address (first address after vma) — why?

+ Memory regions are page aligned

Protection (read, write, execute, etc) — implication?
+ Different page protections means new vma
Pointer to file (if one)

Other bookkeeping



Simple list representation

® 4o e g o
Process Address Space

W:eiiiiiiid

= — vma vima ==
e /bin/Is anon libc.so
— = (data)

et T

mm_ struct

(process)



Simple list

Linear traversal — O(n)

Shouldn’t we use a data structure with the smallest O?

Practical system building question:

What is the common case?

Is it past the asymptotic crossover point?
If tree traversal 1s O(log n), but adds bookkeeping overhead,
which makes sense for:

10 vmas: log 10 =~ 3; 10/2 = 5; Comparable either way

100 vmas: log 100 starts making sense



Common cases

+ Many programs are simple

Only load a few libraries
Small amount of data

+ Some programs are large and complicated

Databases

+ Linux splits the difference and uses both a list and a red-
black tree



Red-black trees

+ (Roughly) balanced tree

+ Read the wikipedia article if you aren’t familiar with
them

+ Popular in real systems

Asymptotic == worst case behavior
+ Insertion, deletion, search: log n

<+ Traversal: n



Optimizations

+ Using an RB-tree gets us logarithmic search time
+ Other suggestions?

+ Locality: If I just accessed region x, there is a reasonably
good chance I'll access it again

Linux caches a pointer in each process to the last vma
looked up

Source code (mm/mmap.c) claims 35% hit rate



Demand paging

+ Creating a memory mapping (vma) doesn’t necessarily
allocate physical memory or setup page table entries

What mechanism do you use to tell when a page 1s needed?

+ It pays to be lazy!

A program may never touch the memory it maps.
+ Examples?

Program may not use all code in a library
Save work compared to traversing up front
Hidden costs? Optimizations?

+ Page faults are expensive; heuristics could help performance



Linux APIs

mmap(void *addr, size_t length, int prot, int flags, int fd,
off_t offset);

munmap(void *addr, size_t length);

How to create an anonymous mapping?

What if you don’t care where a memory region goes (as
long as it doesn’t clobber something else)?



Example 1:

+ Let’s map a 1 page (4k) anonymous region for data, read-
write at address 0x40000

+ mmap(0x40000, 4096, PROT READ |PROT_WRITE,
MAP_ANONYMOUS, -1, 0):

Why wouldn’t we want exec permission?



Insert at OX4()OOO

® 4o

0x1000-0x4000 0x20000-0x21000 OXlOOOOO-OXlOfOOO

1) Is anything already mapped at OXLLO lms
) If not create a new vma nd inser

e s s

mm_struct
(process)




Scenario 2

+ What if there 1s something already mapped there with
read-only permission?
Case 1: Last page overlaps

Case 2: First page overlaps

Case 3: Our target is in the middle



Case 1: Insert at 0x40000

- g - oo

0x1000-0x4000 0x20000-0x41000 0x100000-0x10£000

1) Is anything already mapped at 0x40000-0x41000?
2) If at the end and different permissions:

mm_ struct

(process)




Case 3: Insert at 0x40000

» P L

0x1000-0x4000 0x20000-0x50000 0x100000-0x10£000

1) Is anything already mapped at 0x40000- iu.nc
— - 2) If in the middle and different permissions
1) Splitpreviousvma

mm_struct
(process)




Unix fork()

+ Recall: this function creates and starts a copy of the process;
identical except for the return value

+ Example:

int pid = fork();

if (pid == 0) {
// child code

} else if (pid > 0) {
// parent code

} else // error



Copy-On-Write (COW)

+ Naive approach would march through address space and
copy each page
Like demand paging, lazy is better. Why?

Most processes immediately exec () a new binary
without using any of these pages



How does COW work?

+ Memory regions:

New copies of each vma are allocated for child during fork

As are page tables
+ Pages in memory:
In page table (and in-memory representation), clear write bit, set
COW bt
+ Is the COW bit hardware specified?
4+ No, OS uses one of the available bits in the PTE

Make a new, writeable copy on a write fault



Idiosyncrasy 1: Stacks
Grow Down

+ In Linux/Unix, as you add frames to a stack, they
actually decrease in virtual address order

+ Example: Stack “bottom” — 0x13000
main()
0x12600
0x12300
0x11900

k
OS allocates Exceeds stac

a new page

page




Problem 1: Expansion

Recall: OS i1s free to allocate any free page in the virtual
address space if user doesn’t specify an address

What if the OS allocates the page below the “top” of the
stack?

You can’t grow the stack any further

Out of memory fault with plenty of memory spare

OS must reserve stack portion of address space

Fortunate that memory areas are demand paged



Feed 2 Birds with 1 Scone

+ Unix has been around longer than paging

+ Remember data segment abstraction?

<+ Unix solution:

- == = -

Data Segment

+ Stack and heap meet in the middle

< Out of memory when they meet



But now we have paging

+ Unix and Linux still have a data segment abstraction

Even though they use flat data segmentation!

+ sys_brk() adjusts the endpoint of the heap

Still used by many memory allocators today



Windows Comparison

+ LPVOID VirtualAllocEx(__1n HANDLE hProcess,
__1n_opt LPVOID IpAddress,
__1n SIZE_T dwSize,
__1n DWORD flAllocationType,
__1in DWORD f{lProtect);

+ Library function applications program to

Provided by ntdll.dll — the rough equivalent of Unix libc

Implemented with an undocumented system call



Windows Comparison

+ LPVOID VirtualAllocEx(__in HANDLE hProcess,
__1in_opt LPVOID IpAddress,
__in SIZE T dwSize,
__1in DWORD flAllocationType,
__1in DWORD f{lProtect);

+ Programming environment differences:

Parameters annotated (__out, __in_opt, etc), compiler
checks
Name encodes type, by convention

dwSize must be page-aligned (just like mmap)



Windows Comparison

+ LPVOID VirtualAllocEx(__in HANDLE hProcess,
__1in_opt LPVOID IpAddress,
__in SIZE T dwSize,
__1in DWORD flAllocationType,
__1in DWORD f{lProtect);

+ Dafferent capabilities

hProcess doesn’t have to be you! Pros/Cons?

flAllocationType — can be reserved or committed
%+ And other flags



Reserved memory

An explicit abstraction for cases where you want to
prevent the OS from mapping anything to an address
region

To use the region, it must be remapped in the committed
state

Why?

My speculation: Gives the OS more information for
advanced heuristics than demand paging



Part 1 Summary

+ Understand what a vma is, how it 1s manipulated in
kernel for calls like mmap

+ Demand paging, COW, and other optimizations
+ brk and the data segment

+ Windows VirtualAllocEx() vs. Unix mmap()



Part 2: Program Binaries

+ How are address spaces represented in a binary file?
+ How are processes loaded?

+ How are multiple architectures/personalities handled?



Linux: ELF

<+ Executable and Linkable Format

+ Standard on most Unix systems

And used in JOS
You will implement part of the loader in lab 3

<+ 2 headers:

Program header: 0+ segments (memory layout)

Section header: 0+ sections (linking information)



Helpful tools

+ readelf - Linux tool that prints part of the elf headers
+ objdump — Linux tool that dumps portions of a binary

Includes a disassembler; reads debugging symbols if
present



Key ELF Segments

+ For once, not the same thing as hardware segmentation

Similar idea, though
+ .text — Where read/execute code goes

Can be mapped without write permission

+ .data — Programmer initialized read/write data

Ex: a global int that starts at 3 goes here
+ .bss — Uninitialized data (initially zero by convention)

+ Many other segments



Sections

+ Also describe text, data, and bss segments
<+ Plus:

Procedure Linkage Table (PLT) — jump table for libraries
.rel.text — Relocation table for external targets

.symtab — Program symbols



How ELF Loading Works

+ execve(“foo”, ...)

+ Kernel parses the file enough to identify whether it is a
supported format

If static elf, it loads the text, data, and bss sections, then
drops into the program

If 1t 1s a dynamic elf, it instead loads the dynamic linker
and drops into that

If something else, it loads the specified linker (dynamic elf
1s somewhat a special case of this)



Dynamic Linking

+ Rather than start at main(), start at a setup routine
+ As long as the setup routine 1s self-contained, it can:

1) Walk the headers to 1dentify needed libraries
2) Issue mmap() calls to map 1n said libraries

3) Do other bookkeeping
4) Call main()



Position-Independent
Code

+ Quick definition anyone?
+ How implemented?

Intuition: All jump targets and calls must be PC-relative

Or relative to the start of the section (i.e., dedicate a
register to hold a base address that is added to a jump
target)

+ Libraries (shared objects) must be position-independent



How to call a .so function?
(from a program)

+ If the linker doesn’t know where a function will end up,
1t creates a relocation

Index into the symbol table, location of call in code, type

+ Part of loading: linker marches through each relocation
and overwrites the call target
But I thought .text was read-only?

Linker must modify page permissions, or kernel must
set .text copy-on-write



How to call a .so function?
(from another .so)

+ Compiler creates a jump table for all external calls

Called the plt; entries point to a global offset table (got)
entry

got stores location where a symbol was loaded 1n memory

+ Lazily resolved (laziness is a virtue, remember?)

Initially points to a fixup routine in the linker

First time 1t 1s called, it figures out the relocation

¥+ Overwrites appropriate got entry



Windows PE (portable
executable, or .exe)

+ Import and Export Table (not just an import table)
+ Setup routines called when:

The dll is loaded into a process
Unloaded

When a thread enters and exits

+ DLLs are generally not position independent

Loading one at the non-preferred address requires code
fixup (called rebasing)



Recap

+ Goal 1s to convey intuitions about how programs are set
up in Linux and Windows

+ OS does preliminary executable parsing, maps in
program and maybe dynamic linker

+ Linker does needed fixup for the program to work



Advanced Topics

<+ How to handle other binary formats

<+ How to run 32-bit executables on a 64-bit OS?




Non-native formats

Most binary formats are identified in the first few bytes
with a magic string

Windows .exe files start with asci1 characters “MZ”, for its
designer Mark Zbikowski

Interpreted languages (sh, perl, python) use “#!” followed
by the path to the interpreter

Assuming the magic text can be found easily, Linux
allows an interpreter to be associated with a format

Like the ELF linker, this gets started upon exec



Ex: Other Unix Flavors

+ The APIs on most Unix programs are quite similar

POSIX interfaces can just call Linux libc directly

+ Others may require a shim, or small bits of code to
emulate expected differences on the host platform



Ex: WINE

+ The same strategy is used to emulate Windows on Linux

+ WINE includes reimplementations of Windows low-
level libraries on Linux system calls

And a “dynamic linker” that emulates the one 1n ntdll



Linux32 on 64-bit Linux

+ 64-bit x86 chips can run in 32-bit mode
+ ELF can i1dentify target architecture
+ What does the OS need to do for 32-bit programs?

Set up 32-bit page tables
Keep old system call table around
+ Add shims for calling convention and other low-level ops

Have 32-bit binaries and libraries on disk



4

+ + + +

FatELF

Experimental new feature (not in kernel yet)
Rather than one .text, .bss, etc, have:

text-x86, .text-x86-64, .text-arm, etc.

Kernel/linker select appropriate sections for architecture
Wastes some disk space, but no memory
Saves human effort

Same 1dea as Apple’s Universal Binary format



Summary

+ We’ve seen a lot of details on how programs are
represented:
In the kernel when running
On disk in an executable file

And how they are bootstrapped in practice
+ Will help with lab 3



