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Housekeeping 

ò  Lab deadline extended to Wed night (9/14) 

ò  Enrollment finalized – if  you still want in, email me 

ò  All students should have VMs at this point 

ò  Email Don if  you don’t have one 

ò  TA office hours posted 

ò  Private git repositories should be setup soon 



Review 

ò  We’ve seen how paging and segmentation work on x86 

ò  Maps logical addresses to physical pages 

ò  These are the low-level hardware tools 

ò  This lecture: build up to higher-level abstractions 

ò  Namely, the process address space 



Definitions (can vary) 

ò  Process is a virtual address space 

ò  1+ threads of  execution work within this address space 

ò  A process is composed of: 

ò  Memory-mapped files 

ò  Includes program binary 

ò  Anonymous pages: no file backing 

ò  When the process exits, their contents go away 



Problem 1: How to 
represent? 

ò  What is the best way to represent the components of  a 
process? 

ò  Common question: is mapped at address x? 

ò  Page faults, new memory mappings, etc. 

ò  Hint: a 64-bit address space is seriously huge 

ò  Hint: some programs (like databases) map tons of  data 

ò  Others map very little 

ò  No one size fits all 



Sparse representation 

ò  Naïve approach might would be to represent each page 

ò  Mark empty space as unused 

ò  But this wastes OS memory 

ò  Better idea: only allocate nodes in a data structure for 
memory that is mapped to something 

ò  Kernel data structure memory use proportional to 
complexity of  address space! 



Linux: vm_area_struct 

ò  Linux represents portions of  a process with a vm_area_struct, 
or vma 

ò  Includes: 

ò  Start address (virtual) 

ò  End address (first address after vma) – why? 
ò  Memory regions are page aligned 

ò  Protection (read, write, execute, etc) – implication? 

ò  Different page protections means new vma 

ò  Pointer to file (if  one) 

ò  Other bookkeeping 



Simple list representation 
Process Address Space 0 0xffffffff  

vma 
/bin/ls 

start end 

next 

vma 
anon 
(data) 

vma 
libc.so 

mm_struct 
(process) 



Simple list 

ò  Linear traversal – O(n) 

ò  Shouldn’t we use a data structure with the smallest O? 

ò  Practical system building question:  

ò  What is the common case?   

ò  Is it past the asymptotic crossover point? 

ò  If  tree traversal is O(log n), but adds bookkeeping overhead, 
which makes sense for: 

ò  10 vmas: log 10 =~ 3; 10/2 = 5;  Comparable either way 

ò  100 vmas: log 100 starts making sense 



Common cases 

ò  Many programs are simple 

ò  Only load a few libraries 

ò  Small amount of  data 

ò  Some programs are large and complicated 

ò  Databases 

ò  Linux splits the difference and uses both a list and a red-
black tree 



Red-black trees 

ò  (Roughly) balanced tree  

ò  Read the wikipedia article if  you aren’t familiar with 
them 

ò  Popular in real systems 

ò  Asymptotic == worst case behavior 

ò  Insertion, deletion, search: log n 

ò  Traversal: n 



Optimizations 

ò  Using an RB-tree gets us logarithmic search time 

ò  Other suggestions? 

ò  Locality: If  I just accessed region x, there is a reasonably 
good chance I’ll access it again 

ò  Linux caches a pointer in each process to the last vma 
looked up 

ò  Source code (mm/mmap.c) claims 35% hit rate 



Demand paging 

ò  Creating a memory mapping (vma) doesn’t necessarily 
allocate physical memory or setup page table entries 

ò  What mechanism do you use to tell when a page is needed? 

ò  It pays to be lazy! 

ò  A program may never touch the memory it maps.  
ò  Examples? 

ò  Program may not use all code in a library 

ò  Save work compared to traversing up front 

ò  Hidden costs? Optimizations? 
ò  Page faults are expensive; heuristics could help performance 



Linux APIs 

ò  mmap(void *addr, size_t length, int prot, int flags, int fd,  
       off_t offset); 

ò  munmap(void *addr, size_t length); 

ò  How to create an anonymous mapping? 

ò  What if  you don’t care where a memory region goes (as 
long as it doesn’t clobber something else)? 



Example 1: 

ò  Let’s map a 1 page (4k) anonymous region for data, read-
write at address 0x40000 

ò  mmap(0x40000, 4096, PROT_READ|PROT_WRITE,     
            MAP_ANONYMOUS, -1, 0); 

ò  Why wouldn’t we want exec permission? 



Insert at 0x40000 
0x1000-0x4000 

mm_struct 
(process) 

0x20000-0x21000 0x100000-0x10f000 

1)  Is anything already mapped at 0x40000-0x41000? 
2)  If  not, create a new vma and insert it 
3)  Recall: pages will be allocated on demand 



Scenario 2 

ò  What if  there is something already mapped there with 
read-only permission? 

ò  Case 1: Last page overlaps 

ò  Case 2: First page overlaps 

ò  Case 3: Our target is in the middle 



Case 1: Insert at 0x40000 
0x1000-0x4000 

mm_struct 
(process) 

0x20000-0x41000 0x100000-0x10f000 

1)  Is anything already mapped at 0x40000-0x41000? 
2)  If  at the end and different permissions: 

1)  Truncate previous vma 
2)  Insert new vma  

3)  If  permissions are the same, one can replace pages 
and/or extend previous vma 



Case 3: Insert at 0x40000 
0x1000-0x4000 

mm_struct 
(process) 

0x20000-0x50000 0x100000-0x10f000 

1)  Is anything already mapped at 0x40000-0x41000? 
2)  If  in the middle and different permissions: 

1)  Split previous vma 
2)  Insert new vma  



Unix fork() 

ò  Recall: this function creates and starts a copy of  the process; 
identical except for the return value 

ò  Example: 

int pid = fork();!

if (pid == 0) {!

!// child code!

} else if (pid > 0) { !

!// parent code!

} else // error!



Copy-On-Write (COW) 

ò  Naïve approach would march through address space and 
copy each page 

ò  Like demand paging, lazy is better.  Why? 

ò  Most processes immediately exec() a new binary 
without using any of  these pages 



How does COW work? 

ò  Memory regions: 

ò  New copies of  each vma are allocated for child during fork 

ò  As are page tables 

ò  Pages in memory: 

ò  In page table (and in-memory representation), clear write bit, set 
COW bit 

ò  Is the COW bit hardware specified? 

ò  No, OS uses one of  the available bits in the PTE 

ò  Make a new, writeable copy on a write fault 



Idiosyncrasy 1: Stacks 
Grow Down 

ò  In Linux/Unix, as you add frames to a stack, they 
actually decrease in virtual address order 

ò  Example: 
main() 

foo() 

bar() 

Stack “bottom” – 0x13000 

0x12600 

0x12300 

0x11900 

Exceeds stack 
page OS allocates 

a new page 



Problem 1: Expansion 

ò  Recall: OS is free to allocate any free page in the virtual 
address space if  user doesn’t specify an address 

ò  What if  the OS allocates the page below the “top” of  the 
stack? 

ò  You can’t grow the stack any further 

ò  Out of  memory fault with plenty of  memory spare 

ò  OS must reserve stack portion of  address space 

ò  Fortunate that memory areas are demand paged 



ò  Unix has been around longer than paging 

ò  Remember data segment abstraction? 

ò  Unix solution: 

 

ò  Stack and heap meet in the middle 

ò  Out of  memory when they meet 

Heap Stack 

Feed 2 Birds with 1 Scone 

Data Segment 

Grows Grows 



But now we have paging 

ò  Unix and Linux still have a data segment abstraction 

ò  Even though they use flat data segmentation! 

ò  sys_brk() adjusts the endpoint of  the heap 

ò  Still used by many memory allocators today 



Windows Comparison 

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess, 
     __in_opt LPVOID lpAddress, 

    __in SIZE_T dwSize, 
              __in DWORD flAllocationType, 
    __in DWORD flProtect); 

ò  Library function applications program to 

ò  Provided by ntdll.dll – the rough equivalent of  Unix libc 

ò  Implemented with an undocumented system call 



Windows Comparison 

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess, 
            __in_opt LPVOID lpAddress, 

           __in SIZE_T dwSize, 
           __in DWORD flAllocationType, 
           __in DWORD flProtect); 

ò  Programming environment differences: 

ò  Parameters annotated (__out, __in_opt, etc), compiler 
checks 

ò  Name encodes type, by convention 

ò  dwSize must be page-aligned (just like mmap) 



Windows Comparison 

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess, 
            __in_opt LPVOID lpAddress, 

           __in SIZE_T dwSize, 
           __in DWORD flAllocationType, 
           __in DWORD flProtect); 

ò  Different capabilities 

ò  hProcess doesn’t have to be you!  Pros/Cons? 

ò  flAllocationType – can be reserved or committed 

ò  And other flags 



Reserved memory 

ò  An explicit abstraction for cases where you want to 
prevent the OS from mapping anything to an address 
region 

ò  To use the region, it must be remapped in the committed 
state 

ò  Why? 

ò  My speculation: Gives the OS more information for 
advanced heuristics than demand paging   



Part 1 Summary 

ò  Understand what a vma is, how it is manipulated in 
kernel for calls like mmap 

ò  Demand paging, COW, and other optimizations 

ò  brk and the data segment 

ò  Windows VirtualAllocEx() vs. Unix mmap() 



Part 2: Program Binaries 

ò  How are address spaces represented in a binary file? 

ò  How are processes loaded? 

ò  How are multiple architectures/personalities handled? 



Linux: ELF 

ò  Executable and Linkable Format 

ò  Standard on most Unix systems 

ò  And used in JOS  

ò  You will implement part of  the loader in lab 3 

ò  2 headers: 

ò  Program header: 0+ segments (memory layout) 

ò  Section header: 0+ sections (linking information) 



Helpful tools 

ò  readelf   - Linux tool that prints part of  the elf  headers 

ò  objdump – Linux tool that dumps portions of  a binary 

ò  Includes a disassembler; reads debugging symbols if  
present 



Key ELF Segments 

ò  For once, not the same thing as hardware segmentation 

ò  Similar idea, though 

ò  .text – Where read/execute code goes 

ò  Can be mapped without write permission 

ò  .data – Programmer initialized read/write data 

ò  Ex: a global int that starts at 3 goes here 

ò  .bss – Uninitialized data (initially zero by convention) 

ò  Many other segments 



Sections 

ò  Also describe text, data, and bss segments 

ò  Plus: 

ò  Procedure Linkage Table (PLT) – jump table for libraries 

ò  .rel.text – Relocation table for external targets 

ò  .symtab – Program symbols 



How ELF Loading Works 

ò  execve(“foo”, …) 

ò  Kernel parses the file enough to identify whether it is a 
supported format 

ò  If  static elf, it loads the text, data, and bss sections, then 
drops into the program 

ò  If  it is a dynamic elf, it instead loads the dynamic linker 
and drops into that 

ò  If  something else, it loads the specified linker (dynamic elf  
is somewhat a special case of  this) 



Dynamic Linking 

ò  Rather than start at main(), start at a setup routine 

ò  As long as the setup routine is self-contained, it can: 

ò  1) Walk the headers to identify needed libraries 

ò  2) Issue mmap() calls to map in said libraries 

ò  3) Do other bookkeeping 

ò  4) Call main() 



Position-Independent 
Code 

ò  Quick definition anyone? 

ò  How implemented? 

ò  Intuition: All jump targets and calls must be PC-relative 

ò  Or relative to the start of  the section (i.e., dedicate a 
register to hold a base address that is added to a jump 
target) 

ò  Libraries (shared objects) must be position-independent 



How to call a .so function? 
(from a program) 

ò  If  the linker doesn’t know where a function will end up, 
it creates a relocation 

ò  Index into the symbol table, location of  call in code, type 

ò  Part of  loading: linker marches through each relocation 
and overwrites the call target 

ò  But I thought .text was read-only? 

ò  Linker must modify page permissions, or kernel must 
set .text copy-on-write 



How to call a .so function? 
(from another .so) 

ò  Compiler creates a jump table for all external calls 

ò  Called the plt; entries point to a global offset table (got) 
entry 

ò  got stores location where a symbol was loaded in memory 

ò  Lazily resolved (laziness is a virtue, remember?) 

ò  Initially points to a fixup routine in the linker 

ò  First time it is called, it figures out the relocation 

ò  Overwrites appropriate got entry 



Windows PE (portable 
executable, or .exe) 

ò  Import and Export Table (not just an import table) 

ò  Setup routines called when: 

ò  The dll is loaded into a process 

ò  Unloaded 

ò  When a thread enters and exits 

ò  DLLs are generally not position independent 

ò  Loading one at the non-preferred address requires code 
fixup (called rebasing) 



Recap 

ò  Goal is to convey intuitions about how programs are set 
up in Linux and Windows 

ò  OS does preliminary executable parsing, maps in 
program and maybe dynamic linker 

ò  Linker does needed fixup for the program to work 



Advanced Topics 

ò  How to handle other binary formats 

ò  How to run 32-bit executables on a 64-bit OS? 



Non-native formats 

ò  Most binary formats are identified in the first few bytes 
with a magic string 

ò  Windows .exe files start with ascii characters “MZ”, for its 
designer Mark Zbikowski 

ò  Interpreted languages (sh, perl, python) use “#!” followed 
by the path to the interpreter 

ò  Assuming the magic text can be found easily, Linux 
allows an interpreter to be associated with a format 

ò  Like the ELF linker, this gets started upon exec 



Ex: Other Unix Flavors 

ò  The APIs on most Unix programs are quite similar 

ò  POSIX interfaces can just call Linux libc directly 

ò  Others may require a shim, or small bits of  code to 
emulate expected differences on the host platform 



Ex: WINE 

ò  The same strategy is used to emulate Windows on Linux 

ò  WINE includes reimplementations of  Windows low-
level libraries on Linux system calls 

ò  And a “dynamic linker” that emulates the one in ntdll 



Linux32 on 64-bit Linux 

ò  64-bit x86 chips can run in 32-bit mode 

ò  ELF can identify target architecture 

ò  What does the OS need to do for 32-bit programs? 

ò  Set up 32-bit page tables 

ò  Keep old system call table around 

ò  Add shims for calling convention and other low-level ops 

ò  Have 32-bit binaries and libraries on disk 



FatELF 

ò  Experimental new feature (not in kernel yet) 

ò  Rather than one .text, .bss, etc, have: 

ò  .text-x86, .text-x86-64, .text-arm, etc. 

ò  Kernel/linker select appropriate sections for architecture 

ò  Wastes some disk space, but no memory 

ò  Saves human effort 

ò  Same idea as Apple’s Universal Binary format 



Summary 

ò  We’ve seen a lot of  details on how programs are 
represented: 

ò  In the kernel when running 

ò  On disk in an executable file 

ò  And how they are bootstrapped in practice 

ò  Will help with lab 3 


