Introduction to I/O and Disk Management

Secondary Storage Management

Disks — just like memory, only different

Why have disks?

- Memory is small. Disks are large.
 - Short term storage for memory contents (e.g., swap space).
 - Reduce what must be kept in memory (e.g., code pages).
- ➤ Memory is volatile. Disks are forever (?!)
 - File storage.

(ف)	No.
	,
~	Ca

	GB/dollar dol	lar/GB
RAM	0.013(0.015,0.01)	\$77(\$68,\$95)
Disks	3.3(1.4,1.1)	30¢ (71¢,90¢)

Capacity: 2GB vs. 1TB

2GB vs. 400GB

1GB vs 320GB

How to approach persistent storage

- Disks first, then file systems.
 - > Bottom up.
 - ➤ Focus on device characteristics which dominate performance or reliability (they become focus of SW).
- Disk capacity (along with processor performance) are the crown jewels of computer engineering.
- File systems have won, but at what cost victory?
 - ➤ Ipod, iPhone, TivO, PDAs, laptops, desktops all have file systems.
 - Google is made possible by a file system.
 - > File systems rock because they are:
 - Persistent.
 - Heirarchical (non-cyclical (mostly)).
 - Rich in metadata (remember cassette tapes?)
 - Indexible (hmmm, a weak point?)
- The price is complexity of implementation.

Different types of disks

- Advanced Technology Attachment (ATA)
 - ➤ Standard interface for connecting storage devices (e.g., hard drives and CD-ROM drives)
 - Referred to as IDE (Integrated Drive Electronics), ATAPI, and UDMA.
 - ➤ ATA standards only allow cable lengths in the range of 18 to 36 inches. CHEAP.
- Small Computer System Interface (SCSI)
 - > Requires controller on computer and on disk.
 - Controller commands are sophisticated, allow reordering.
- USB or Firewire connections to ATA disc
 - ➤ These are new bus technologies, not new control.
- Microdrive impressively small motors

Different types of disks

Bandwidth ratings.

- > These are unachievable.
- ➤ 50 MB/s is max off platters.
- Peak rate refers to transfer from disc device's memory cache.

SATA II (serial ATA)

- ➤ 3 Gb/s (still only 50 MB/s off platter, so why do we care?)
- Cables are smaller and can be longer than pATA.

SCSI 320 MB/s

Enables multiple drives on same bus

Mode	Speed
UDMA0	16.7 MB/s
UDMA1	25.0 MB/s
UDMA2	33.3 MB/s
UDMA3	44.4 MB/s
UDMA4	66.7 MB/s
UDMA5	100.0 MB/s
UDMA6	133 MB/s

Flash: An upcoming technology

- Flash memory gaining popularity
 - One laptop per child has 1GB flash (no disk)
 - Vista supports Flash as accelerator
 - ➤ Future is hybrid flash/disk or just flash?
 - > Erased a block at a time (100,000 write-erase-cycles)
 - ➤ Pages are 512 bytes or 2,048 bytes
 - ➤ Read 18MB/s, write 15MB/s
 - ➤ Lower power than (spinning) disk

	GB/d	ollar	dolla	ar/GB
RAM	0.01	3(0.01	5,0.01)	\$77(\$68,\$95)
Disks	3.3	(1.4,1)	1.1)	30¢ (71¢,90¢)
Flash	0.1			\$10

Anatomy of a Disk

Basic components

Disk structure: the big picture

Physical structure of disks

Anatomy of a Disk

Seagate 73.4 GB Fibre Channel Ultra 160 SCSI disk

- Specs:
 - > 12 Platters
 - > 24 Heads
 - ➤ Variable # of sectors/track
 - > 10,000 RPM
 - ❖ Average latency: 2.99 ms
 - > Seek times
 - Track-to-track: 0.6/0.9 ms
 - * Average: 5.6/6.2 *ms*
 - Includes acceleration and settle time.
 - ➤ 160-200 MB/s peak transfer rate
 - * 1-8K cache

- > 12 Arms
- > 14,100 Tracks
- ➤ 512 bytes/sector

Anatomy of a Disk

Example: Seagate Cheetah ST373405LC (March 2002)

- Specs:
 - Capacity: 73GB
 - ➤ 8 surfaces per pack
 - > # cylinders: 29,549
 - ➤ Total number of tracks per system: 236,394
 - Variable # of sectors/track (776 sectors/track (avg))
 - > 10,000 RPM
 - average latency: 2.9 ms.
 - Seek times
 - track-to-track: 0.4 ms
 - Average/max: 5.1 ms/9.4ms
 - > 50-85 MB/s peak transfer rate
 - 4MB cache
 - > MTBF: 1,200,000 hours

Disk Operations

Read/Write operations

- Present disk with a sector address
 - > Old: DA = (drive, surface, track, sector)
 - ➤ New: Logical block address (LBA)
- Heads moved to appropriate track
 - > seek time
 - > settle time
- The appropriate head is enabled
- Wait for the sector to appear under the head
 - "rotational latency"
- Read/write the sector
 - "transfer time"

Read time:

 $seek\ time + latency + transfer\ time$ (5.6 ms + 2.99 ms + 0.014 ms)

Disk access latency

- Which component of disk access time is the longest?
 - ➤ A. Rotational latency
 - ➤ B. Transfer latency
 - > C. Seek latency

Disk Addressing

- Software wants a simple "disc virtual address space" consisting of a linear array of sectors.
 - Sectors numbered 1..N, each 512 bytes (typical size).
 - Writing 8 surfaces at a time writes a 4KB page.
- Hardware has structure:
 - ➤ Which platter?
 - Which track within the platter?
 - Which sector within the track?
- The hardware structure affects latency.
 - Reading from sectors in the same track is fast.
 - Reading from the same cylinder group is faster than seeking.

Disk Addressing

Mapping a 3-D structure to a 1-D structure

block n+1 should be as "close" as possible to block n

The Impact of File Mappings

File access times: Contiguous allocation

- Array elements map to contiguous sectors on disk
 - ➤ Case1: Elements map to the middle of the disk

The Impact of File Mappings

File access times: Contiguous allocation

Array elements map to contiguous sectors on disk
 Case1: Elements map to the middle tracks of the platter

$$5.6 + 3.0 + 6.0 \frac{2,048}{424} = 8.6 + 29.0 = 37.6 \, ms$$

Case 2: Elements map to the inner tracks of the platter

$$5.6 + 3.0 + 6.0 \frac{2,048}{212} = 8.6 + 58.0 = 66.6 \, ms$$

Case3: Elements map to the outer tracks of the platter

$$5.6 + 3.0 + 6.0 \frac{2,048}{636} = 8.6 + 19.3 = 27.9 \, ms$$

Disk Addressing

The impact of file mappings: Non-contiguous allocation

- Array elements map to random sectors on disk
 - > Each sector access results in a disk seek

$$2,048 \times (5.6 + 3.0) = 17.6 seconds$$

Practical Knowledge

- If the video you are playing off your hard drive skips, defragment your file system.
- OS block allocation policy is complicated.
 Defragmentation allows the OS to revisit layout with global information.
- Unix file systems need defragmentation less than Windows file systems, because they have better allocation policies.

Defragmentation Decisions

- Files written when the disk is nearly full are more likely to be fragmented.
 - > A. True
 - ➤ B. False

Maximizing disk throughput

 In a multiprogramming/timesharing environment, a queue of disk I/O requests can form

The OS maximizes disk I/O throughput by minimizing head movement through disk head scheduling

Examples

Assume a queue of requests exists to read/write tracks:

83 72 14 147 16 150 and the head is on track 65

Examples

Assume a queue of requests exists to read/write tracks:

83 72 14 147 16 150 and the head is on track 65

FCFS scheduling results in the head moving 550 tracks
Can we do better?

Minimizing head movement

- Greedy scheduling: shortest seek time first
 - > Rearrange queue from:

To:

Minimizing head movement

- Greedy scheduling: shortest seek time first
 - > Rearrange queue from:

To:

SSTF scheduling results in the head moving 221 tracks Can we do better?

SCAN scheduling

Rearrange queue from:

To:

83 14

"SCAN" scheduling: Move the head in one direction until all requests have been serviced and then reverse. Also called elevator scheduling.
Moves the head 187 tracks

Other variations

- C-SCAN scheduling ("Circular"-SCAN)
 - Move the head in one direction until an edge of the disk is reached and then reset to the opposite edge

LOOK scheduling

Same as C-3CAN except the head is reset when no more requests exist between the current head position and the approaching edge of the disk

Disk Performance

Disk partitioning

- Disks are typically partitioned to minimize the largest possible seek time
 - > A partition is a collection of cylinders
 - ➤ Each partition is a logically separate disk

Disks – Technology Trends

- Disks are getting smaller in size
 - ➤ Smaller → spin faster; smaller distance for head to travel; and lighter weight
- Disks are getting denser
 - ➤ More bits/square inch → small disks with large capacities
- Disks are getting cheaper
 - 2x/year since 1991
- Disks are getting faster
 - ➤ Seek time, rotation latency: 5-10%/year (2-3x per decade)
 - ➤ Bandwidth: 20-30%/year (~10x per decade)
- Overall:
 - Disk capacities are improving much faster than performance

Management of Multiple Disks

Using multiple disks to increase disk throughput

- Disk striping (RAID-0)
 - Blocks broken into sub-blocks that are stored on separate disks
 similar to memory interleaving
 - Provides for higher disk bandwidth through a larger effective block size

Physical disk blocks

Management of Multiple Disks

Using multiple disks to improve reliability & availability

- To increase the reliability of the disk, redundancy must be introduced
 - ➤ Simple scheme: disk mirroring (RAID-1)
 - ➤ Write to both disks, read from either.

Who controls the RAID?

Hardware

- +Tend to be reliable (hardware implementers test)
- +Offload parity computation from CPU
 - Hardware is a bit faster for rewrite intensive workloads
- > -Dependent on card for recovery (replacements?)
- -Must buy card (for the PCI bus)
- -Serial reconstruction of lost disk

Software

- -Software has bugs
- > -Ties up CPU to compute parity
- +Other OS instances might be able to recover
- > +No additional cost
- > +Parallel reconstruction of lost disk

Management of Multiple Disks

Using multiple disks to increase disk throughput

- RAID (redundant array of inexpensive disks) disks
 - Byte-wise striping of the disks (RAID-3) or block-wise striping of the disks (RAID-0/4/5)
 - Provides better performance and reliability
- Example: storing the byte-string 101 in a RAID-3 system

Improving Reliability and Availability RAID-4

- Block interleaved parity striping
 - > Allows one to recover from the crash of any one disk
 - Example: storing 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3

Improving Reliability and Availability

RAID-5 Block interleaved parity striping

Improving Reliability and Availability

RAID-5 Block interleaved parity striping

