Address Translation

Virtual Memory and

Review

+ Program addresses are virtual addresses.

» Relative offset of program regions can not change during program
execution. E.g., heap can not move further from code.

» Virtual addresses == physical address inconvenient.
+ Program location is compiled into the program.
+ Asingle offset register allows the OS to place a process’ virtual
address space anywhere in physical memory.
» Virtual address space must be smaller than physical.
» Program is swapped out of old location and swapped into new.
+ Segmentation creates external fragmentation and requires large
regions of contiguous physical memory.
» We look to fixed sized units, memory pages, to solve the problem.

Virtual Memory

Concept

+ Key problem: How can one support programs that
require more memory than is physically available?
» How can we support programs that do not use all of their
memory at once?

+ Hide physical size of memory from users
> Memory is a “large” virtual address space of 2 bytes

» Only portions of VAS are in physical memory at any one
time (increase memory utilization).

+ Issues
» Placement strategies
<+ Where to place programs in physical memory
» Replacement strategies

<+ What to do when there exist more processes than can fit in
memory

» Load control strategies

+ Determining how many processes can be in memory at one
time

2n-1

LS
VAS

Realizing Virtual Memory
Paging

Lypx=11Opax=1)

(
+ Physical memory partitioned into equal sized

page frames

» Page frames avoid external fragmentation.

(£,0)
A memory address is a pair (f, 0)
f — frame number (f,,,, frames) o
o — frame offset (0,,,, bytes/frames)
Physical address = 0,,,,xf + 0 [Physieal]

B
%]

PA:

1

108 (g X Opar) 108 0

f o

(0,0)

Physical Address Specifications
Frame/Offset pair v. An absolute index

+ Example: A 16-bit address space with (o,
512 byte page frames
» Addressing location (3, 6) = 1,542

max =)

(3,6

o

(0,0)

1,542

Questions

+ The offset is the same in a virtual address and a
physical address.
» A. True
» B. False

Realizing Virtual Memory

Paging

Mapping virtual addresses to physical addresses

Paging
2n-1 =
(Puax=11Opax=1)
+ A process’s virtual address space is
partitioned into equal sized pages
> |page| = |page frame |
(p,0)
. . . 0
A virtual address is a pair (p, 0)
p — page number (p,,,, pages) Virtuat
o — page offset (o,,, bytes/pages) Address
Virtual address = 0,,,xp + 0
p
VA:
" 1
1085 (PyaxX0par) log; Opax
P 0 (0,0) e——

+ Pages map to frames

+ Pages are contiguous in a VAS...

Frames and pages

+ Only mapping virtual pages that are in use does
what?
» A. Increases memory utilization.
» B. Increases performance for user applications.
» C. Allows an OS to run more programs concurrently.
» D. Gives the OS freedom to move virtual pages in the virtual
address space.
+ Address translation and changing address mappings
are
> A. Frequent and frequent
» B. Frequent and infrequent
» C. Infrequent and frequent
» D. Infrequent and infrequent

Virtual Address Translation Details
Page table structure

1 table per process + Contents:
Part of process’s state » Flags — dirty bit, resident bit, clock/
reference bit
» Frame number

)4 4 f o
[ERNNRREN|
20| 109 Kl mmy 1
Virtual]
Addresses | Physical
Addresses
PTBR}-(+) oufol £
H
1 p

e ——
Page Table

- » But pages are arbitrarily located
Virtuat in physical memory, and
[Address] > Not all pages mapped at all times F oY
Space —
Physical
(0, [Memory|
(P, ,0.)
(£,,0,)
T s
Paging
Virtual address translation
Program + A page table maps virtual
: (£, 0)
P pages to physical frames
CPU —
~
yia P 0 f 0
virtual | !IIIIIIIEEI OOTTTT ferysicar
[Addressf 20 | 109 KI 16 10 9/ 1 . —
| Space | Virtual |
Addresses Physical
B, 0) V'
0 \ Addresses
i J
p
T Page Table "
Virtual Address Translation Details
Example
A system with 16-bit_ addresses (4,1023)
» 32 KB of physical memory
» 1024 byte pages
(4,0)
3,1023)
@ Physical
- Addresses
I 14 o f 0
Viriual OO0 [Physica]
Al‘l:h‘:' S 15 109 0 14 109 0 [Mermory}
Space . \] j
L Virtual
Addresses |
(0,0)

Page Table

Virtual Address Translation
Performance Issues

Virtual Address Translation

+ Problem — VM reference requires 2 memory references!
» One access to get the page table entry
» One access to get the data

+ Page table can be very large; a part of the page table can be on
disk.
» For a machine with 64-bit addresses and 1024 byte pages, what is
the size of a page table?

+ What to do?
» Most computing problems are solved by some form of...
+ Caching
< Indirection

Using TLBs to Speedup Address Translation

+ Cache recently accessed page-to-frame translations in a TLB
» For TLB hit, physical page number obtained in 1 cycle
» For TLB miss, translation is updated in TLB
» Has high hit ratio (why?)

Physical

Addresses 16105 N

Virtual
Addresses

Key Value - _______________j
2l i f —

TLB p

Page Table 1

Dealing With Large Page Tables
Multi-level paging

+ Add additional levels of indirection
to the page table by sub-dividing

page number into K parts

> Create a “tree” of page tables

> TLB still used, just not shown Second-Level
> The architecture determines the ~ -age Tables

number of levels of page table J

Virtual Address sz
P P> P3 o
O
Py [
Third-Level
First-Level Page Tables

Page Table

Dealing With Large Page Tables
Multi-level paging

+ Example: Two-level paging

CPU

Dy s O Virtual Physical

| Addresses Addresses

20 16 | 10

N

]EI—@-‘ page table _®_‘ S

P I)23 '
Semmm———— + I - - - - - -
First-Level Second-Level
Page Table Page Table

The Problem of Large Address Spaces

+ With large address spaces (64-bits) forward mapped page tables
become cumbersome.
» E.g. 5 levels of tables.

+ Instead of making tables proportional to size of virtual address
space, make them proportional to the size of physical address
space.

» Virtual address space is growing faster than physical.

+ Use one entry for each physical page with a hash table
» Translation table occupies a very small fraction of physical memory
> Size of translation table is independent of VM size

+ Page table has 1 entry per virtual page

+ Hashed/Inverted page table has 1 entry per physical frame

Virtual Address Translation
Using Page Registers (aka Hashed/Inverted Page Tables)

+ Each frame is associated with a register containing
» Residence bit: whether or not the frame is occupied
» Occupier: page number of the page occupying frame
> Protection bits

+ Page registers: an example

» Physical memory size: 16 MB
Page size: 4096 bytes
Number of frames: 4096

Space used for page registers (assuming 8 bytes/register): 32
Kbytes

Percentage overhead introduced by page registers: 0.2%
Size of virtual memory: irrelevant

Y V. V

v

v

Page Registers
How does a virtual address become a physical address?

+ CPU generates virtual addresses, where is the
physical page?
» Hash the virtual address
» Must deal with conflicts
+ TLB caches recent translations, so page lookup can
take several steps
» Hash the address
» Check the tag of the entry
» Possibly rehash/traverse list of conflicting entries
+ TLBis limited in size
» Difficult to make large and accessible in a single cycle.

» They consume a lot of power (27% of on-chip for
StrongARM)

Indexing Hashed Page Tables
Using Hash Tables

+ Hash page numbers to find corresponding frame number
» Page frame number is not explicitly stored (1 frame per entry)
» Protection, dirty, used, resident bits also in entry

)
Virtual

Address PID
T Pyseal (TTIITTD
4 Addresses |

6 9 1

Fonax= 1
o[[1 M2
0

Inverted Page Table

Searching Hahed Page Tables
Using Hash Tables

+ Page registers are placed in an array

+ Page iis placed in slot f(i) where fis an agreed-upon
hash function

+ To lookup page i, perform the following:

» Compute f(i) and use it as an index into the table of page
registers

» Extract the corresponding page register
» Check if the register tag contains j, if so, we have a hit
» Otherwise, we have a miss

Searching Hashed Page Tables
Using Hash Tables (Cont’ d.)

+ Minor complication
» Since the number of pages is usually larger than the number of
slots in a hash table, two or more items may hash to the same
location

+ Two different entries that map to same location are said to
collide

+ Many standard techniques for dealing with collisions
» Use a linked list of items that hash to a particular table entry

» Rehash index until the key is found or an empty table entry is
reached (open hashing)

Questions

+ Why use hashed/inverted page tables?

» A. Forward mapped page tables are too slow.

> B. Forward mapped page tables don’ t scale to larger virtual
address spaces.

» C. Inverted pages tables have a simpler lookup algorithm, so
the hardware that implements them is simpler.

» D. Inverted page tables allow a virtual page to be anywhere
in physical memory.

Virtual Memory (Paging)
The bigger picture

+ Aprocess’s VAS is its context
» Contains its code, data, and stack

+ Code pages are stored in a user’ s file on disk

» Some are currently residing in memory; most are
not

+ Data and stack pages are also stored in a file
» Although this file is typically not visible to users
> File only exists while a program is executing

File System
(Disk)
VAS are mapped in memory at any one time —

+ OS determines which portions of a process’ s

OS/MMU

Physical
Memory

Virtual Memory

Virtual Memory Performance
Page fault handling analysis

Page fault handling m}f‘fﬁl
+ References to non-mapped pages generate
a page fault
On
Page fault handling steps: E
Processor runs the interrupt handler ge
OS blocks the running process Table
OS starts read of the unmapped page
OS resumes/initiates some other process
Read of page completes o J
OS maps the missing page into memory / |Program
OS restart the faulting process | ¥l \’;A“q
Disk \

+ To understand the overhead of paging, compute the effective
memory access time (EAT)

» EAT = memory access time x probability of a page hit +
page fault service time x probability of a page fault

+ Example:
» Memory access time: 60 ns
» Disk access time: 25 ms
» Let p = the probability of a page fault
» EAT =60(1-p) + 25,000,000p

+ To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

Virtual Memory

y

Segmentation vs. Paging

+ Physical and virtual memory partitioned into equal
size units

+ Size of VAS unrelated to size of physical memory
+ Virtual pages are mapped to physical frames

+ Simple placement strategy

+ There is no external fragmentation

+ Key to good performance is minimizing page faults

+ Segmentation has what advantages over paging?
» A. Fine-grained protection.
> B. Easier to manage transfer of segments to/from the disk.
» C. Requires less hardware support
» D. No external fragmentation
+ Paging has what advantages over segmentation?
» A. Fine-grained protection.
» B. Easier to manage transfer of pages to/from the disk.
» C. Requires less hardware support.
» D. No external fragmentation.

