
1

Memory Management Basics

2

Program
P

Basic Memory Management Concepts
Address spaces

Physical address space — The address space
supported by the hardware
Ø  Starting at address 0, going to address MAXsys

Logical/virtual address space — A process’s
view of its own memory
Ø  Starting at address 0, going to address MAXprog

0

MAXsys

0

MAXprog

MOV r0, @0xfffa620e

But where do addresses come from?

3

Which is bigger, physical or virtual address
space?
Ø A. Physical address space
Ø B. Virtual address space
Ø C. It depends on the system.

4

Basic Concepts
Address generation

The compilation pipeline

prog P
 :
 :
 foo()
 :
 :
end P

P:
 :
push ...
inc SP, x
jmp _foo
 :
foo: ...

 :
push ...
inc SP, 4
jmp 75
 :
 ...

0

75

1100

1175

Library
Routines

1000

175

Library
Routines

0

100

Compilation Assembly Linking Loading

 :
 :
 :
jmp 1175
 :
 ...

 :
 :
 :
jmp 175
 :
 ...

5

Program Relocation

Program issues virtual addresses
Machine has physical addresses.
If virtual == physical, then how can we have multiple
programs resident concurrently?
Instead, relocate virtual addresses to physical at run
time.
Ø While we are relocating, also bounds check addresses for

safety.

I can relocate that program (safely) in two registers…

6

Basic Concepts (Cont’d.)
Address Translation

0

MAXsys

Program

Program
P’s

logical���
address ���
space

0

MAXprog

1000

1500
CPU +

1000

Base
Register

Logical
Addresses

≤

500

Limit
Register

MEMORY
EXCEPTION

Physical
Addresses

yes

no

Instructions

P’s
physical���
address ���
space

7

With base and bounds registers, the OS needs a hole
in physical memory at least as big as the process.
Ø A. True
Ø B. False

8

Evaluating Dynamic Allocation Techniques
The fragmentation problem

External fragmentation
Ø  Unused memory between units of

allocation
Ø  E.g, two fixed tables for 2, but a party of 4

Internal fragmentation
Ø  Unused memory within a unit of allocation
Ø  E.g., a party of 3 at
a table for 4

0

MAX

Program
R’s PAS

Program
Q’s
PAS

Execution Stack

Program Code���
(“text”)

Data

Execution Stack

9

Simple Memory Management Schemes
Dynamic allocation of partitions

Simple approach:
Ø  Allocate a partition when a process is admitted

into the system
Ø  Allocate a contiguous memory partition to the

process

0

MAX

Program
P2

Program
P3

Program
P1

P5

Program
P4

OS keeps track of...
Full-blocks
Empty-blocks (“holes”)

Allocation strategies

First-fit
Best-fit
Worst-fit

10

First Fit Allocation

 To allocate n bytes, use the
first available free block such
that the block size is larger
than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 1st free block
available

2K bytes

500 bytes

11

Rationale & Implementation

Simplicity of implementation

Requires:
Ø  Free block list sorted by address
Ø  Allocation requires a search for a suitable partition
Ø  De-allocation requires a check to see if the freed partition could be

merged with adjacent free partitions (if any)

Advantages
◆  Simple
◆  Tends to produce larger

free blocks toward the end
of the address space

Disadvantages
◆  Slow allocation
◆  External fragmentation

12

Best Fit Allocation

 To allocate n bytes, use the
smallest available free block
such that the block size is
larger than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 3rd free block
available (smallest)

1K bytes

2K bytes

13

Rationale & Implementation

To avoid fragmenting big free blocks

To minimize the size of external fragments produced

Requires:
Ø  Free block list sorted by size
Ø  Allocation requires search for a suitable partition
Ø  De-allocation requires search + merge with adjacent free partitions,

if any

Advantages
◆  Works well when most

allocations are of small size
◆  Relatively simple

Disadvantages
◆  External fragmentation
◆  Slow de-allocation
◆  Tends to produce many

useless tiny fragments (not
really great)

Doug Lea’s malloc “In most ways this malloc is a best-fit
allocator”

14

Worst Fit Allocation

 To allocate n bytes, use the
largest available free block
such that the block size is
larger than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 2nd free block
available (largest)

1K bytes

15

Rationale & Implementation

To avoid having too many tiny fragments

Requires:
Ø  Free block list sorted by size
Ø  Allocation is fast (get the largest partition)
Ø  De-allocation requires merge with adjacent free partitions, if any,

and then adjusting the free block list

Advantages
◆  Works best if allocations

are of medium sizes

Disadvantages
◆  Slow de-allocation
◆  External fragmentation
◆  Tends to break large free

blocks such that large
partitions cannot be allocated

16

Allocation strategies

First fit, best fit and worst fit all suffer from
external fragmentation.
Ø A. True
Ø B. False

17

Dynamic Allocation of Partitions
Eliminating Fragmentation

Compaction
Ø  Relocate programs to coalesce holes

0

MAX

Program
P2

Program
P3

Program
P1

Program
P4

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

Running Ready

?

  Swapping
Ø  Preempt processes & reclaim their memory

18

0

2n-1

Program���
P’s
VAS

Memory Management
Sharing Between Processes

Schemes so far have considered only a single
address space per process
Ø  A single name space per process
Ø  No sharing

Program
P’s
VAS

Program
Data

Program
Text

Heap

Run-Time
Stack

How can one share code and data between
programs without paging?

19

Multiple Name Spaces
Example — Protection/Fault isolation & sharing

0

2n-1

0

2n1-1 0

0

0

2n2-1

2n3-1

2n4-1

0

2n6-1
Libraries

2n5-1

0

Program
Data

Program
Text

Heap

Run-Time
Stack

Program
Text

Program
Data

Run-Time
Stack

Heap

User
Code

20

Supporting Multiple Name Spaces
Segmentation

New concept: A segment — a memory “object”
Ø  A virtual address space

A process now addresses objects —a pair (s, addr)
Ø  s — segment number
Ø  addr — an offset within an object

❖ Don’t know size of object, so 32 bits for offset?

Segment + Address register scheme

s addr

Single address scheme

n10 0n2
0

s

n

addr

21

Implementing Segmentation
Base + Limit register scheme

0

Program

1000

1500

+

1000 Base
Register

Logical
Addresses

≤

500Limit
Register

MEMORY
EXCEPTION

Physical
Memory

yes

no
P’s

Segment

Segment Table

s

CPU

0n 320

s o

Program
P

base limit

STBR

Add a segment table containing base &
limit register values

22

Memory Management Basics
Are We Done?

Segmentation allows sharing

… but leads to poor memory utilization
Ø  We might not use much of a large segment, but we must keep the

whole thing in memory (bad memory utilization).
Ø  Suffers from external fragmentation
Ø  Allocation/deallocation of arbitrary size segments is complex

How can we improve memory management?
Ø  Paging

