
1

Deadlock

2

Concurrency Issues

Past lectures:
Ø  Problem: Safely coordinate access to shared resource
Ø  Solutions:

❖  Use semaphores, monitors, locks, condition variables
❖  Coordinate access within shared objects

What about coordinated access across multiple objects?
Ø  If you are not careful, it can lead to deadlock

Today’s lecture:
Ø  What is deadlock?
Ø  How can we address deadlock?

3

Deadlocks
Motivating Examples

Two producer processes share a buffer but use a different
protocol for accessing the buffers

A postscript interpreter and a visualization program compete for
memory frames

Producer1() {
 P(emptyBuffer)
 P(producerMutexLock)
 :
}

Producer2(){
 P(producerMutexLock)
 P(emptyBuffer)
 :
}

PS_Interpreter() {
 request(memory_frames, 10)
 <process file>
 request(frame_buffer, 1)
 <draw file on screen>
}

Visualize() {
 request(frame_buffer, 1)
 <display data>
 request(memory_frames, 20)
 <update display>
}

4

Deadlock
Definition

A set of processes is deadlocked when every process in the set is
waiting for an event that can only be generated by some process in
the set

Starvation vs. deadlock
Ø  Starvation: threads wait indefinitely (e.g., because some other thread is

using a resource)
Ø  Deadlock: circular waiting for resources
Ø  Deadlock è starvation, but not the other way

Running Ready

Waiting

Head

Tail
ready queue

Head
Tail

semaphore/
condition queues

5

A Graph Theoretic Model of Deadlock
The resource allocation graph (RAG)

Basic components of any resource allocation problem
Ø  Processes and resources

Model the state of a computer system as a directed graph
Ø  G = (V, E)
Ø  V = the set of vertices = {P1, ..., Pn} ∪ {R1, ..., Rm}

Pi Pk

request
 edge

allocation
 edge

Rj

Pi Rj

Ø  E = the set of edges =
 {edges from a resource to a process} ∪

 {edges from a process to a resource}

6

Resource Allocation Graphs
Examples

A PostScript interpreter that is waiting for the frame buffer lock
and a visualization process that is waiting for memory

V = {PS interpret, visualization} ∪ {memory frames, frame buffer lock}

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

7

A Graph Theoretic Model of Deadlock
Resource allocation graphs & deadlock

Theorem: If a resource allocation graph does not contain a cycle then
no processes are deadlocked

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

A cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

Game

8

A Graph Theoretic Model of Deadlock
Resource allocation graphs & deadlock

Theorem: If there is only a single unit of all resources then a set of
processes are deadlocked iff there is a cycle in the resource
allocation graph

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

9

Using the Theory
An operational definition of deadlock

A set of processes are deadlocked iff the following conditions hold
simultaneously

1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

Visualization
Process Memory Frames

Frame Buffer

PostScript
Interpreter

10

Dealing With Deadlock
Deadlock prevention & avoidance

Adopt some resource allocation protocol that ensures
deadlock can never occur

Ø Deadlock prevention/avoidance

❖  Guarantee that deadlock will never occur
❖  Generally breaks one of the following conditions:

◆  Mutex
◆  Hold-and-wait
◆  No preemption
◆  Circular wait *This is usually the weak link*

Ø Deadlock detection and recovery
❖  Admit the possibility of deadlock occurring and periodically check for it
❖  On detecting deadlock, abort

◆  Breaks the no-preemption condition

What does the RAG for a lock look like?

11

Deadlock Avoidance
Resource Ordering

Recall this situation. How can we avoid it?

Producer1() {
 P(emptyBuffer)
 P(producerMutexLock)
 :
}

Producer2(){
 P(producerMutexLock)
 P(emptyBuffer)
 :
}

Eliminate circular waiting by ordering all locks (or
semaphores, or resoruces). All code grabs locks in a
predefined order. Problems?
Ø  Maintaining global order is difficult, especially in a large project.
Ø  Global order can force a client to grab a lock earlier than it

would like, tying up a resource for too long.
Ø  Deadlock is a global property, but lock manipulation is local.

12

Deadlock Detection & Recovery
Recovering from deadlock

Abort all deadlocked processes & reclaim their resources
Abort one process at a time until all cycles in the RAG
are eliminated
Where to start?
Ø  Select low priority process
Ø  Processes with most allocation of resources

Caveat: ensure that system is in consistent state (e.g., transactions)
Optimization:
Ø  Checkpoint processes periodically; rollback processes to checkpointed state

P4P1 P2 P3 P5

R1 R2 R3 R4

13

Ø  resource allocation state matrix

<n1, n2, n3, ..., nr>

Dealing With Deadlock
Deadlock avoidance – Banker’s Algorithm

Examine each resource request and determine whether or not
granting the request can lead to deadlock

R1 R2 R3 ... Rr
P1

P2

P3

Pp

n1,1 n1,2 n1,3 ... n1,r

n2,1

n3,1

np,1 np,r

n2,2

...

...

...

...

...

Define a set of vectors and matrices that characterize the
current state of all resources and processes

Ø maximum claim matrix
Maxij = the maximum number of units

of resource j that the process i will
ever require simultaneously

Ø  available vector

Allocij = the number of units of
resource j held by process i

Availj = the number of units of
 resource j that are unallocated

14

Dealing With Deadlock
Deadlock detection & recovery

What are some problems with the banker’s algorithm?
Ø  Very slow O(n2m)
Ø  Too slow to run on every allocation. What else can we do?

Deadlock prevention and avoidance:
Ø  Develop and use resource allocation mechanisms and protocols that

prohibit deadlock

  Deadlock detection and recovery:
Ø  Let the system deadlock and then deal with it

Detect that a set of processes are deadlocked
Recover from the deadlock

