
1

Concurrent Programming Issues
& Readers/Writers

2

Summary	 of	 Our	 Discussions	

Developing and debugging concurrent programs is
hard
Ø Non-deterministic interleaving of instructions

Safety: isolation and atomicity
Scheduling: busy-waiting and blocking
Synchronization constructs
Ø  Locks: mutual exclusion
Ø Condition variables: wait while holding a lock
Ø Semaphores: Mutual exclusion (binary) and condition

synchronization (counting)
How can you use these constructs effectively?
Ø Develop and follow strict programming style/strategy

3

Programming	 Strategy	

Decompose the problem into objects
Object-oriented style of programming
Ø  Identify shared chunk of state
Ø Encapsulate shared state and synchronization variables

inside objects

Don’t manipulate shared variables or synchronization
variables along with the logic associated with a
thread
Programs with race conditions always fail.
Ø A. True, B. False

4

General	 Programming	 Strategy	

Two step process

Threads:
Ø  Identify units of concurrency – these are your threads
Ø  Identify chunks of shared state – make each shared “thing” an

object; identify methods for these objects (how will the thread
access the objects?)

Ø  Write down the main loop for the thread

Shared objects:
Ø  Identify synchronization constructs

❖  Mutual exclusion vs. conditional synchronization
Ø  Create a lock/condition variable for each constraint
Ø  Develop the methods –using locks and condition variables – for

coordination

5

Coding	 Style	 and	 Standards	

Always do things the same way

Always use locks and condition variables

Always hold locks while operating on condition variables

Always acquire lock at the beginning of a procedure and release it at
the end
Ø  If it does not make sense to do this à split your procedures further

Always use while to check conditions, not if

(Almost) never sleep(), yield(), or isLocked() in your code
Ø  Use condition variables to synchronize

Note that printf() internally uses locks, and may hide race conditions

while (predicate on state variable) {
 conditionVariableàwait(&lock);
 };

6

Readers/Writers:	 A	 Complete	 Example	

Motivation
Ø Shared databases accesses

❖  Examples: bank accounts, airline seats, …

Two types of users
Ø Readers: Never modify data
Ø Writers: read and modify data

Problem constraints
Ø Using a single lock is too restrictive

❖  Allow multiple readers at the same time
❖  …but only one writer at any time

Ø Specific constraints
❖  Readers can access database when there are no writers
❖  Writers can access database when there are no readers/writers
❖  Only one thread can manipulate shared variables at any time

7

Readers/Writer:	 Solution	 Structure	

Basic structure: two methods

Database::Read() {
 Wait until no writers;
 Block any writers;
 Access database;
 Let in one writer or reader;
}

Database::Write() {
 Wait until no readers/writers;
 Write database;
 Let all readers/writers in;
}

8

Solution	 Details	

Public Database::Read() {
 dbLock.lock();
 while(writer) {
 dbAvail.wait();
 }
 reader++;
 dbLock.unlock();
 Read database;
 dbLock.lock();
 reader--;
 if(reader == 0) {
 dbAvail.singal();}
 dbLock.unlock();
}

Public Database::Write() {
 dbLock.lock();
 while(reader > 0 || writer){
 dbAvail.wait();}
 writer = true;
 dbLock.unlock();
 Write database;
 dbLock.lock();
 writer = false;
 dbAvail.signalAll();
 dbLock.unlock();
}

Lock dbLock;
Condition dbAvail;
int reader = 0;
bool writer = false;

This solution favors
1.  Readers
2.  Writers
3.  Neither, it is fair

9

Self-‐criticism	 can	 lead	 to	 self-‐understanding	

Our solution works, but it favors readers over writers.
Ø Any reader blocks all writers
Ø All readers must finish before a writer can start
Ø  Last reader will wake any writer, but a writer will wake

readers and writers (statistically which is more likely?)
Ø  If a writer exits and a reader goes next, then all readers that

are waiting will get through

Are threads guaranteed to make progress?
Ø A. Yes B. No

10

Readers/Writer:	 Using	 Monitors	

Basic structure: two methods

State variables

Database::Read() {
 Wait until no writers;
 Access database;
 Wake up waiting writers;
}

Database::Write() {
 Wait until no readers/writers;
 Access database;
 Wake up waiting readers/writers;
}

Class RWFairLock {
 AR = 0; // # of active readers
 AW = false; // is there an active writer
 public bool iRead;
 Condition okToRead;
 Condition okToWrite;
 LinkedList<RWFairLock> q;
 Lock lock;

11

Solution	 Details:	 Readers	

Public Database::Read() {
 StartRead();
 Access database;
 DoneRead();
}

Private Database::StartRead() {
 lock.Acquire();
 iRead = true;
 q.add(this);
 while (AW || !q.peek().iRead) {

 okToRead.wait(&lock);
 }
 AR++;
 lock.Release();
}

Private Database::DoneRead() {
 lock.Acquire();
 AR--;
 q.remove(this);
 if(q.size() > 0) {
 if (q.peek().iRead == false) {

 okToWrite.notify();
 }
 }
 lock.Release();
}

Class RWFairLock {
 AR = 0; // # of active readers
 AW = false; // is there an active writer
 public bool iRead;
 Condition okToRead;
 Condition okToWrite;
 LinkedList<RWFairLock> q;
 Lock lock;

12

Solution	 Details:	 Writers	

Database::Write() {
 StartWrite();
 Access database;
 DoneWrite();
}

Private Database::StartWrite() {
 lock.Acquire();
 iRead = false;
 q.add(this);
 while (AW || AR > 0
 || q.peek().isRead) {

 okToWrite.wait(&lock);
 }
 AW = true;
 lock.Release();
}

Private Database::DoneWrite() {
 lock.Acquire();
 AW = false;
 q.remove(this);
 if(q.size() > 0) {
 if (q.peek().isRead) {
 okToRead.notifyAll();
 } else {
 okToWrite.notify();
 }
 lock.Release();
}

Class RWFairLock {
 AR = 0; // # of active readers
 AW = false; // is there an active writer
 public bool iRead;
 Condition okToRead;
 Condition okToWrite;
 LinkedList<RWFairLock> q;
 Lock lock;

13

Summary	

Allowing concurrent reader execution is a common
concurrent programming pattern
Naïve implementations can starve writers
Bookkeeping to ensure fair queuing is tricky, but not
impossible
Ø A lot of effort to reason about all possible interleavings of

operations

