
1

Semaphores and Monitors:
High-level Synchronization Constructs

2

Synchronization	
 Constructs 	
 	

Synchronization
Ø Coordinating execution of multiple threads that share data

structures

Past few lectures:
Ø  Locks: provide mutual exclusion
Ø Condition variables: provide conditional synchronization

Today: Historical perspective
Ø Semaphores

❖  Introduced by Dijkstra in 1960s
❖  Main synchronization primitives in early operating systems

Ø Monitors
❖  Alternate high-level language constructs
❖  Proposed by independently Hoare and Hansen in the 1970s

3

Semaphores	

Study these for history and compatibility
Ø  Don’t use semaphores in new code

A non-negative integer variable with two atomic and isolated operations

We assume that a semaphore is fair
Ø  No thread t that is blocked on a P() operation remains blocked if the V()

operation on the semaphore is invoked infinitely often
Ø  In practice, FIFO is mostly used, transforming the set into a queue.

SemaphoreàP() (Passeren; wait)
If sem > 0, then decrement sem by 1
Otherwise “wait” until sem > 0 and
then decrement

SemaphoreàV() (Vrijgeven; signal)
Increment sem by 1
Wake up a thread waiting in P()

4

Key	
 idea	
 of	
 Semaphores	
 vs.	
 Locks	

Locks: Mutual exclusion only (1-exclusion)
Semaphores: k-exclusion
Ø  k == 1, equivalent to a lock

❖ Sometimes called a mutex, or binary
semaphore

Ø  k == 2+, up to k threads at a time

Many semaphore implementations use “up” and “down”,
rather than Dutch names (P and V, respectively)
Ø  ‘cause how many programmers speak Dutch?

Semaphore starts at k
Ø  Acquire with down(), which decrements the count

❖ Blocks if count is 0
Ø  Release with up(), which increments the count and never blocks

5

Important	
 properties	
 of	
 Semaphores	

Semaphores are non-negative integers

The only operations you can use to change the value of a
semaphore are P()/down() and V()/up() (except for the initial
setup)
Ø  P()/down() can block, but V()/up() never blocks

Semaphores are used both for
Ø  Mutual exclusion, and
Ø  Conditional synchronization

Two types of semaphores
Ø  Binary semaphores: Can either be 0 or 1
Ø  General/Counting semaphores: Can take any non-negative value
Ø  Binary semaphores are as expressive as general semaphores

(given one can implement the other)

6

How many possible values can a binary semaphore
take?
Ø A. 0
Ø B. 1
Ø C. 2
Ø D. 3
Ø E. 4

7

Using	
 Semaphores	
 for	
 Mutual	
 Exclusion	

Use a binary semaphore for mutual exclusion

Using Semaphores for producer-consumer with bounded buffer

Semaphore = new Semaphore(1);

SemaphoreàP();
 Critical Section;
SemaphoreàV();

int count;
Semaphore mutex;
Semaphore fullBuffers;
Semaphore emptyBuffers;

Use a separate
semaphore for
each
constraint

8

Coke	
 Machine	
 Example	

Coke machine as a shared buffer
Two types of users
Ø Producer: Restocks the coke machine
Ø Consumer: Removes coke from the machine

Requirements
Ø Only a single person can access the machine at any time
Ø  If the machine is out of coke, wait until coke is restocked
Ø  If machine is full, wait for consumers to drink coke prior to

restocking

How will we implement this?
Ø How many lock and condition variables do we need?

❖  A. 1 B. 2 C. 3 D. 4 E. 5

9

Revisiting	
 Coke	
 Machine	
 Example	

Class CokeMachine{
 …
 int count;
 Semaphore new mutex(1);
 Semaphores new fullBuffers(0);
 Semaphores new emptyBuffers(numBuffers);
}

CokeMachine::Deposit(){
 emptyBuffersàP();
 mutexàP();
 Add coke to the machine;
 count++;
 mutexàV();
 fullBuffersàV();
}

CokeMachine::Remove(){
 fullBuffersàP();
 mutexàP();
 Remove coke from to the machine;
 count--;
 mutexàV();
 emptyBuffersàV();
}

Does the order of P matter? Order of V matter?
10

Implementing	
 Semaphores	

Semaphore::P() {
 if (0 > atomic_dec(&value)) {
 Put TCB on wait queue for semaphore;
 Switch(); // dispatch a ready thread
 atomic_inc(&value);
 }
}

Semaphore::V() {
 int notify = atomic_inc(&value);
 // atomic_inc returns new value
 if (notify <= 0) {
 Move a waiting thread to ready queue;
 }
}

value:
 1..k = Resource available
 0 = All resources used, no waiters
 <0 = -1 * number of waiters

Does this work?

11

Implementing	
 Semaphores	

Semaphore::P() {
 while (0 > atomic_dec(&value)) {
 Put TCB on wait queue for semaphore;
 Switch(); // dispatch a ready thread
 atomic_inc(&value);
 }
}

Semaphore::V() {
 int notify = atomic_inc(&value);
 // atomic_inc returns new value
 if (notify <= 0) {
 Move a waiting thread to ready queue;
 }
}

value:
 1..k = Resource available
 0 = All resources used, no waiters
 <0 = -1 * number of waiters

12

The	
 Problem	
 with	
 Semaphores	

CokeMachine::Deposit(){
 emptyBuffersàP();
 mutexàP();
 Add coke to the machine;
 count++;
 mutexàV();
 fullBuffersàV();
}

CokeMachine::Remove(){
 fullBuffersàP();
 mutexàP();
 Remove coke from to the machine;
 count--;
 mutexàV();
 emptyBuffersàV();
}

Semaphores are used for dual purpose
Ø  Mutual exclusion
Ø  Conditional synchronization

Difficult to read/develop code

Waiting for condition is independent of mutual exclusion
Ø  Programmer needs to be clever about using semaphores

13

Separate the concerns of mutual exclusion and conditional
synchronization
What is a monitor?
Ø  One lock, and
Ø  Zero or more condition variables for managing concurrent access to

shared data
General approach:
Ø  Collect related shared data into an object/module
Ø  Define methods for accessing the shared data

Monitors first introduced as programming language construct
Ø  Calling a method defined in the monitor automatically acquires the

lock
Ø  Examples: Mesa, Java (synchronized methods)

Monitors also define a programming convention
Ø  Can be used in any language (C, C++, …)

Introducing	
 Monitors	

14

Critical	
 Section:	
 Monitors	

Basic idea:
Ø Restrict programming model
Ø Permit access to shared variables only within a critical

section

General program structure
Ø Entry section

❖  “Lock” before entering critical section
❖  Wait if already locked, or invariant doesn’t hold
❖  Key point: synchronization may involve wait

Ø Critical section code
Ø Exit section

❖  “Unlock” when leaving the critical section

Object-oriented programming style
Ø Associate a lock with each shared object
Ø Methods that access shared object are critical sections
Ø Acquire/release locks when entering/exiting a method that

defines a critical section

15

Remember	
 Condition	
 Variables 	
 	

Locks
Ø Provide mutual exclusion
Ø Support two methods

❖  Lock::Acquire() – wait until lock is free, then grab it
❖  Lock::Release() – release the lock, waking up a waiter, if any

Condition variables
Ø Support conditional synchronization
Ø  Three operations

❖  Wait(): Release lock; wait for the condition to become true;
reacquire lock upon return (Java wait())

❖  Signal(): Wake up a waiter, if any (Java notify())
❖  Broadcast(): Wake up all the waiters (Java notifyAll())

Ø  Two semantics for implementation of wait() and signal()
❖  Hoare monitor semantics
❖  Hansen (Mesa) monitor semantics

16

So	
 what	
 is	
 the	
 big	
 idea?	

(Editorial) Integrate idea of condition variable with
language
Ø  Facilitate proof
Ø Avoid error-prone boiler-plate code

17

Coke	
 Machine	
 –	
 Example	
 Monitor	

Class CokeMachine{
 …
 Lock lock;
 int count = 0;
 Condition notFull, notEmpty;
}

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

CokeMachine::Remove(){
 lockàacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.signal();
 lockàrelease();
}

Does the order of
aquire/while(){wait}
matter?

Order of release/signal
matter?

18

Monitors:	
 Recap	

Lock acquire and release: often incorporated into
method definitions on object
Ø E.g., Java’s synchronized methods
Ø Programmer may not have to explicitly acquire/release

But, methods on a monitor object do execute under
mutual exclusion
Introduce idea of condition variable

19

Every monitor function should start with what?
Ø A. wait
Ø B. signal
Ø C. lock acquire
Ø D. lock release
Ø E. signalAll

20

Hoare	
 Monitors:	
 Semantics	

Hoare monitor semantics:
Ø  Assume thread T1 is waiting on condition x
Ø  Assume thread T2 is in the monitor
Ø  Assume thread T2 calls x.signal
Ø  T2 gives up monitor, T2 blocks!
Ø  T1 takes over monitor, runs
Ø  T1 gives up monitor
Ø  T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
Lockàrelease();

fn4(…)
…
x.signal // T2 blocks

T2 resumes

T2 T1

21

Hansen	
 (Mesa)	
 Monitors:	
 Semantics	

Hansen monitor semantics:
Ø  Assume thread T1 waiting on condition x
Ø  Assume thread T2 is in the monitor
Ø  Assume thread T2 calls x.signal; wake up T1
Ø  T2 continues, finishes
Ø  When T1 get a chance to run,T1 takes over monitor, runs
Ø  T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
// T1 finishes

fn4(…)
…
x.signal // T2 continues
// T2 finishes

22

Tradeoff

Hoare
Claims:
Ø  Cleaner, good for proofs
Ø  When a condition variable is

signaled, it does not change
Ø  Used in most textbooks

…but
Ø  Inefficient implementation
Ø  Not modular – correctness

depends on correct use and
implementation of signal

Hansen
Signal is only a hint that the
condition may be true
Ø  Need to check condition again

before proceeding
Ø  Can lead to synchronization bugs

Used by most systems (e.g., Java)

Benefits:
Ø  Efficient implementation
Ø  Condition guaranteed to be true

once you are out of while !

CokeMachine::Deposit(){
 lockàacquire();
 if (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

23

Problems	
 with	
 Monitors	

Nested	
 Monitor	
 Calls	

What happens when one monitor calls into another?
Ø  What happens to CokeMachine::lock if thread sleeps in

CokeTruck::Unload?
Ø  What happens if truck unloader wants a coke?

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

CokeTruck::Unload(){
 lockàacquire();
 while (soda.atDoor() != coke) {

 cokeAvailable.wait(&lock);}
 Unload soda closest to door;
 soda.pop();
 Signal availability for soda.atDoor();
 lockàrelease();
}

24

More	
 Monitor	
 Headaches	

The	
 priority	
 inversion	
 problem	

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.
3. P2 is preempted by P3.
4. P3 tries to enter the monitor, and waits for the lock.
5. P2 runs again, preventing P3 from running,
subverting the priority system.
A simple way to avoid this situation is to associate with
each monitor the priority of the highest priority process
which ever enters that monitor.

25

Comparing	
 Semaphores	
 and	
 Monitors	

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.notify();
 lockàrelease();
}

CokeMachine::Deposit(){
 emptyBuffersàP();
 mutexàP();
 Add coke to the machine;
 count++;
 mutexàV();
 fullBuffersàV();
}

CokeMachine::Remove(){
 fullBuffersàP();
 mutexàP();
 Remove coke from to the machine;
 count--;
 mutexàV();
 emptyBuffersàV();
}

CokeMachine::Remove(){
 lockàacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.notify();
 lockàrelease();
}

Which is better?
A. Semaphore
B. Monitors

26

Other	
 Interesting	
 Topics	

Exception handling
Ø What if a process waiting in a monitor needs to time out?

Naked notify
Ø How do we synchronize with I/O devices that do not grab

monitor locks, but can notify condition variables.

Butler Lampson and David Redell, “Experience with
Processes and Monitors in Mesa.”

27

Summary	

Synchronization
Ø Coordinating execution of multiple threads that share data

structures

Past lectures:
Ø  Locks à provide mutual exclusion
Ø Condition variables à provide conditional synchronization

Today:
Ø Semaphores

❖  Introduced by Dijkstra in 1960s
❖  Two types: binary semaphores and counting semaphores
❖  Supports both mutual exclusion and conditional synchronization

Ø Monitors
❖  Separate mutual exclusion and conditional synchronization

