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Semaphores and Monitors:  
High-level Synchronization Constructs 

 

2

Synchronization	
  Constructs 	
  	
  

Synchronization 
Ø Coordinating execution of multiple threads that share data 

structures 

Past few lectures:  
Ø  Locks: provide mutual exclusion 
Ø Condition variables: provide conditional synchronization 

Today: Historical perspective 
Ø Semaphores 

❖  Introduced by Dijkstra in 1960s 
❖  Main synchronization primitives in early operating systems 

Ø Monitors 
❖  Alternate high-level language constructs 
❖  Proposed by independently Hoare and Hansen in the 1970s 
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Semaphores	
  

Study these for history and compatibility 
Ø  Don’t use semaphores in new code 

A non-negative integer variable with two atomic and isolated operations 

 
 

We assume that a semaphore is fair 
Ø  No thread t that is blocked on a P() operation remains blocked if the V() 

operation on the semaphore is invoked infinitely often 
Ø  In practice, FIFO is mostly used, transforming the set into a queue.  

 

SemaphoreàP() (Passeren; wait) 
If sem > 0, then decrement sem by 1   
Otherwise “wait” until sem > 0 and 
then decrement 

  

SemaphoreàV() (Vrijgeven; signal) 
Increment sem by 1 
Wake up a thread waiting in P() 
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Key	
  idea	
  of	
  Semaphores	
  vs.	
  Locks	
  

Locks: Mutual exclusion only (1-exclusion) 
Semaphores: k-exclusion 
Ø  k == 1, equivalent to a lock 

❖ Sometimes called a mutex, or binary 
semaphore 

Ø  k == 2+, up to k threads at a time 

Many semaphore implementations use “up” and “down”, 
rather than Dutch names (P and V, respectively) 
Ø  ‘cause how many programmers speak Dutch? 

Semaphore starts at k 
Ø  Acquire with down(), which decrements the count 

❖ Blocks if count is 0 
Ø  Release with up(), which increments the count and never blocks 
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Important	
  properties	
  of	
  Semaphores	
  

Semaphores are non-negative integers 

The only operations you can use to change the value of a 
semaphore are P()/down() and V()/up() (except for the initial 
setup) 
Ø  P()/down() can block, but V()/up() never blocks 

Semaphores are used both for 
Ø  Mutual exclusion, and 
Ø  Conditional synchronization 

Two types of semaphores 
Ø  Binary semaphores: Can either be 0 or 1 
Ø  General/Counting semaphores: Can take any non-negative value 
Ø  Binary semaphores are as expressive as general semaphores 

(given one can implement the other) 
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How many possible values can a binary semaphore 
take? 
Ø A. 0 
Ø B. 1 
Ø C. 2 
Ø D. 3 
Ø E. 4 
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Using	
  Semaphores	
  for	
  Mutual	
  Exclusion	
  

Use a binary semaphore for mutual exclusion 

 

Using Semaphores for producer-consumer with bounded buffer 

Semaphore = new Semaphore(1); 

SemaphoreàP(); 
     Critical Section; 
SemaphoreàV(); 

int count; 
Semaphore mutex; 
Semaphore fullBuffers; 
Semaphore emptyBuffers; 
 

Use a separate 
semaphore for 
each 
constraint 
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Coke	
  Machine	
  Example	
  

Coke machine as a shared buffer 
Two types of users 
Ø Producer: Restocks the coke machine 
Ø Consumer: Removes coke from the machine 

Requirements 
Ø Only a single person can access the machine at any time 
Ø  If the machine is out of coke, wait until coke is restocked 
Ø  If machine is full, wait for consumers to drink coke prior to 

restocking 

How will we implement this? 
Ø How many lock and condition variables do we need? 

❖  A. 1 B. 2 C. 3 D. 4 E. 5 
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Revisiting	
  Coke	
  Machine	
  Example	
  

Class CokeMachine{ 
    … 
    int count; 
    Semaphore new mutex(1); 
    Semaphores new fullBuffers(0); 
    Semaphores new emptyBuffers(numBuffers); 
} 

CokeMachine::Deposit(){ 
    emptyBuffersàP();  
    mutexàP();  
    Add coke to the machine; 
    count++; 
    mutexàV(); 
    fullBuffersàV(); 
} 

CokeMachine::Remove(){ 
    fullBuffersàP(); 
    mutexàP(); 
    Remove coke from to the machine; 
    count--; 
    mutexàV(); 
    emptyBuffersàV(); 
} 

Does the order of P matter? Order of V matter?
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Implementing	
  Semaphores	
  

Semaphore::P() { 
    if (0 > atomic_dec(&value)) { 
         Put TCB on wait queue for semaphore;  
         Switch();  // dispatch a ready thread 
         atomic_inc(&value); 
         }  
} 

Semaphore::V() { 
    int notify = atomic_inc(&value); 
           // atomic_inc returns new value 
    if (notify <= 0) { 
         Move a waiting thread to ready queue;         
    } 
} 

value:
  1..k = Resource available
  0 = All resources used, no waiters
  <0 =  -1 * number of waiters

Does this work?
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Implementing	
  Semaphores	
  

Semaphore::P() { 
    while (0 > atomic_dec(&value)) { 
         Put TCB on wait queue for semaphore;  
         Switch();  // dispatch a ready thread 
         atomic_inc(&value); 
         }  
} 

Semaphore::V() { 
    int notify = atomic_inc(&value); 
           // atomic_inc returns new value 
    if (notify <= 0) { 
         Move a waiting thread to ready queue;         
    } 
} 

value:
  1..k = Resource available
  0 = All resources used, no waiters
  <0 =  -1 * number of waiters
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The	
  Problem	
  with	
  Semaphores	
  

CokeMachine::Deposit(){ 
    emptyBuffersàP();  
    mutexàP();  
    Add coke to the machine; 
    count++; 
    mutexàV(); 
    fullBuffersàV(); 
} 

CokeMachine::Remove(){ 
    fullBuffersàP(); 
    mutexàP(); 
    Remove coke from to the machine; 
    count--; 
    mutexàV(); 
    emptyBuffersàV(); 
} 

Semaphores are used for dual purpose 
Ø  Mutual exclusion 
Ø  Conditional synchronization 

Difficult to read/develop code 

Waiting for condition is independent of mutual exclusion 
Ø  Programmer needs to be clever about using semaphores 



13

Separate the concerns of mutual exclusion and conditional 
synchronization 
What is a monitor? 
Ø  One lock, and 
Ø  Zero or more condition variables for managing concurrent access to 

shared data 
General approach: 
Ø  Collect related shared data into an object/module 
Ø  Define methods for accessing the shared data 

Monitors first introduced as programming language construct 
Ø  Calling a method defined in the monitor automatically acquires the 

lock 
Ø  Examples: Mesa, Java (synchronized methods) 

Monitors also define a programming convention 
Ø  Can be used in any language (C, C++, … ) 

Introducing	
  Monitors	
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Critical	
  Section:	
  Monitors	
  

Basic idea: 
Ø Restrict programming model  
Ø Permit access to shared variables only within a critical 

section 

General program structure 
Ø Entry section 

❖  “Lock” before entering critical section 
❖  Wait if already locked, or invariant doesn’t hold 
❖  Key point: synchronization may involve wait 

Ø Critical section code 
Ø Exit section 

❖  “Unlock” when leaving the critical section 

Object-oriented programming style 
Ø Associate a lock with each shared object 
Ø Methods that access shared object are critical sections 
Ø Acquire/release locks when entering/exiting a method that 

defines a critical section 
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Remember	
  Condition	
  Variables 	
  	
  

Locks 
Ø Provide mutual exclusion 
Ø Support two methods 

❖  Lock::Acquire() – wait until lock is free, then grab it 
❖  Lock::Release() – release the lock, waking up a waiter, if any 

Condition variables   
Ø Support conditional synchronization 
Ø  Three operations 

❖  Wait(): Release lock; wait for the condition to become true; 
reacquire lock upon return (Java wait()) 

❖  Signal(): Wake up a waiter, if any (Java notify()) 
❖  Broadcast(): Wake up all the waiters (Java notifyAll()) 

Ø  Two semantics for implementation of wait() and signal() 
❖  Hoare monitor semantics 
❖  Hansen (Mesa) monitor semantics 
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So	
  what	
  is	
  the	
  big	
  idea?	
  

(Editorial) Integrate idea of condition variable with 
language 
Ø  Facilitate proof 
Ø Avoid error-prone boiler-plate code 

17

Coke	
  Machine	
  –	
  Example	
  Monitor	
  

Class CokeMachine{ 
    … 
    Lock lock; 
    int count = 0; 
    Condition notFull, notEmpty; 
} 

CokeMachine::Deposit(){ 
    lockàacquire(); 
    while (count == n) { 

 notFull.wait(&lock); } 
    Add coke to the machine; 
    count++; 
    notEmpty.signal(); 
    lockàrelease(); 
} 

CokeMachine::Remove(){ 
    lockàacquire(); 
    while (count == 0) { 

 notEmpty.wait(&lock); } 
    Remove coke from to the machine; 
    count--; 
    notFull.signal(); 
    lockàrelease(); 
} 

Does the order of 
aquire/while(){wait} 
matter?

Order of release/signal
matter?
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Monitors:	
  Recap	
  

Lock acquire and release: often incorporated into 
method definitions on object 
Ø E.g., Java’s synchronized methods 
Ø Programmer may not have to explicitly acquire/release 

But, methods on a monitor object do execute under 
mutual exclusion 
Introduce idea of condition variable 
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Every monitor function should start with what? 
Ø A. wait 
Ø B. signal 
Ø C. lock acquire 
Ø D. lock release 
Ø E. signalAll 
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Hoare	
  Monitors:	
  Semantics	
  

Hoare monitor semantics: 
Ø  Assume thread T1 is waiting on condition x 
Ø  Assume thread T2 is in the monitor 
Ø  Assume thread T2 calls x.signal 
Ø  T2 gives up monitor, T2 blocks! 
Ø  T1 takes over monitor, runs 
Ø  T1 gives up monitor 
Ø  T2 takes over monitor, resumes 

Example 

fn1(…) 
… 
x.wait       // T1 blocks 
 
 

// T1 resumes 
Lockàrelease(); 

fn4(…) 
… 
x.signal    // T2 blocks 
 
 

T2 resumes    

T2  T1 
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Hansen	
  (Mesa)	
  Monitors:	
  Semantics	
  

Hansen monitor semantics: 
Ø  Assume thread T1 waiting on condition x 
Ø  Assume thread T2 is in the monitor 
Ø  Assume thread T2 calls x.signal; wake up T1  
Ø  T2 continues, finishes 
Ø  When T1 get a chance to run,T1 takes over monitor, runs 
Ø  T1 finishes, gives up monitor 

Example: 
 

fn1(…) 
… 
x.wait       // T1 blocks 
 
 
 
// T1 resumes 
// T1 finishes 

 
 
fn4(…) 
… 
x.signal    // T2 continues 
// T2 finishes 
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Tradeoff 

Hoare 
Claims: 
Ø  Cleaner, good for proofs 
Ø  When a condition variable is 

signaled, it does not change 
Ø  Used in most textbooks 

…but 
Ø  Inefficient implementation 
Ø  Not modular – correctness 

depends on correct use and 
implementation of signal 

Hansen 
Signal is only a hint that the 
condition may be true 
Ø  Need to check condition again 

before proceeding 
Ø  Can lead to synchronization bugs 

Used by most systems (e.g., Java) 

Benefits: 
Ø  Efficient implementation 
Ø  Condition guaranteed to be true 

once you are out of while ! 

CokeMachine::Deposit(){ 
    lockàacquire(); 
    if (count == n) { 

 notFull.wait(&lock); } 
    Add coke to the machine; 
    count++; 
    notEmpty.signal(); 
    lockàrelease(); 
} 

CokeMachine::Deposit(){ 
    lockàacquire(); 
    while (count == n) { 

 notFull.wait(&lock); } 
    Add coke to the machine; 
    count++; 
    notEmpty.signal(); 
    lockàrelease(); 
} 
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Problems	
  with	
  Monitors	
  
Nested	
  Monitor	
  Calls	
  

What happens when one monitor calls into another? 
Ø  What happens to CokeMachine::lock if thread sleeps in 

CokeTruck::Unload? 
Ø  What happens if truck unloader wants a coke? 

CokeMachine::Deposit(){ 
    lockàacquire(); 
    while (count == n) { 

 notFull.wait(&lock); } 
    truck->unload(); 
    Add coke to the machine; 
    count++; 
    notEmpty.signal(); 
    lockàrelease(); 
} 

CokeTruck::Unload(){ 
    lockàacquire(); 
    while (soda.atDoor() != coke) { 

 cokeAvailable.wait(&lock);} 
    Unload soda closest to door; 
    soda.pop(); 
    Signal availability for soda.atDoor(); 
    lockàrelease(); 
} 
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More	
  Monitor	
  Headaches	
  
The	
  priority	
  inversion	
  problem	
  

Three processes (P1, P2, P3), and P1 & P3 
communicate using a monitor M. P3 is the highest 
priority process, followed by P2 and P1. 
1. P1 enters M. 
2. P1 is preempted by P2. 
3. P2 is preempted by P3. 
4. P3 tries to enter the monitor, and waits for the lock. 
5. P2 runs again, preventing P3 from running, 
subverting the priority system. 
A simple way to avoid this situation is to associate with 
each monitor the priority of the highest priority process 
which ever enters that monitor. 
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Comparing	
  Semaphores	
  and	
  Monitors	
  

CokeMachine::Deposit(){ 
    lockàacquire(); 
    while (count == n) { 

 notFull.wait(&lock); } 
    Add coke to the machine; 
    count++; 
    notEmpty.notify(); 
    lockàrelease(); 
} 

CokeMachine::Deposit(){ 
    emptyBuffersàP();  
    mutexàP();  
    Add coke to the machine; 
    count++; 
    mutexàV(); 
    fullBuffersàV(); 
} 

CokeMachine::Remove(){ 
    fullBuffersàP(); 
    mutexàP(); 
    Remove coke from to the machine; 
    count--; 
    mutexàV(); 
    emptyBuffersàV(); 
} 

CokeMachine::Remove(){ 
    lockàacquire(); 
    while (count == 0) { 

 notEmpty.wait(&lock); } 
    Remove coke from to the machine; 
    count--; 
    notFull.notify(); 
    lockàrelease(); 
} 

Which is better? 
A. Semaphore
B. Monitors
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Other	
  Interesting	
  Topics	
  

Exception handling 
Ø What if a process waiting in a monitor needs to time out? 

Naked notify  
Ø How do we synchronize with I/O devices that do not grab 

monitor locks, but can notify condition variables. 

Butler Lampson and David Redell, “Experience with 
Processes and Monitors in Mesa.” 
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Summary	
  

Synchronization 
Ø Coordinating execution of multiple threads that share data 

structures 

Past lectures:  
Ø  Locks à provide mutual exclusion 
Ø Condition variables à provide conditional synchronization 

Today: 
Ø Semaphores 

❖  Introduced by Dijkstra in 1960s 
❖  Two types: binary semaphores and counting semaphores 
❖  Supports both mutual exclusion and conditional synchronization 

Ø Monitors 
❖  Separate mutual exclusion and conditional synchronization 


