
1

Mutual Exclusion:
Primitives and

Implementation Considerations

2

Too	 Much	 Milk:	 Lessons	

Software solution (Peterson’s algorithm) works, but it
is unsatisfactory
Ø Solution is complicated; proving correctness is tricky even

for the simple example
Ø While thread is waiting, it is consuming CPU time
Ø Asymmetric solution exists for 2 processes.

How can we do better?
Ø Use hardware features to eliminate busy waiting
Ø Define higher-level programming abstractions to simplify

concurrent programming

3

Concurrency	 Quiz	

If two threads execute this program concurrently, how
many different final values of X are there?

Initially, X == 0.

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

Thread 1 Thread 2

Answer:
A.  0
B.  1
C.  2
D.  More than 2

4

Schedules/Interleavings	

Model of concurrent execution
Interleave statements from each thread into a single
thread
If any interleaving yields incorrect results, some
synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

5

Locks	 =ix	 this	 with	 Mutual	 Exclusion	

Mutual exclusion ensures only safe interleavings
Ø When is mutual exclusion too safe?

void increment() {
 lock.acquire();
 int temp = X;
 temp = temp + 1;
 X = temp;
 lock.release();
}

6

Introducing	 Locks	

Locks – implement mutual exclusion
Ø  Two methods

❖  Lock::Acquire() – wait until lock is free, then grab it
❖  Lock::Release() – release the lock, waking up a waiter, if any

With locks, too much milk problem is very easy!
Ø Check and update happen as one unit (exclusive access)

Lock.Acquire();
if (noMilk) {
 buy milk;
}
Lock.Release();

How can we implement locks?

Lock.Acquire();
x++;
Lock.Release();

7

How	 to	 think	 about	 synchronization	 code	

Every thread has the same pattern
Ø  Entry section: code to attempt entry to critical section
Ø  Critical section: code that requires isolation (e.g., with mutual

exclusion)
Ø  Exit section: cleanup code after execution of critical region
Ø  Non-critical section: everything else

There can be multiple critical regions in a program
Ø  Only critical regions that access the same resource (e.g., data

structure) need to synchronize with each other

while(1) {
 Entry section
 Critical section
 Exit section
 Non-critical section
}

8

The	 correctness	 conditions	

Safety
Ø  Only one thread in the critical region

Liveness
Ø  Some thread that enters the entry section eventually enters the

critical region
Ø  Even if other thread takes forever in non-critical region

Bounded waiting
Ø  A thread that enters the entry section enters the critical section

within some bounded number of operations.
Failure atomicity
Ø  It is OK for a thread to die in the critical region
Ø  Many techniques do not provide failure atomicity

while(1) {
 Entry section
 Critical section
 Exit section
 Non-critical section
}

9

Read-‐Modify-‐Write	 (RMW)	

Implement locks using read-modify-write instructions
Ø  As an atomic and isolated action

1.  read a memory location into a register, AND
2.  write a new value to the location

Ø  Implementing RMW is tricky in multi-processors
❖  Requires cache coherence hardware. Caches snoop the memory bus.

Examples:
Ø  Test&set instructions (most architectures)

❖  Reads a value from memory
❖  Write “1” back to memory location

Ø  Compare & swap (a.k.a. cmpxchg on x86)
❖  Test the value against some constant
❖  If the test returns true, set value in memory to different value
❖  Report the result of the test in a flag
❖  if [addr] == r1 then [addr] = r2;

Ø  Double Compare & Swap (68000)
❖  Variant: if [addr1] == r1 then [addr2] = r2

Ø  Exchange, locked increment, locked decrement (x86)
Ø  Load linked/store conditional (PowerPC,Alpha, MIPS)

10

Implementing	 Locks	 with	 Test&set	

If lock is free (lock_value == 0), then
test&set reads 0 and sets value to 1
è lock is set to busy and Acquire
completes

If lock is busy, the test&set reads 1
and sets value to 1 è no change in
lock’s status and Acquire loops

int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)
 ; //spin
}

Lock::Release() {
 *lock = 0;
}

Does this lock have bounded
waiting?

11

Locks	 and	 Busy	 Waiting	

Busy-waiting:
Ø  Threads consume CPU cycles while waiting
Ø  Low latency to acquire

Limitations
Ø Occupies a CPU core
Ø What happens if threads have different priorities?

❖  Busy-waiting thread remains runnable
❖  If the thread waiting for a lock has higher priority than the

thread occupying the lock, then ?
❖  Ugh, I just wanted to lock a data structure, but now I’m

involved with the scheduler!
Ø What if programmer forgets to unlock?

Lock::Acquire() {
 while (test&set(lock) == 1)
 ; // spin
}

12

Remember	 to	 always	 release	 locks	

Java provides a convenient mechanism.
import
java.util.concurrent.locks.ReentrantLock;

public static final aLock = new
ReentrantLock();

aLock.lock();
try {
 …
} finally {
 aLock.unlock();
}
return 0;

13

Remember	 to	 always	 release	 locks	

Java also has implicit locks:
synchronized void method(void) {
 XXX
}

is short for
void method(void) {
 synchronized(this) {
 XXX }}

is short for
void method(void) {
 this.l.lock();
 try {
 XXX } finally {
 this.l.unlock();}

14

Cheaper	 Locks	 with	 Cheaper	 busy	 waiting	
	 	 	 	 Using	 Test&Set	

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
 *lock = 0;
}

With busy-waiting

Lock::Acquire() {
while(1) {
 if (test&set(lock) == 0) break;
 else sleep(1);
}

With voluntary yield of CPU

Lock::Release() {
*lock = 0;
}

What is the problem with this?
Ø A. CPU usage B. Memory usage C. Lock::Acquire() latency
Ø D. Memory bus usage E. Messes up interrupt handling

15

What happens to lock variable’s cache line when
different cpu’s contend for the same lock?

Test	 &	 Set	 with	 Memory	 Hierarchies	

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
while(test&set(lock));
// in critical region

L1

L2

Main Memory

…

…

L1

L2

CPU B
while(test&set(lock));

Load
can
stall

…

…

lock: 1
…

lock: 1
…

Line bounces
between caches

16

Cheap	 Locks	 with	 Cheap	 busy	 waiting	
	 	 	 	 Using	 Test&Test&Set	

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
 *lock = 0;
}

Busy-wait on in-memory copy

Lock::Acquire() {
while(1) {
 while (*lock == 1) ; // spin just reading
 if (test&set(lock) == 0) break;
}

Busy-wait on cached copy

Lock::Release() {
*lock = 0;
}

What is the problem with this?
Ø A. CPU usage B. Memory usage C. Lock::Acquire() latency
Ø D. Memory bus usage E. Does not work

17

What happens to lock variable’s cache line when
different cpu’s contend for the same lock?

Test	 &	 Set	 with	 Memory	 Hierarchies	

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
// in critical region

L1

L2

Main Memory

lock: 1
…

lock: 1
…

L1

L2

CPU B
while(*lock);
if(test&set(lock))brk;

18

What happens to lock variable’s cache line when
different cpu’s contend for the same lock?

Test	 &	 Set	 with	 Memory	 Hierarchies	

0xF0 lock: 0
0xF4 …

lock: 0
…

lock: 0
…

CPU A
// in critical region
*lock = 0

L1

L2

Main Memory

L1

L2

CPU B
while(*lock);
if(test&set(lock))brk;

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…
lock: 0
…

lock: 0
…

19

Implementing	 Locks:	 Summary	

Locks are higher-level programming abstraction
Ø Mutual exclusion can be implemented using locks

Lock implementation generally requires some level of
hardware support
Ø Details of hardware support affects efficiency of locking

Locks can busy-wait, and busy-waiting cheaply is
important
Ø Soon come primitives that block rather than busy-wait

20

Best	 Practices	 for	 Lock	 Programming	 (So	 Far…)	

When you enter a critical region, check what may
have changed while you were spinning
Ø Did Jill get milk while I was waiting on the lock?

Always unlock any locks you acquire

21

Implementing	 Locks	 without	 Busy	 Waiting	 (blocking)	 	
Using	 Test&Set	

Lock::Acquire() {
while (test&set(lock) == 1)
 ; // spin
}

Lock::Release() {
 *lock := 0;
}

With busy-waiting

Lock::Acquire() {
if (test&set(q_lock) == 1) {
 Put TCB on wait queue for lock;
 Lock::Switch(); // dispatch thread
}

Without busy-waiting, use a queue
Lock::Release() {
if (wait queue is not empty) {
 Move 1 (or all?) waiting threads to ready
queue;
}
*q_lock = 0;

Must only 1 thread be awakened?

Lock::Switch() {
 q_lock = 0;
 pid = schedule();
 if(waited_on_lock(pid))
 while(test&set(q_lock)==1) ;
 dispatch pid
}

22

Implementing	 Locks:	 Summary	

Locks are higher-level programming abstraction
Ø Mutual exclusion can be implemented using locks

Lock implementations have 2 key ingredients:
Ø Hardware instruction that does atomic read-modify-write

❖ Uni- and multi-processor architectures
Ø Blocking mechanism

❖ Busy waiting, or
❖ Block on a scheduler queue in the OS

Locks are good for mutual exclusion but weak for
coordination, e.g., producer/consumer patterns.

23

Fine-grain locks
Ø  Greater concurrency
Ø  Greater code complexity
Ø  Potential deadlocks

❖  Not composable
Ø  Potential data races

❖  Which lock to lock?

Why Locks are Hard (Preview)

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
 LOCK(s);
 LOCK(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 UNLOCK(d);
 UNLOCK(s);
}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

Coarse-grain locks
Ø  Simple to develop
Ø  Easy to avoid deadlock
Ø  Few data races
Ø  Limited concurrency

