
1

Concurrent Programing:
Why you should care, deeply

Don Porter

Portions courtesy Emmett Witchel

2

Uniprocessor	 Performance	 Not	 Scaling	

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

.
V

A
X

-1
1/

78
0)

25% /year

52% /year

20% /year

Graph by Dave Patterson

3

Power	 and	 heat	 lay	 waste	 to	 processor	 makers	

Intel P4 (2000-2007)
Ø  1.3GHz to 3.8GHz, 31 stage pipeline
Ø  “Prescott” in 02/04 was too hot. Needed 5.2GHz to beat

2.6GHz Athalon

Intel Pentium Core, (2006-)
Ø  1.06GHz to 3GHz, 14 stage pipeline
Ø Based on mobile (Pentium M) micro-architecture

❖ Power efficient
2% of electricity in the U.S. feeds computers
Ø Doubled in last 5 years

4

What	 about	 Moore’s	 law?	

Number of transistors double every 24 months
Ø Not performance!

5

Architectural	 trends	 that	 favor	 multicore	

Power is a first class design constraint
Ø Performance per watt the important metric

Leakage power significant with small transisitors
Ø Chip dissipates power even when idle!

Small transistors fail more frequently
Ø  Lower yield, or CPUs that fail?

Wires are slow
Ø  Light in vacuum can travel ~1m in 1 cycle at 3GHz
Ø Motivates multicore designs (simpler, lower-power cores)

Quantum effects
Motivates multicore designs (simpler, lower-power
cores)

6

Multicores are here, and coming fast!

Sun Rock

“[AMD] quad-core processors … are just the beginning….”
 http://www.amd.com

“Intel has more than 15 multi-core related projects underway”
 http://www.intel.com

Intel TeraFLOP AMD Quad Core

4 cores in 2007 16 cores in 2009 80 cores in 20??

7

Multicore	 programming	 will	 be	 in	 demand	

Hardware manufacturers betting big on multicore
Software developers are needed
Writing concurrent programs is not easy
You will learn how to do it in this class

8

Concurrency	 Problem	

Order of thread execution is non-deterministic
Ø Multiprocessing

❖  A system may contain multiple processors è cooperating
threads/processes can execute simultaneously

Ø Multi-programming
❖  Thread/process execution can be interleaved because of time-

slicing

Operations often consist of multiple, visible steps
Ø Example: x = x + 1 is not a single operation

❖  read x from memory into a register
❖  increment register
❖  store register back to memory

Goal:
Ø Ensure that your concurrent program works under ALL

possible interleaving

Thread 2
read
increment
store

9

Questions	

Do the following either completely succeed or
completely fail?
Writing an 8-bit byte to memory
Ø A. Yes B. No

Creating a file
Ø A. Yes B. No

Writing a 512-byte disk sector
Ø A. Yes B. No

10

Sharing	 among	 threads	 increases	 performance…	

int a = 1, b = 2;
main() {

 CreateThread(fn1, 4);
 CreateThread(fn2, 5);

}
fn1(int arg1) {

 if(a) b++;
}
fn2(int arg1) {

 a = arg1;
}

What are the values of a & b
at the end of execution?

11

Sharing	 among	 theads	 increases	 performance,	 but	 can	
lead	 to	 problems!!	

int a = 1, b = 2;
main() {

 CreateThread(fn1, 4);
 CreateThread(fn2, 5);

}
fn1(int arg1) {

 if(a) b++;
}
fn2(int arg1) {

 a = 0;
}

What are the values of a & b
at the end of execution?

12

Some	 More	 Examples	

What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;
Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;
Thread1: x = x + 1; Thread2: x = x + 2;

13

Critical	 Sections	

A critical section is an abstraction
Ø  Consists of a number of consecutive program instructions
Ø  Usually, crit sec are mutually exclusive and can wait/signal

❖  Later, we will talk about atomicity and isolation
Critical sections are used frequently in an OS to protect data
structures (e.g., queues, shared variables, lists, …)
A critical section implementation must be:
Ø Correct: the system behaves as if only 1 thread can execute

in the critical section at any given time
Ø Efficient: getting into and out of critical section must be fast.

Critical sections should be as short as possible.
Ø Concurrency control: a good implementation allows

maximum concurrency while preserving correctness
Ø  Flexible: a good implementation must have as few

restrictions as practically possible

14

The	 Need	 For	 Mutual	 Exclusion	

Running multiple processes/threads in parallel
increases performance
Some computer resources cannot be accessed by
multiple threads at the same time
Ø E.g., a printer can’t print two documents at once

Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time
Ø Active thread excludes its peers

For shared memory architectures, data structures are
often mutually exclusive
Ø  Two threads adding to a linked list can corrupt the list

15

Exclusion	 Problems,	 Real	 Life	 Example	

Imagine multiple chefs in the same kitchen
Ø Each chef follows a different recipe

Chef 1
Ø Grab butter, grab salt, do other stuff

Chef 2
Ø Grab salt, grab butter, do other stuff

What if Chef 1 grabs the butter and Chef 2 grabs the
salt?
Ø Yell at each other (not a computer science solution)
Ø Chef 1 grabs salt from Chef 2 (preempt resource)
Ø Chefs all grab ingredients in the same order

❖  Current best solution, but difficult as recipes get complex
❖  Ingredient like cheese might be sans refrigeration for a while

16

The	 Need	 To	 Wait	

Very often, synchronization consists of one thread
waiting for another to make a condition true
Ø Master tells worker a request has arrived
Ø Cleaning thread waits until all lanes are colored

Until condition is true, thread can sleep
Ø  Ties synchronization to scheduling

Mutual exclusion for data structure
Ø Code can wait (await)
Ø Another thread signals (notify)

17

Example	 2:	 Traverse	 a	 singly-‐linked	 list	

Suppose we want to find an element in a singly linked
list, and move it to the head
Visual intuition:

lhead

lptrlprev

18

Example	 2:	 Traverse	 a	 singly-‐linked	 list	

Suppose we want to find an element in a singly linked
list, and move it to the head
Visual intuition:

lhead

lptrlprev

19

Even	 more	 real	 life,	 linked	 lists	

Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {
 if(lptr->val == target){

 // Already head?, break
 if(lprev == NULL) break;
 // Move cell to head
 lprev->next = lptr->next;
 lptr->next = lhead;
 lhead = lptr;
 break;
 }
 lprev = lptr;
}

20

Even	 more	 real	 life,	 linked	 lists	

A critical section often needs to be larger than it first
appears
Ø  The 3 key lines are not enough of a critical section

 // Move cell to head
 lprev->next = lptr->next;
 lptr->next = lhead
 lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1 Thread 2

lhead elt
lptrlprev

lhead
elt
lptrlprev

21

Even	 more	 real	 life,	 linked	 lists	

Putting entire search in a critical section reduces
concurrency, but it is safe.

if(lptr->val == target){
 elt = lptr;
 // Already head?, break
 if(lprev == NULL) break;
 // Move cell to head
 lprev->next = lptr->next;
 // lptr no longer in list

for(lptr = lhead; lptr;
 lptr = lptr->next) {
 if(lptr->val == target){

Thread 1 Thread 2

22

Safety	 and	 Liveness	

Safety property : “nothing bad happens”
Ø  holds in every finite execution prefix

❖  Windows™ never crashes
❖  a program never terminates with a wrong answer

Liveness property: “something good eventually happens”
Ø  no partial execution is irremediable

❖  Windows™ always reboots
❖  a program eventually terminates

Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

23

Safety	 and	 liveness	 for	 critical	 sections	

At most k threads are concurrently in the critical section
Ø  A. Safety
Ø  B. Liveness
Ø  C. Both

A thread that wants to enter the critical section will eventually
succeed
Ø  A. Safety
Ø  B. Liveness
Ø  C. Both

Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.
Ø  A. Safety B. Liveness C. Both

