
1

Scheduling Processes

Don Porter
Portions courtesy Emmett Witchel

2

Processes	

Each process has state, that includes its text and data, procedure
call stack, etc. This state resides in memory.
The OS also stores process metadata for each process. This
state is called the Process Control Block (PCB), and it includes
the PC, SP, register states, execution state, etc.
All of the processes that the OS is currently managing reside in
one and only one of these states.

3

Scheduling	
 Processes	

Multiprocessing (concurrency) - one process on the
CPU running, and one or more doing I/O enables the
OS to increase system utilization and throughput by
overlapping I/O and CPU activities.
Long Term Scheduling: How does the OS determine
the degree of multiprogramming, i.e., the number of
jobs executing at once in the primary memory?
Short Term Scheduling: How does (or should) the OS
select a process from the ready queue to execute?
Ø Policy Goals
Ø Policy Options
Ø  Implementation considerations

4

Short	
 Term	
 Scheduling	

The kernel runs the scheduler at least when
Ø a process switches from running to waiting (blocks)
Ø a process is created or terminated.
Ø an interrupt occurs (e.g., timer chip)

Non-preemptive system
Ø Scheduler runs when process blocks or is created, not on

hardware interrupts
Preemptive system
Ø OS makes scheduling decisions during interrupts, mostly timer,

but also system calls and other hardware device interrupts

5

Criteria	
 for	
 Comparing	
 Scheduling	
 Algorithms	

CPU Utilization The percentage of time that the CPU
is busy.
Throughput The number of processes completing in
a unit of time.
Turnaround time The length of time it takes to run a
process from initialization to termination, including all
the waiting time.
Waiting time The total amount of time that a process
is in the ready queue.
Response time The time between when a process is
ready to run and its next I/O request.

6

Scheduling	
 Policies	

Ideal CPU scheduler
Ø  Maximizes CPU utilization and throughput
Ø  Minimizes turnaround time, waiting time, and response time

Real CPU schedulers implement particular policy
Ø  Minimize response time - provide output to the user as quickly as

possible and process their input as soon as it is received.
Ø  Minimize variance of average response time - in an interactive

system, predictability may be more important than a low average
with a high variance.

Ø  Maximize throughput - two components
❖  1. minimize overhead (OS overhead, context switching)
❖  2. efficient use of system resources (CPU, I/O devices)

Ø  Minimize waiting time - be fair by ensuring each process waits the
same amount of time. This goal often increases average response
time.

Will a fair scheduling algorithm maximize throughput? A)
Yes B) No

7

Process	
 activity	
 patterns	

CPU bound
Ø  mp3 encoding
Ø  Scientific applications (matrix multiplication)
Ø  Compile a program or document

I/O bound
Ø  Index a file system
Ø Browse small web pages

Balanced
Ø Playing video
Ø Moving windows around/fast window updates

Scheduling algorithms reward I/O bound and
penalize CPU bound
Ø Why?

8

Scheduling	
 Policies	

Simplifying Assumptions
Ø  One process per user
Ø  One thread per process (more on this topic next week)
Ø  Processes are independent

Researchers developed these algorithms in the 70’s when these
assumptions were more realistic, and it is still an open problem
how to relax these assumptions.

Scheduling Algorithms:
Ø  FCFS: First Come, First Served
Ø  Round Robin: Use a time slice and preemption to alternate jobs.
Ø  SJF: Shortest Job First
Ø  Multilevel Feedback Queues: Round robin on priority queue.
Ø  Lottery Scheduling: Jobs get tickets and scheduler randomly picks

winning ticket.

9

Scheduling	
 Policies	

FCFS: First-Come-First-Served (or FIFO: First-In-First-Out)

The scheduler executes jobs to completion in arrival
order.
In early FCFS schedulers, the job did not relinquish
the CPU even when it was doing I/O.
We will assume a FCFS scheduler that runs when
processes are blocked on I/O, but that is non-
preemptive, i.e., the job keeps the CPU until it blocks
(say on an I/O device).

10

FCFS	
 Scheduling	
 Policy	

In a non-preemptive
system, the scheduler must
wait for one of these
events, but in a preemptive
system the scheduler can
interrupt a running process.
If the processes arrive one
time unit apart, what is the
average wait time in these
three cases?
Advantages:

Disadvantages

11

Scheduling	
 Policies	

Round Robin: very common base policy.
Run each process for its time slice (scheduling quantum)
After each time slice, move the running thread to the back of the
queue.
Selecting a time slice:
Ø  Too large - waiting time suffers, degenerates to FCFS if processes

are never preempted.
Ø  Too small - throughput suffers because too much time is spent

context switching.
Ø  Balance the two by selecting a time slice where context switching is

roughly 1% of the time slice.
A typical time slice today is between 10-100 milliseconds, with a
context switch time of 0.1 to 1 millisecond.
Ø  Max Linux time slice is 3,200ms, Why?

Is round robin more fair than FCFS? A)Yes B)No

12

Round	
 Robin	
 Examples	

5 jobs, 100 seconds each, time slice 1 second, context switch
time of 0, jobs arrive at time 0,1,2,3,4

 Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 100

2 100

3 100

4 100

5 100

Average

13

Round	
 Robin	
 Examples	

5 jobs, 100 seconds each, time slice 1 second, context switch
time of 0, jobs arrive at time 0,1,2,3,4

 Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 100 100 0

2 100 200 99

3 100 300 198

4 100 400 297

5 100 500 396

Average 250 495

14

Round	
 Robin	
 Examples	

5 jobs, 100 seconds each, time slice 1 second, context switch
time of 0, jobs arrive at time 0,1,2,3,4

 Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 100 100 496 0 400

2 100 200 497 99 400

3 100 300 498 198 400

4 100 400 499 297 400

5 100 500 500 396 400

Average 250 498 198 400

Why is this
better?

15

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50

2 40

3 30

4 20

5 10

Average

16

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 90

4 20 140 120

5 10 150 140

Average 110 80

17

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 90

4 20 140 120

5 10 150 50 140 40

Average 110 80

18

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 80

19

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 80

20

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 80

21

Round	
 Robin	
 Examples	

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 150 0 100

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 110 80 80

Seriously,
aren’t these
the same?

22

Fairness	

Was the average wait time or completion time really
the right metric?
Ø No!

What should we consider for the example with equal
job lengths?
Ø Variance!

What should we consider for the example with
varying job lengths?
Ø  Is completion time proportional to length?

23

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10

Average

24

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10 10 0

Average

25

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20 30 10

5 10 10 0

Average

26

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30 60 30

4 20 30 10

5 10 10 0

Average

27

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40 100 60

3 30 60 30

4 20 30 10

5 10 10 0

Average

28

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50 150 100

2 40 100 60

3 30 60 30

4 20 30 10

5 10 10 0

Average 70 40

29

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Schedule the job that has the least (expected) amount of work (CPU
time) to do until its next I/O request or termination.
Ø  I/O bound jobs get priority over CPU bound jobs.

Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time
slice 1 second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50 50 150 150 0 100 100

2 40 90 140 100 50 100 60

3 30 120 120 60 90 90 30

4 20 140 90 30 120 70 10

5 10 150 50 10 140 40 0

Average 110 110 70 80 80 40

Now that’s
what I’m
talking about!

30

SJF	
 /	
 SRTF:	
 Shortest	
 Job	
 First	

Works for preemptive and non-preemptive
schedulers.

Preemptive SJF is called SRTF - shortest remaining
time first.

Advantages?
Ø  Free up system resources more quickly

Disadvantages?

Ø How do you know how long something will run?

31

Multilevel	
 Feedback	
 Queues	

Using the Past to Predict the Future: Multilevel
feedback queues attempt to overcome the prediction
problem in SJF by using the past I/O and CPU
behavior to assign process priorities.
Ø  If a process is I/O bound in the past, it is also likely to be I/O

bound in the future (programs turn out not to be random.)
Ø  To exploit this behavior, the scheduler can favor jobs

(schedule them sooner) when they use very little CPU time
(absolutely or relatively), thus approximating SJF.

Ø  This policy is adaptive because it relies on past behavior
and changes in behavior result in changes to scheduling
decisions. We write a program in e.g., Java.

32

Approximating	
 SJF:	
 Multilevel	
 	
 Feedback	
 Queues	

Multiple queues with different priorities.
OS uses Round Robin scheduling at each priority level, running
the jobs in the highest priority queue first.
Once those finish, OS runs jobs out of the next highest priority
queue, etc. (Can lead to starvation.)
Round robin time slice increases exponentially at lower
priorities.

33

Approximating	
 SJF:	
 Multilevel	
 	
 Feedback	
 Queues	

Adjust priorities as follows (details can vary):
1.  Job starts in the highest priority queue
2.  If job’s time slices expire, drop its priority one level.
3.  If job’s time slices do not expire (the context switch comes

from an I/O request instead), then increase its priority one
level, up to the top priority level.

==> In practice, CPU bounds drop like a rock in priority and I/O
bound jobs stay at high priority

34

Improving	
 Fairness	

Since SJF is optimal, but unfair, any increase in
fairness by giving long jobs a fraction of the CPU
when shorter jobs are available will degrade average
waiting time. Possible solutions:
Ø Give each queue a fraction of the CPU time. This solution is

only fair if there is an even distribution of jobs among
queues.

Ø Adjust the priority of jobs as they do not get serviced (Unix
originally did this.) This ad hoc solution avoids starvation but
average waiting time suffers when the system is overloaded
because all the jobs end up with a high priority.

35

Lottery	
 Scheduling	

Give every job some number of lottery tickets.
On each time slice, randomly pick a winning ticket.
On average, CPU time is proportional to the number
of tickets given to each job.
Assign tickets by giving the most to short running
jobs, and fewer to long running jobs (approximating
SJF). To avoid starvation, every job gets at least one
ticket.
Degrades gracefully as load changes. Adding or
deleting a job affects all jobs proportionately,
independent of the number of tickets a job has.

36

Lottery	
 Scheduling	

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2

2/0

10/1

1/10

37

Lottery	
 Scheduling	

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0

10/1

1/10

38

Lottery	
 Scheduling	

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0 50% 0%

10/1

1/10

39

Lottery	
 Scheduling	

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0 50% 0%

10/1 9/91=~9.8% 1/91=~1%

1/10

40

Lottery	
 Scheduling	

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0 50% 0%

10/1 9/91=~9.8% 1/91=~1%

1/10 9/19=~47% 1/19=~5.3%

41

Summary	
 of	
 Scheduling	
 Algorithms	

FCFS: Not fair, and average waiting time is poor.
Round Robin: Fair, but average waiting time is poor.
SJF: Not fair, but average waiting time is minimized assuming
we can accurately predict the length of the next CPU burst.
Starvation is possible.
Multilevel Queuing: An implementation (approximation) of SJF.
Lottery Scheduling: Fairer with a low average waiting time, but
less predictable.

⇒ Our modeling assumed that context switches took no time,
which is unrealistic.

