
COMP 790: OS Implementation

SELinux

Don Porter

1



COMP 790: OS Implementation

MAC vs. DAC
• By default, Unix/Linux provides Discretionary Access 

Control
– The user (subject) has discretion to set security policies (or 

not)
– Example: I may ‘chmod o+a’ the file containing course 

grades, which violates university privacy policies 

• Mandatory Access Control enforces a central policy 
on a system
– Example: MAC policies can prohibit me from sharing 

course grades



COMP 790: OS Implementation

SELinux
• Like the Windows 2k ACLs, one key goal is enforcing 

the principle of least authority
– No ‘root’ user
– Several administrative roles with limited extra privileges
– Example: Changing passwords does not require 

administrative access to printers
• The principle of least authority says you should only give the 

minimum privilege needed

– Reasoning: if ‘passwd’ is compromised (e.g., due to a 
buffer overflow), we should limit the scope of the damage



COMP 790: OS Implementation

SELinux
• Also like Win2k ACLs, a goal is to specify fine-grained 

access control permission to kernel objects
– In service of principle of least authority
– Read/write permissions are coarse
– Lots of functions do more limited reads/write



COMP 790: OS Implementation

SELinux + MAC
• Unlike Win2k ACLs, MAC enforcement requires all 

policies to be specified by an administrator
– Users cannot change these policies

• Multi-level security: Declassified, Secret, Top-Secret, 
etc.
– In MLS, only a trusted declassifier can lower the secrecy of 

a file
– Users with appropriate privilege can read classified files, 

but cannot output their contents to lower secrecy levels



COMP 790: OS Implementation

Example
• Suppose I want to read a secret file
• In SELinux, I transition to a secret role to do this
– This role is restricted: 

• Cannot write to the network
• Cannot write to declassified files

– Secret files cannot be read in a declassified role

• Idea: Policies often require applications/users to give 
up some privileges (network) for others (access to 
secrets)



COMP 790: OS Implementation

General principles
• Secrecy (Bell-LaPadula)
– No read up, no write down
– In secret mode, you can’t write a declassified file, or read 

top-secret data

• Integrity (Biba)
– No write up, no read down
– A declassified user can’t write garbage into a secret file
– A top-secret application can’t read input/load libraries 

from an untrusted source (reduce risk of compromise)



COMP 790: OS Implementation

SELinux Policies
• Written by an administrator in a SELinux-specific 

language
– Often written by an expert at Red Hat and installed 

wholesale
– Difficult to modify or write from scratch

• Very expansive---covers all sorts of subjects, objects, 
and verbs



COMP 790: OS Implementation

Key Points of Interest
• Role-Based Access Control (RBAC)
• Type Enforcement
• Linux Security Modules (LSM)
– Labeling and persistence



COMP 790: OS Implementation

Role-Based Access Control
• Idea: Extend or restrict user rights with a role that 

captures what they are trying to do
• Example: I may browse the web, grade labs, and 

administer a web server
– Create a role for each, with different privileges
– My grader role may not have network access, except to 

sakai and gradescope
– My web browsing role may not have access to my home 

directory files
– My admin role and web roles can’t access students’ labs



COMP 790: OS Implementation

Roles vs. Restricted Context
• Win2k ACLs allow a user to create processes with a 

subset of his/her privileges
• Roles provide the same functionality
– But also allow a user to add privileges, such as 

administrative rights

• Roles may also have policy restrictions on 
who/when/how roles are changed
– Not just anyone (or any program) can get admin privileges



COMP 790: OS Implementation

The power of RBAC
• Conditional access control
• Example: Don’t let this file go out on the internet
– Create secret file role

• No network access, can’t write any files except other secret files
• Process cannot change roles, only exit
• Process can read secret files

– I challenge you to express this policy in Unix permissions!



COMP 790: OS Implementation

Roles vs. Specific Users
• Policies are hard to write
• Roles allow policies to be generalized
– Users everywhere want similar restrictions on their 

browser

• Roles eliminate the need to re-tailor the policy file 
for every user
– Anyone can transition to the browser role



COMP 790: OS Implementation

Type Enforcement
• Very much like the fine-grained ACLs we saw last 

time
• Rather than everything being a file, objects are given 

a more specific type
– Type includes a set of possible actions on the object

• E.g., Socket: create, listen, send, recv, close

– Type includes ACLs based on roles



COMP 790: OS Implementation

Type examples
• Device types:
– agp_device_t - AGP device (/dev/agpgart)
– console_device_t - Console device (/dev/console)
– mouse_device_t - Mouse (/dev/mouse)

• File types:
– fs_t - Defaults file type
– etc_aliases_t - /etc/aliases and related files
– bin_t - Files in /bin



COMP 790: OS Implementation

More type examples
• Networking:
– netif_eth0_t – Interface eth0
– port_t – TCP/IP port
– tcp_socket_t – TCP socket

• /proc types
– proc_t - /proc and related files
– sysctl_t - /proc/sys and related files
– sysctl_fs_t - /proc/sys/fs and related files



COMP 790: OS Implementation

Detailed example
• ping_exec_t type associated with ping binary
• Policies for ping_exec_t:
– Restrict who can transition into ping_t domain

• Admins for sure, and init scripts
• Regular users: admin can configure

– ping_t domain (executing process) allowed to:
• Use shared libraries
• Use the network
• Call ypbind (for hostname lookup in YP/NIS)



COMP 790: OS Implementation

Ping cont.
• ping_t domain process can also:
– Read certain files in /etc
– Create Unix socket streams
– Create raw ICMP sockets + send/recv on them on any 

interface
– Access the terminal
– Get file system attributes and search /var (mostly harmless 

operations that would pollute the logs if disallowed)
– setuid (again, backwards compatibility)

• The last two violate least privilege to avoid modification!



COMP 790: OS Implementation

Full ping policy

01 type ping_t, domain, privlog;
02 type ping_exec_t, file_type, sysadmfile, exec_type;
03 role sysadm_r types ping_t;
04 role system_r types ping_t;
05
06 # Transition into this domain when you run this 
program.
07 domain_auto_trans(sysadm_t, ping_exec_t, ping_t)
08. domain_auto_trans(initrc_t, ping_exec_t, ping_t)
09 
10 uses_shlib(ping_t)
11 can_network(ping_t)
12 general_domain_access(ping_t)
13 allow ping_t { etc_t resolv_conf_t }:file { getattr read 
};
14 allow ping_t self:unix_stream_socket
create_socket_perms;
15 
16 # Let ping create raw ICMP packets.
17 allow ping_t self:rawip_socket {create ioctl read write 
bind getopt setopt};
18 allow ping_t any_socket_t:rawip_socket sendto;

19 
20 auditallow ping_t any_socket_t:rawip_socket sendto;
21
22 # Let ping receive ICMP replies.
23 allow ping_t { self icmp_socket_t }:rawip_socket
recvfrom;
24 
25 # Use capabilities.
26 allow ping_t self:capability { net_raw setuid };
27 
28 # Access the terminal.
29 allow ping_t admin_tty_type:chr_file rw_file_perms;
30 ifdef(`gnome-pty-helper.te', `allow ping_t
sysadm_gph_t:fd use;')
31 allow ping_t privfd:fd use;
32 
33 dontaudit ping_t fs_t:filesystem getattr;
34 
35 # it tries to access /var/run
36 dontaudit ping_t var_t:dir search;



COMP 790: OS Implementation

Linux Security Modules
• Culturally, top Linux developers care about writing a 

good kernel
– Not as much about security
– Different specializations

• Their goal: Modularize security as much as humanly 
possible
– Security folks write modules that you can load if you care 

about security; kernel developers don’t have to worry 
about understanding security



COMP 790: OS Implementation

Basic deal
• Linux Security Modules API:
– Linux developers put dozens of access control hooks all 

over the kernel
• See include/linux/security.h

– LSM writer can implement access control functions called 
by these hooks that enforce arbitrary policies

– Linux also adds opaque “security” pointer that LSM can 
use to store security info they need in processes, inodes, 
sockets, etc.



COMP 790: OS Implementation

SELinux example
• A task has an associated security pointer
– Stores current role

• An inode also has a security pointer
– Stores type and policy rules

• Initialization hooks for both called when created



COMP 790: OS Implementation

SELinux example, cont.
• A task reads the inode
– VFS function calls LSM hook, with inode and task pointer
– LSM reads policy rules from inode

• Suppose the file requires a role transition for read
– LSM hook modifies task’s security data to change its role
– Then read allowed to proceed



COMP 790: OS Implementation

Problem: Persistence
• All of these security hooks are great for in memory

data structures
– E.g., VFS inodes

• How do you ensure the policy associated with a 
given file persists across reboots?



COMP 790: OS Implementation

Extended Attributes
• In addition to 9+ standard Unix attributes, associate 

a small key/value store with an on-disk inode
– User can tag a file with arbitrary metadata
– Key must be a string, prefixed with a domain

• User, trusted, system, security

– Users must use ‘user’ domain
– LSM uses ‘security’ domain

• Only a few file systems support extended attributes
– E.g., ext2/3/4; not NFS, FAT32



COMP 790: OS Implementation

Persistence
• All ACLs, type information, etc. are stored in 

extended attributes for persistence
• Each file must be labeled for MAC enforcement
– Labeling is the generic problem of assigning a type or 

security context to each object/file in the system
– Can be complicated

• SELinux provides some tools to help, based on 
standard system file names and educated guesses



COMP 790: OS Implementation

Summary
• SELinux augments Linux with a much more restrictive 

security model
– MAC vs. DAC

• Understand Roles and Types
• Basic ideas of LSM
– Labeling and extended attributes


