2/21/20

.1 COMP 790: OS Implementation | COMP 790: OS Implementation
Logical Diagram
Native POSIX Threading
H User
Libra ry (N PTL) Today’s Lecture === = F - |
Scheduling threads erne
Don Porter
Memory Device
Management Drivers Scheduler
== ‘Hardware
[Interrupts} [Disk J [Net J [Con5|stency J
1 2
1 2
[l COMP 790: OS Implementation | COMP 790: OS Implementation
Today’s reading Threading review
* Design challenges and trade-offs in a threading * What is threading?
library — Multiple threads of execution in one address space
* Nice practical tricks and system details — x86 hardware:
o * One cr3 register and set of page tables shared by 2+ different
And some historical perspective on Linux evolution register contexts otherwise (rip, rsp/stack, etc.)
— Linux:
* One mm_struct shared by several task_structs
— Does JOS support threading?
3 4
4
[l COMP 790: OS Implementation N COMP 790: OS Implementation
Ok, but what is a thread library? Kernel-managed threads (1:1 model)
* Threading APIs provided by libpthread.so . pid: _)
libpthread.so Linux System Call ® Kernel
pthread_create() clone(CLONE_FS|CLONE_IO|CLONE_THRE User
ADl.)] T e e im e e it s
pthread_mutex_lock(), futex() I I
pthread_cond_wait(), .. . stack Stack) 1
Thread-local storage arch_pretl() I ;c 1 @ 1
1
(100 > [rsp 01 text !
» System calls tend to be subtle, hard to program . 1
i .
— Design reflects performance concerns i rip 100 !
. 1
Shared Page Tables/Virtual Address Space
The division of labor is part of the design! Threads scheduled by kernel — Just tasks+shared mm
6

COMP 790: OS Implementation

Simple User Threading (m:1 model)

Convert to
1 — — Async Read
| Stack Stack SereeT
. 0 1
1
1 rsp regs Thrl:
1

regs

ThrO:
savetoress, _—=\o/ A%/ 7 A
Restoretl | Shared Page Tables/Virtual Address Space

Call User
Scheduler
on return

2/21/20

COMP 790: OS Implementation

User Threading Observations
One can easily switch stacks in user-space
— No privileged instructions needed
— Same for saving and restoring PC (rip)
Convert blocking to non-blocking calls
— OS must provide non-blocking equivalents
— Transparent help from libc

* Catch futexes, yield
* Add O_ASYNC to open, detect when data ready

* Need a second, user-level thread scheduler

User-level scheduler, one kernel thread

7

COMP 790: OS Implementation

Generalization — m:n model
* Multiple application-level threads (m)

* Multiplexed on n kernel-visible threads (m >= n)
— N often number of CPUs

COMP 790: OS Implementation

Why bother with user threading?
* Context switching overheads
* Finer-grained scheduling control
* Blocking 1/0

COMP 790: OS Implementation

User Threading Complexity

Lots of libc/libpthread changes

— Working around “unfriendly” kernel API
Bookkeeping gets much more complicated

— Second scheduler

— Synchronization different
Can do crude preemption using:

— Certain functions (locks)

— Timer signals from OS

— Signals

10

COMP 790: OS Implementation

Context Switching Overheads
Recall: Forking a thread halves your time slice

— Takes a few hundred cycles to get in/out of kernel
* Plus cost of switching a thread

— Time in the scheduler counts against your timeslice
2 threads, 1 CPU
— If I can run the context switching code locally (avoiding
trap overheads, etc), my threads get to run slightly longer!
— Stack switching code works in userspace with few changes

11

12

[l COMP 790: OS Implementation

Finer-Grained Scheduling Control

Example: Thread 1 has a lock, Thread 2 waiting for
lock

— Thread 1’s quantum expired

— Thread 2 just spinning until its quantum expires

— Wouldn’t it be nice to donate Thread 2’s quantum to
Thread 1?

* Both threads will make faster progress!

Similar problems with producer/consumer, barriers,
etc.

* Deeper problem: Application’s data flow and
synchronization patterns hard for kernel to infer

13

| COMP 790: OS Implementation

Blocking I/O and Events
* Events: abstraction for dealing with blocking 1/0
* Layered over a user-level scheduler

* Lots of literature on this topic if you are interested...

2/21/20

COMP 790: OS Implementation

Blocking I/O

* | have 2 threads, they each get half of the

application’s quantum

— If A blocks on I/O and B is using the CPU

— B gets half the CPU time

— A’s quantum is “lost” (at least in some schedulers)
* Modern Linux scheduler:

— Agets a priority boost

— Maybe application cares more about B’s CPU time...

14

COMP 790: OS Implementation

Scheduler Activations
* Better API for user-level threading
— Not available on Linux
— Some BSDs support(ed) scheduler activations

* On any blocking operation, kernel upcalls back to
user scheduler

* Eliminates most libc changes
— Easier notification of blocking events

* User scheduler keeps kernel notified of how many
runnable tasks it has (via system call)
— Kernel allocates up to that many scheduler activations

15

COMP 790: OS Implementation

What is a scheduler activation?
Like a kernel thread:
— Akernel stack and a user-mode stack
— Represents the allocation of a CPU time slice
Not like a kernel thread:
— Does not automatically resume a user thread
— Goes to one of a few well-defined “upcalls”

* New timeslice, Timeslice expired, Blocked SA, Unblocked SA
¢ Upcalls must be reentrant (called on many CPUs at same time)

— User scheduler decides what to run

17

16

Il COMP 790: OS Implementation

Downsides of scheduler activations
* Arandom user thread gets preempted on every
scheduling-related event
— Not free!
— User scheduling must do better than kernel by a big
enough margin to offset these overheads
* Moreover, the most important thread may be the
one to get preempted, slowing down critical path
— Potential optimization: communicate to kernel a

preference for which activation gets preempted to notify
of an event

Optional Reading on Scheduler Activations =

18

2/21/20

[l COMP 790: OS Implementation

COMP 790: OS Implementation

Back to NPTL

* Ultimately, a 1:1 model was adopted by Linux.
* Why?

— Higher context switching overhead (lots of register copying
and upcalls)

— Difference of opinion between research and kernel
communities about how inefficient kernel-level schedulers
are. (claims about O(1) scheduling)

— Way more complicated to maintain the code for m:n
model. Much to be said for encapsulating kernel from
thread library!

Meta-observation

* Much of 90s OS research focused on giving

programmers more control over performance
— E.g., microkernels, extensible OSes, etc.

* Argument: clumsy heuristics or awkward
abstractions are keeping me from getting full
performance of my hardware

* Some won the day, some didn’t

— High-performance databases generally get direct control
over disk(s) rather than go through the file system

19

(LIl COMP 790: OS Implementation

User-threading in practice

* Has come in and out of vogue

— Correlated with how efficiently the OS creates and context
switches threads

* Linux 2.4 — Threading was really slow
— User-level thread packages were hot
* Linux 2.6 — Substantial effort went into tuning
threads
— E.g., Most JVMs abandoned user-threads

21

COMP 790: OS Implementation

What was all the fuss about signals?

* 2issues:

1) The behavior of sending a signal to a multi-threaded
process was not correct. And could never be implemented
correctly with kernel-level tools (pre 2.6)

* Correctness: Cannot implement POSIX standard

2) Signals were also used to implement blocking
synchronization. E.g., releasing a mutex meant sending a
signal to the next blocked task to wake it up.

* Performance: Ridiculously complicated and inefficient

23

20

COMP 790: OS Implementation

Other issues to cover
* Signaling
— Correctness
— Performance (Synchronization)
* Manager thread
* List of all threads
* Other miscellaneous optimizations

22

COMP 790: OS Implementation

Issue 1: Signal correctness w/ threads

* Mostly solved by kernel assigning same PID to each
thread
— 2.4 assigned different PID to each thread
— Different TID to distinguish them
* Problem with different PID?
— POSIX says | should be able to send a signal to a multi-

threaded program and any unmasked thread will get the
signal, even if the first thread has exited

* To deliver a signal kernel has to search each task in
the process for an unmasked thread

24

[l COMP 790: OS Implementation

Issue 2: Performance
* Solved by adoption of futexes
* Essentially just a shared wait queue in the kernel
* Idea:

— Use an atomic instruction in user space to implement fast
path for a lock (more in later lectures)

— If task needs to block, ask the kernel to put you on a given
futex wait queue

— Task that releases the lock wakes up next task on the futex
wait queue

See optional reading on futexes for more details

25

(L] COMP 790: OS Implementation

List of all threads
* A pain to maintain
* Mostly eliminated, but still needed to eliminate some
leaks in fork
* Generation counter is a useful trick for lazy deletion
— Used in many systems

— ldea: Transparently replace key “Foo” with “Foo:0”. Upon
deletion, require next creation to rename “Foo” to “Foo:1”.
Eliminates accidental use of stale data.

27

(L] COMP 790: OS Implementation

Optimizations
* Optimized exit performance for 100k threads from
15 minutes to 2 seconds!

* PID space increased to 2 billion threads
— /proc file system able to handle more than 64k processes

29

2/21/20

7‘ |l COMP 790: OS Implementation

Manager Thread
* Alot of coordination (using signals) had to go
through a manager thread
— E.g., cleaning up stacks of dead threads
— Scalability bottleneck
* Mostly eliminated with tweaks to kernel that
facilitate decentralization:
— The kernel handled several termination edge cases for
threads
— Kernel would write to a given memory location to allow
lazy cleanup of per-thread data

26

Wl COMP 790: OS Implementation

Other misc. optimizations
* On super-computers, were hitting the 8k limit on
segment descriptors
* Where does the 8k limit come from?
— Bits in the segment descriptor. Hardware-level limit
* How solved?
— Essentially, kernel scheduler swaps them out if needed
— Is this the common case?
— No, expect 8k to be enough

28

Wl COMP 790: OS Implementation

Results
* Big speedups! Yay!

30

(L[l

COMP 790: OS Implementation

Summary
* Nice paper on the practical concerns and trade-offs
in building a threading library
— | enjoyed this reading very much
* Understand 1:1 vs. m:n model
— User vs. kernel-level threading
* Understand other key implementation issues
discussed in the paper

31

2/21/20

