
4/22/20

1

COMP 790: OS Implementation

NFS

Don Porter

1

1

COMP 790: OS Implementation

Big picture
(from Sandberg et al.)

2

COMP 790: OS Implementation

Intuition
• Instead of translating VFS requests into hard drive

accesses, translate them into remote procedure calls
to a server

• Simple, right? I mean, what could possibly go
wrong?

3

COMP 790: OS Implementation

Challenges
• Server can crash or be disconnected
• Client can crash or be disconnected
• How to coordinate multiple clients accessing same

file?
• Security
• New failure modes for applications
– Goal: Invent VFS to avoid changing applications; use

network file system transparently

4

COMP 790: OS Implementation

Disconnection
• Just as a machine can crash between writes to the

hard drive, a client can crash between writes to the
server

• The server needs to think about how to recover if a
client fails between requests
– Ex: Imagine a protocol that just sends low-level disk

requests to a distributed virtual disk.
– What happens if the client goes away after marking a block

in use, but before doing anything with it?
– When is it safe to reclaim the block?
– What if, 3 months later, the client tries to use the block?

5

COMP 790: OS Implementation

Stateful protocols
• A stateful protocol has server state that persists

across requests (aka connections)
– Like the example on previous slide

• Server Challenges:
– Knowing when a connection has failed (timeout)
– Tracking state that needs to be cleaned up on a failure

• Client Challenges:
– If the server thinks we failed (timeout), recreating server

state to make progress

6

4/22/20

2

COMP 790: OS Implementation

Stateless protocol
• The (potentially) simpler alternative:
– All necessary state is sent with a single request
– Server implementation much simpler!

• Downside:
– May introduce more complicated messages
– And more messages in general

• Intuition: A stateless protocol is more like polling,
whereas a stateful protocol is more like interrupts
– How do you know when something changes on the server?

7

COMP 790: OS Implementation

NFS is stateless
• Every request sends all needed info
– User credentials (for security checking)
– File identifier and offset

• Each protocol-level request needs to match VFS-level
operation for reliability
– E.g., write, delete, stat

8

COMP 790: OS Implementation

Challenge 1: Lost request?
• What if I send a request to the NFS server, and

nothing happens for a long time?
– Did the message get lost in the network (UDP)?
– Did the server die?
– Don’t want to do things twice, like write data at the end of

a file twice
• Idea: make all requests idempotent or having the

same effect when executed multiple times
– Ex: write() has an explicit offset, same effect if done 2x

9

COMP 790: OS Implementation

Challenge 2: Inode reuse
• Suppose I open file ‘foo’ and it maps to inode 30
• Suppose another process unlinks file ‘foo’
– On a local file system, the file handle holds a reference to

the inode, preventing reuse
– NFS is stateless, so the server doesn’t know I have an open

handle
• The file can be deleted and the inode reused
• My request for inode 30 goes to the wrong file! Uh-oh!

10

COMP 790: OS Implementation

Generation numbers
• Each time an inode in NFS is recycled, its generation

number is incremented
• Client requests include an inode + generation

number
– Detect attempts to access an old inode

11

COMP 790: OS Implementation

Security
• Local uid/gid passed as part of the call
– Uids must match across systems
– Yellow pages (yp) service; evolved to NIS
– Replaced with LDAP or Active Directory

• Root squashing: if you access a file as root, you get
mapped to a bogus user (nobody)
– Is this effective security to prevent someone with root on

another machine from getting access to my files?

12

4/22/20

3

COMP 790: OS Implementation

File locking
• I want to be able to change a file without

interference from another client.
– I could get a server-side lock
– But what happens if the client dies?
– Lots of options (timeouts, etc), but very fraught
– Punted to a separate, optional locking service

13

COMP 790: OS Implementation

Removal of open files
• Unix allows you to delete an open file, and keep

using the file handle; a hassle for NFS
• On the client, check if a file is open before removing

it
• If so, rename it instead of deleting it
– .nfs* files in modern NFS

• When file is closed, then delete the file
• If client crashes, there is a garbage file left which

must be manually deleted

14

COMP 790: OS Implementation

Changing Permissions
• On Unix/Linux, once you have a file open, a

permission change generally won’t revoke access
– Permissions cached on file handle, not checked on inode
– Not necessarily true anymore in Linux
– NFS checks permissions on every read/write---introduces

new failure modes
• Similarly, you can have issues with an open file being

deleted by a second client
– More new failure modes for applications

15

COMP 790: OS Implementation

Time synchronization
• Each CPU’s clock ticks at slightly different rates
• These clocks can drift over time
• Tools like ‘make’ use modification timestamps to tell

what changed since the last compile
– In the event of too much drift between a client and server,

make can misbehave (tries not to)

• In practice, most systems sharing an NFS server also
run network time protocol (NTP) to same time server

16

COMP 790: OS Implementation

Cached writes
• A local file system sees performance benefits from

buffering writes in memory
– Rather than immediately sending all writes to disk
– E.g., grouping sequential writes into one request

• Similarly, NFS sees performance benefits from
caching writes at the client machine
– E.g., grouping writes into fewer synchronous requests

17

COMP 790: OS Implementation

Caches and consistency
• Suppose clients A and B have a file in their cache
• A writes to the file
– Data stays in A’s cache
– Eventually flushed to the server

• B reads the file
• Does B read the old contents or the new file

contents?

18

4/22/20

4

COMP 790: OS Implementation

Consistency
• Trade-off between performance and consistency
• Performance: buffer everything, write back when

convenient
– Other clients can see old data, or make conflicting updates

• Consistency: Write everything immediately;
immediately detect if another client is trying to write
same data
– Much more network traffic, lower performance
– Common case: accessing an unshared file

19

COMP 790: OS Implementation

Close-to-open consistency
• NFS Model: Flush all writes on a close
• When you open, you get the latest version on the

server
– Copy entire file from server into local cache

• Can definitely have weirdness when two clients
touch the same file

• Reasonable compromise between performance and
consistency

20

COMP 790: OS Implementation

Other optimizations
• Caching inode (stat) data and directory entries on the

client ended up being a big performance win
• So did read-ahead on the server
• And demand paging on the client

21

COMP 790: OS Implementation

NFS Evolution
• You read about what is basically version 2
• Version 3 (1995):
– 64-bit file sizes and offsets (large file support)
– Bundle file attributes with other requests to eliminate

more stats
– Other optimizations
– Still widely used today

22

COMP 790: OS Implementation

NFS V4 (2000)
• Attempts to address many of the problems of V3
– Security (eliminate homogeneous uid assumptions)
– Performance

• Becomes a stateful prototocol
• pNFS – proposed extensions for parallel, distributed

file accesses
• Slow adoption

23

COMP 790: OS Implementation

Summary
• NFS is still widely used, in part because it is simple

and well-understood
– Even if not as robust as its competitors

• You should understand architecture and key trade-
offs

• Basics of NFS protocol from paper

24

