
2/15/22

1

COMP 630: OS Implementation

Interrupts and System Calls

Don Porter

1

1

COMP 630: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s
Lecture

2

2

COMP 630: OS Implementation

Background: Control Flow

// x = 2,
// y = true
if (y) {

2 /= x;
printf(x);

} //...

void printf(va_args)
{

//...

}

Regular control flow: branches and calls
(logically follows source code)

pc

3

3

COMP 630: OS Implementation

Background: Control Flow

// x = 0,
// y = true
if (y) {

2 /= x;
printf(x);

} //...

void
handle_divzero(){

x = 2;

}

Irregular control flow: exceptions, system calls, etc.

pc Divide by zero!
Program can’t make

progress!

4

4

COMP 630: OS Implementation

Lecture goal
• Understand the hardware tools available for irregular

control flow.
– I.e., things other than a branch in a running program

• Building blocks for context switching, device
management, etc.

5

5

COMP 630: OS Implementation

Two types of interrupts
• Synchronous: will happen every time an instruction

executes (with a given program state)
– Divide by zero
– System call
– Bad pointer dereference

• Asynchronous: caused by an external event
– Usually device I/O
– Timer ticks (well, clocks can be considered a device)

6

6

2/15/22

2

COMP 630: OS Implementation

Intel nomenclature
• Interrupt – only refers to asynchronous interrupts
• Exception – synchronous control transfer

• Note: from the programmer’s perspective, these are
handled with the same abstractions

7

7

COMP 630: OS Implementation

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

8

8

COMP 630: OS Implementation

Interrupt overview
• Each interrupt or exception includes a number

indicating its type
• E.g., 14 is a page fault, 3 is a debug breakpoint
• This number is the index into an interrupt table

9

9

COMP 630: OS Implementation

x86 interrupt table

0 255

…

31

… …

47

Reserved for
the CPU

Software Configurable

Device IRQs 48 = JOS System
Call

128 = Linux
System Call

10

10

COMP 630: OS Implementation

x86 interrupt overview
• Each type of interrupt is assigned an index from 0—

255.
• 0—31 are for processor interrupts; generally fixed by

Intel
– E.g., 14 is always for page faults

• 32—255 are software configured
– 32—47 are for device interrupts (IRQs) in JOS

• Most device’s IRQ line can be configured
• Look up APICs for more info (Ch 4 of Bovet and Cesati)

– 0x80 issues system call in Linux (more on this later)

11

11

COMP 630: OS Implementation

Software interrupts
• The int <num> instruction allows software to

raise an interrupt
– 0x80 is just a Linux convention. JOS uses 0x30.

• There are a lot of spare indices
– You could have multiple system call tables for different

purposes or types of processes!
• Windows does: one for the kernel and one for win32k

12

12

2/15/22

3

COMP 630: OS Implementation

Software interrupts, cont
• OS sets ring level required to raise an interrupt
– Generally, user programs can’t issue an int 14 (page

fault) manually
– An unauthorized int instruction causes a general

protection fault
• Interrupt 13

13

13

COMP 630: OS Implementation

What happens (generally):
• Control jumps to the kernel
– At a prescribed address (the interrupt handler)

• The register state of the program is dumped on the
kernel’s stack
– Sometimes, extra info is loaded into CPU registers
– E.g., page faults store the address that caused the fault in

the cr2 register

• Kernel code runs and handles the interrupt
• When handler completes, resume program (see
iret instr.)

14

14

COMP 630: OS Implementation

How it works (HW)
• How does HW know what to execute?
• Where does the HW dump the registers; what does it

use as the interrupt handler’s stack?

15

15

COMP 630: OS Implementation

How is this configured?
• Kernel creates an array of Interrupt descriptors in

memory, called Interrupt Descriptor Table, or IDT
– Can be anywhere in memory
– Pointed to by special register (idtr)

• c.f., segment registers and gdtr and ldtr

• Entry 0 configures interrupt 0, and so on

16

16

COMP 630: OS Implementation

x86 interrupt table

0 255

…

31

… …

47

idtr

Linear Address of
Interrupt Table

17

17

COMP 630: OS Implementation

x86 interrupt table

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code
Segment Offset: &page_fault_handler //linear addr
Ring: 0 // kernel
Present: 1
Gate Type: Exception

14

18

18

2/15/22

4

COMP 630: OS Implementation

Interrupt Descriptor
• Code segment selector
– Almost always the same (kernel code segment)
– Recall, this was designed before paging on x86!

• Segment offset of the code to run
– Kernel segment is “flat”, so this is just the linear address

• Privilege Level (ring)
– Ring that can raise this interrupt with an int instruction

• Present bit – disable unused interrupts
• Gate type (interrupt or trap/exception) – more in a

bit
19

19

COMP 630: OS Implementation

x86 interrupt table

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code
Segment Offset: &breakpoint_handler //linear addr
Ring: 3 // user
Present: 1
Gate Type: Exception

3

20

20

COMP 630: OS Implementation

Interrupt Descriptors, ctd.
• In-memory layout is a bit confusing
– Like a lot of the x86 architecture, many interfaces were

later deprecated
• Worth comparing Ch 9.5 of the i386 manual with

inc/mmu.h in the JOS source code

21

21

COMP 630: OS Implementation

How it works (HW)
• How does HW know what to execute?
– Interrupt descriptor table specifies what code to run

• And at what privilege (via code segment)

– This can be set up once during boot for the whole system

• Where does the HW dump the registers; what does it
use as the interrupt handler’s stack?
– Specified in the Task State Segment

22

22

COMP 630: OS Implementation

Task State Segment (TSS)
• Another segment, just like the code and data

segment
– A descriptor created in the GDT (cannot be in LDT)
– Selected by special task register (tr)
– Unlike others, has a hardware-specified layout

• Lots of fields for rarely-used features
• Two features we care about in a modern OS:
– 1) Location of kernel stack (fields ss0/esp0)
– 2) I/O Port privileges (more in a later lecture)

23

23

COMP 630: OS Implementation

TSS, cont.
• Simple model: specify a TSS for each process
– Note: Only 2^13 entries in the GDT

• Optimization (JOS):
– Our kernel is pretty simple (uniprocessor only)
– Why not just share one TSS and kernel stack per-process?

• Linux generalization:
– One TSS per CPU
– Modify TSS fields as part of context switching

24

24

2/15/22

5

COMP 630: OS Implementation

Summary
• Most interrupt handling hardware state set during

boot
• Each interrupt has an IDT entry specifying:
– What code to execute, privilege level to raise the interrupt

• Stack to use specified in the TSS

25

25

COMP 630: OS Implementation

Comment
• Again, segmentation rears its head
• You can’t program OS-level code on x86 without

getting your hands dirty with it
• Helps to know which features are important when

reading the manuals

26

26

COMP 630: OS Implementation

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

27

27

COMP 630: OS Implementation

High-level goal
• Respond to some event, return control to the

appropriate process
• What to do on:
– Network packet arrives
– Disk read completion
– Divide by zero
– System call

28

28

COMP 630: OS Implementation

Interrupt Handlers
• Just plain old kernel code

29

29

COMP 630: OS Implementation

Example

User Kernel

Stack Stack

if (x) {
printf(“Boo”);
...

printf(va_args…){
...

Disk_handler (){
...

}

RSP

RIP

RSP

RIP

Disk
Interrupt!

30

30

2/15/22

6

COMP 630: OS Implementation

Complication:
• What happens if I’m in an interrupt handler, and

another interrupt comes in?
– Note: kernel stack only changes on privilege level change
– Nested interrupts just push the next frame on the stack

• What could go wrong?
– Violate code invariants
– Deadlock
– Exhaust the stack (if too many fire at once)

31

31

COMP 630: OS Implementation

Example

User Kernel

Stack Stack

if (x) {
printf(“Boo”);
...

printf(va_args…){
...

disk_handler (){
lock_kernel();
...
unlock_kernel();

...

RSP

RIP

net_handler (){
lock_kernel();
…

Network
Interrupt!

Will Hang Forever!
Already Locked!!!

32

32

COMP 630: OS Implementation

Bottom Line:
• Interrupt service routines must be reentrant or

synchronize
• Period.

33

33

COMP 630: OS Implementation

Hardware interrupt sync.
• While a CPU is servicing an interrupt on a given IRQ

line, the same IRQ won’t raise another interrupt until
the routine completes
– Bottom-line: device interrupt handler doesn’t have to

worry about being interrupted by itself

• A different device can interrupt the handler
– Problematic if they share data structures
– Like a list of free physical pages…
– What if both try to grab a lock for the free list?

34

34

COMP 630: OS Implementation

Disabling interrupts
• An x86 CPU can disable I/O interrupts
– Clear bit 9 of the EFLAGS register (IF Flag)
– cli and sti instructions clear and set this flag

• Before touching a shared data structure (or grabbing
a lock), an interrupt handler should disable I/O
interrupts

35

35

COMP 630: OS Implementation

Gate types
• Recall: an IDT entry can be an interrupt or an

exception gate
• Difference?
– An interrupt gate automatically disables all other

interrupts (i.e., clears and sets IF on enter/exit)
– An exception gate doesn’t

• This is just a programmer convenience: you could do
the same thing in software

36

36

2/15/22

7

COMP 630: OS Implementation

Exceptions
• You can’t mask exceptions
– Why not?

• Can’t make progress after a divide-by-zero

– Double and Triple faults detect faults in the kernel

• Do exception handlers need to be reentrant?
– Not if your kernel has no bugs (or system calls in itself)
– In certain cases, Linux allows nested page faults

• E.g., to detect errors copying user-provided buffers

37

37

COMP 630: OS Implementation

Summary
• Interrupt handlers need to synchronize, both with

locks (multi-processor) and by disabling interrupts
(same CPU)

• Exception handlers can’t be masked
– Nested exceptions generally avoided

38

38

COMP 630: OS Implementation

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

39

39

COMP 630: OS Implementation

System call “interrupt”
• Originally, system calls issued using int instruction
• Dispatch routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table
– See arch/x86/kernel/syscall_table*.S in Linux source

• Program selects the one it wants by placing index in
eax register
– Arguments go in the other registers by calling convention
– Return value goes in eax

40

40

COMP 630: OS Implementation

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

41

41

COMP 630: OS Implementation

Around P4 era…
• Processors got very deeply pipelined
– Pipeline stalls/flushes became very expensive
– Cache misses can cause pipeline stalls

• System calls took twice as long from P3 to P4
– Why?
– IDT entry may not be in the cache
– Different permissions constrain instruction reordering

42

42

2/15/22

8

COMP 630: OS Implementation

Idea
• What if we cache the IDT entry for a system call in a

special CPU register?
– No more cache misses for the IDT!
– Maybe we can also do more optimizations

• Assumption: system calls are frequent enough to be
worth the transistor budget to implement this
– What else could you do with extra transistors that helps

performance?

43

43

COMP 630: OS Implementation

AMD: syscall/sysret
• These instructions use MSRs (machine specific

registers) to store:
– Syscall entry point and code segment
– Kernel stack

• A drop-in replacement for int 0x80
• Everyone loved it and adopted it wholesale
– Even Intel!

44

44

COMP 630: OS Implementation

Aftermath
• Getpid() on my desktop machine (recent AMD 6-

core):
– Int 80: 371 cycles
– Syscall: 231 cycles

• So system calls are definitely faster as a result!

45

45

COMP 630: OS Implementation

In JOS
• You will use the int instruction to implement system

calls
• There is a challenge problem in lab 3 (i.e., extra

credit) to use systenter/sysexit
– Note that there are some more details about register

saving to deal with
– Syscall/sysret is a bit too trivial for extra credit

• But still cool if you get it working!

46

46

COMP 630: OS Implementation

Summary
• Interrupt handlers are specified in the IDT
• Understand when nested interrupts can happen
– And how to prevent them when unsafe

• Understand optimized system call instructions
– Be able to explain syscall vs. int 80

47

47

