
4/15/20

1

COMP 790: OS Implementation

Device I/O Programming

Don Porter

1

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

2

Today’s Lecture

2

COMP 790: OS Implementation

Overview
• Many artifacts of hardware evolution
– Configurability isn’t free
– Bake-in some reasonable assumptions
– Initially reasonable assumptions get stale
– Find ways to work-around going forward

• Keep backwards compatibility

• General issues and abstractions

3

COMP 790: OS Implementation

PC Hardware Overview

• From wikipedia
• Replace AGP with PCIe
• Northbridge being

absorbed into CPU on
newer systems

• This topology is (mostly)
abstracted from
programmer

4

COMP 790: OS Implementation

I/O Ports
• Initial x86 model: separate memory and I/O space
– Memory uses virtual addresses
– Devices accessed via ports

• A port is just an address (like memory)
– Port 0x1000 is not the same as address 0x1000
– Different instructions – inb, inw, outl, etc.

5

COMP 790: OS Implementation

More on ports
• A port maps onto input pins/registers on a device
• Unlike memory, writing to a port has side-effects
– “Launch” opcode to /dev/missiles
– So can reading!
– Memory can safely duplicate operations/cache results

• Idiosyncrasy: composition doesn’t necessarily work
– outw 0x1010 <port> != outb 0x10 <port>

outb 0x10 <port+1>

6

4/15/20

2

COMP 790: OS Implementation

Parallel port (+I/O ports)
(from Linux Device Drivers)

7

COMP 790: OS Implementation

Port permissions
• Can be set with IOPL flag in EFLAGS
• Or at finer granularity with a bitmap in task state

segment
– Recall: this is the “other” reason people care about the TSS

8

COMP 790: OS Implementation

Buses
• Buses are the computer’s “plumbing” between major

components
• There is a bus between RAM and CPUs
• There is often another bus between certain types of

devices
– For inter-operability, these buses tend to have standard

specifications (e.g., PCI, ISA, AGP)
– Any device that meets bus specification should work on a

motherboard that supports the bus

9

COMP 790: OS Implementation

Clocks (again, but different)
• CPU Clock Speed: What does it mean at electrical

level?
– New inputs raise current on some wires, lower on others
– How long to propagate through all logic gates?
– Clock speed sets a safe upper bound

• Things like distance, wire size can affect propagation time

– At end of a clock cycle read outputs reliably
• May be in a transient state mid-cycle

• Not talking about timer device, which raises
interrupts at wall clock time; talking about CPU GHz

10

COMP 790: OS Implementation

Clock imbalance
• All processors have a clock
– Including the chips on every device in your system
– Network card, disk controller, usb controler, etc.
– And bus controllers have a clock

• Think now about older devices on a newer CPU
– Newer CPU has a much faster clock cycle
– It takes the older device longer to reliably read input from

a bus than it does for the CPU to write it

11

COMP 790: OS Implementation

More clock imbalance
– Ex: a CPU might be able to write 4 different values into a

device input register before the device has finished one clock
cycle

• Driver writer needs to know this
– Read from manuals

• Driver must calibrate device access frequency to
device speed
– Figure out both speeds, do math, add delays between ops
– You will do this in lab 6! (outb 0x80 is handy!)

12

4/15/20

3

COMP 790: OS Implementation

CISC silliness?
• Is there any good reason to use dedicated

instructions and address space for devices?
• Why not treat device input and output registers as

regions of physical memory?

13

COMP 790: OS Implementation

Simplification
• Map devices onto regions of physical memory
– Hardware basically redirects these accesses away from

RAM at same location (if any), to devices
– A bummer if you “lose” some RAM

• Win: Cast interface regions to a structure
– Write updates to different areas using high-level languages
– Still subject to timing, side-effect caveats

14

COMP 790: OS Implementation

Optimizations
• How does the compiler (and CPU) know which

regions have side-effects and other constraints?
– It doesn’t: programmer must specify!

15

COMP 790: OS Implementation

Optimizations (2)
• Recall: Common optimizations (compiler and CPU)
– Out-of-order execution
– Reorder writes
– Cache values in registers

• When we write to a device, we want the write to
really happen, now!
– Do not keep it in a register, do not collect $200

• Note: both CPU and compiler optimizations must be
disabled

16

COMP 790: OS Implementation

volatile keyword
• A volatile variable cannot be cached in a register
– Writes must go directly to memory
– Reads must always come from memory/cache

• volatile code blocks cannot be reordered by the
compiler
– Must be executed precisely at this point in program
– E.g., inline assembly

• __volatile__ means I really mean it!

17

COMP 790: OS Implementation

Compiler barriers
• Inline assembly has a set of clobber registers
– Hand-written assembly will clobber them
– Compiler’s job is to save values back to memory before

inline asm; no caching anything in these registers

• “memory” says to flush all registers
– Ensures that compiler generates code for all writes to

memory before a given operation

18

4/15/20

4

COMP 790: OS Implementation

CPU Barriers
• Advanced topic: Don’t need details
• Basic idea: In some cases, CPU can issue loads and

stores out of program order (optimize perf)
– Subject to many constraints on x86 in practice

• In some cases, a “fence” instruction is required to
ensure that pending loads/stores happen before the
CPU moves forward
– Rarely needed except in device drivers and lock-free data

structures

19

COMP 790: OS Implementation

Configuration
• Where does all of this come from?
– Who sets up port mapping and I/O memory mappings?
– Who maps device interrupts onto IRQ lines?

• Generally, the BIOS
– Sometimes constrained by device limitations
– Older devices hard-coded IRQs
– Older devices may only have a 16-bit chip

• Can only access lower memory addresses

20

COMP 790: OS Implementation

ISA memory hole
• Recall the “memory hole” from lab 2?
– 640 KB – 1 MB

• Required by the old ISA bus standard for I/O
mappings
– No one in the 80s could fathom > 640 KB of RAM
– Devices sometimes hard-coded assumptions that they

would be in this range
– Generally reserved on x86 systems (like JOS)
– Strong incentive to save these addresses when possible

21

COMP 790: OS Implementation

New hotness: PCI
• Hard-coding things is bad
– Willing to pay for flexibility in mapping devices to IRQs and

memory regions
• Guessing what device you have is bad
– On some devices, you had to do something to create an

interrupt, and see what fired on the CPU to figure out
what IRQ you had

– Need a standard interface to query configurations

22

COMP 790: OS Implementation

More flexibility
• PCI addressing (both memory and I/O ports) are

dynamically configured
– Generally by the BIOS
– But could be remapped by the kernel

• Configuration space
– 256 bytes per device (4k per device in PCIe)
– Standard layout per device, including unique ID
– Big win: standard way to figure out my hardware, what to

load, etc.

23

COMP 790: OS Implementation

PCI Configuration Layout
From device driver book

24

4/15/20

5

COMP 790: OS Implementation

PCI Overview
• Most desktop systems have 2+ PCI buses
– Joined by a bridge device
– Forms a tree structure (bridges have children)

25

COMP 790: OS Implementation

PCI Layout
From Linux Device Drivers

26

COMP 790: OS Implementation

PCI Addressing
• Each peripheral listed by:
– Bus Number (up to 256 per domain or host)

• A large system can have multiple domains

– Device Number (32 per bus)
– Function Number (8 per device)

• Function, as in type of device, not a subroutine
• E.g., Video capture card may have one audio function and one

video function

• Devices addressed by a 16 bit number

27

COMP 790: OS Implementation

PCI Interrupts
• Each PCI slot has 4 interrupt pins
• Device does not worry about how those are mapped

to IRQ lines on the CPU
– An APIC or other intermediate chip does this mapping

• Bonus: flexibility!
– Sharing limited IRQ lines is a hassle. Why?

• Trap handler must demultiplex interrupts

– Being able to “load balance” the IRQs is useful

28

COMP 790: OS Implementation

Direct Memory Access (DMA)
• Simple memory read/write model bounces all I/O

through the CPU
– Fine for small data, totally awful for huge data

• Idea: just write where you want data to go (or come
from) to device
– Let device do bulk data transfers into memory without CPU

intervention
– Interrupt CPU on I/O completion (asynchronous)

29

COMP 790: OS Implementation

DMA Buffers
• DMA buffers must be physically contiguous
• Devices do not go through page tables
• Some buses (SBus) can use virtual addresses; most

(PCI) use physical (avoid page translation overheads)

30

4/15/20

6

COMP 790: OS Implementation

Ring buffers
• Many devices pre-allocate a “ring” of buffers
– Think network card

• Device writes into ring; CPU reads behind
• If ring is well-sized to the load:
– No dynamic buffer allocation
– No stalls

• Trade-off between device stalls (or dropped packets)
and memory overheads

31

COMP 790: OS Implementation

IOMMU
• It is a pain to allocate physically contiguous regions
• Idea: “virtual addresses” for devices
– We can take random physical pages and make them look

contiguous to the device
– Called “Bus address” for clarity

• New to the x86 (called VT-d)
– Until very recently, x86 kernels just suffered

32

COMP 790: OS Implementation

A note on memory protection
• If I can write to a network card’s control register and

tell it where to write the next packet
– What if I give it an address used for something else?

• Like another process’s address space

– Nothing stops this
• DMA privilege effectively equals privilege to write to

any address in physical memory!

33

COMP 790: OS Implementation

Why does x86 now care about IOMMUs?
• Virtualization! (VT-d)
• Scenario: system with 4 NICs, 4 VMs
• Without IOMMU: Hypervisor must mediate all

network traffic
• With IOMMU: Each VM can have a different virtual

bus address space
– Looks like a single NIC; can only issue DMAs for its own

memory (not other VM’s memory)
– No Hypervisor mediation needed!

34

COMP 790: OS Implementation

VT-d Limitations
• IOMMU device restrictions are all-or-nothing
– Can’t share a network card
– Although some devices may fix this too

• VT-d is only for devices on the PCI-Express bus
– Usually just graphics and high-end network cards
– Legacy PCI devices are behind a bridge

• All-or-nothing for an entire bridge

– Similarly, no per-disk access control
• All-or-nothing for disk controller (which multiplexes disks)

35

COMP 790: OS Implementation

Summary
• How to access devices: ports or memory
• Issues with CPU optimizations, timing delays, etc.
• Overview of PCI bus
• Overview of DMA and protection issues
– IOMMU and use for virtualization

36

