
COMP 630: OS Implementation

Process Address Spaces
and Binary Formats

Don Porter

1

COMP 630: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators ThreadsToday’s

Lecture

2

COMP 630: OS Implementation

Review
• We’ve seen how paging and segmentation work on

x86
– Maps logical addresses to physical pages
– These are the low-level hardware tools

• This lecture: build up to higher-level abstractions
• Namely, the process address space

3

COMP 630: OS Implementation

Definitions (can vary)
• Process is a virtual address space
– 1+ threads of execution work within this address space

• A process is composed of:
– Memory-mapped files

• Includes program binary

– Anonymous pages: no file backing
• When the process exits, their contents go away

4

COMP 630: OS Implementation

Address Space Layout
• Determined (mostly) by the application
• Determined at compile time
– Link directives can influence this

• See kern/kernel.ld in JOS; specifies kernel starting address

• OS usually reserves part of the address space to map
itself
– Upper GB on x86 Linux

• Application can dynamically request new mappings
from the OS, or delete mappings

5

COMP 630: OS Implementation

Simple Example

Virtual Address Space

0 0xffffffff

hello libc.soheap

• “Hello world” binary specified load address
• Also specifies where it wants libc
• Dynamically asks kernel for “anonymous” pages for

its heap and stack

stk

6

COMP 630: OS Implementation

In practice
• You can see (part of) the requested memory layout

of a program using ldd:
$ ldd /usr/bin/git
linux-vdso.so.1 => (0x00007fff197be000)
libz.so.1 => /lib/libz.so.1 (0x00007f31b9d4e000)
libpthread.so.0 => /lib/libpthread.so.0

(0x00007f31b9b31000)
libc.so.6 => /lib/libc.so.6 (0x00007f31b97ac000)
/lib64/ld-linux-x86-64.so.2 (0x00007f31b9f86000)

7

COMP 630: OS Implementation

Problem 1: How to represent in the kernel?
• What is the best way to represent the components of

a process?
– Common question: is mapped at address x?

• Page faults, new memory mappings, etc.

• Hint: a 64-bit address space is seriously huge
• Hint: some programs (like databases) map tons of

data
– Others map very little

• No one size fits all

8

COMP 630: OS Implementation

Sparse representation
• Naïve approach might make a big array of pages
– Mark empty space as unused
– But this wastes OS memory

• Better idea: only allocate nodes in a data structure
for memory that is mapped to something
– Kernel data structure memory use proportional to

complexity of address space!

9

COMP 630: OS Implementation

Linux: vm_area_struct
• Linux represents portions of a process with a

vm_area_struct, or vma
• Includes:
– Start address (virtual)
– End address (first address after vma) – why?

• Memory regions are page aligned

– Protection (read, write, execute, etc) – implication?
• Different page protections means new vma

– Pointer to file (if one)
– Other bookkeeping

10

COMP 630: OS Implementation

Simple list representation

Process Address Space0 0xffffffff

vma
/bin/ls

start end

next

vma
anon
(data)

vma
libc.so

mm_struct
(process)

11

COMP 630: OS Implementation

Simple list
• Linear traversal – O(n)
– Shouldn’t we use a data structure with the smallest O?

• Practical system building question:
– What is the common case?
– Is it past the asymptotic crossover point?

• If tree traversal is O(log n), but adds bookkeeping
overhead, which makes sense for:
– 10 vmas: log 10 =~ 3; 10/2 = 5; Comparable either way
– 100 vmas: log 100 starts making sense

12

COMP 630: OS Implementation

Common cases
• Many programs are simple
– Only load a few libraries
– Small amount of data

• Some programs are large and complicated
– Databases

• Linux splits the difference and uses both a list and a
red-black tree

13

COMP 630: OS Implementation

Red-black trees
• (Roughly) balanced tree
• Read the wikipedia article if you aren’t familiar with

them
• Popular in real systems
– Asymptotic average == worst case behavior

• Insertion, deletion, search: log n
• Traversal: n

14

COMP 630: OS Implementation

Optimizations
• Using an RB-tree gets us logarithmic search time
• Other suggestions?
• Locality: If I just accessed region x, there is a

reasonably good chance I’ll access it again
– Linux caches a pointer in each process to the last vma

looked up
– Source code (mm/mmap.c) claims 35% hit rate

15

COMP 630: OS Implementation

Memory mapping recap
• VM Area structure tracks regions that are mapped
– Efficiently represent a sparse address space
– On both a list and an RB-tree

• Fast linear traversal
• Efficient lookup in a large address space

– Cache last lookup to exploit temporal locality

16

COMP 630: OS Implementation

Linux APIs
• mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);
• munmap(void *addr, size_t length);

• How to create an anonymous mapping?
• What if you don’t care where a memory region goes

(as long as it doesn’t clobber something else)?

17

COMP 630: OS Implementation

Example 1:
• Let’s map a 1 page (4k) anonymous region for data,

read-write at address 0x40000
• mmap(0x40000, 4096, PROT_READ|PROT_WRITE,

MAP_ANONYMOUS, -1, 0);
– Why wouldn’t we want exec permission?

18

COMP 630: OS Implementation

Insert at 0x40000

0x1000-0x4000

mm_struct
(process)

0x20000-0x21000 0x100000-0x10f000

1) Is anything already mapped at 0x40000-0x41000?
2) If not, create a new vma and insert it
3) Recall: pages will be allocated on demand

19

COMP 630: OS Implementation

Scenario 2
• What if there is something already mapped there

with read-only permission?
– Case 1: Last page overlaps
– Case 2: First page overlaps
– Case 3: Our target is in the middle

20

COMP 630: OS Implementation

Case 1: Insert at 0x40000

0x1000-0x4000

mm_struct
(process)

0x20000-0x41000 0x100000-0x10f000

1) Is anything already mapped at 0x40000-0x41000?
2) If at the end and different permissions:

1) Truncate previous vma
2) Insert new vma

3) If permissions are the same, one can replace pages
and/or extend previous vma

21

COMP 630: OS Implementation

Case 3: Insert at 0x40000

0x1000-0x4000

mm_struct
(process)

0x20000-0x50000 0x100000-0x10f000

1) Is anything already mapped at 0x40000-0x41000?
2) If in the middle and different permissions:

1) Split previous vma
2) Insert new vma

22

COMP 630: OS Implementation

Demand paging
• Creating a memory mapping (vma) doesn’t

necessarily allocate physical memory or setup page
table entries
– What mechanism do you use to tell when a page is

needed?
• It pays to be lazy!
– A program may never touch the memory it maps.

• Examples?
– Program may not use all code in a library

– Save work compared to traversing up front
– Hidden costs? Optimizations?

• Page faults are expensive; heuristics could help performance

23

COMP 630: OS Implementation

Unix fork()
• Recall: this function creates and starts a copy of the

process; identical except for the return value
• Example:
int pid = fork();
if (pid == 0) {

// child code
} else if (pid > 0) {

// parent code
} else // error

24

COMP 630: OS Implementation

Copy-On-Write (COW)
• Naïve approach would march through address space

and copy each page
– Most processes immediately exec() a new binary

without using any of these pages
– Again, lazy is better!

25

COMP 630: OS Implementation

How does COW work?
• Memory regions:
– New copies of each vma are allocated for child during fork
– As are page tables

• Pages in memory:
– In page table (and in-memory representation), clear write

bit, set COW bit
• Is the COW bit hardware specified?
• No, OS uses one of the available bits in the PTE

– Make a new, writeable copy on a write fault

26

COMP 630: OS Implementation

New Topic: Stacks

27

COMP 630: OS Implementation

Idiosyncrasy 1: Stacks Grow Down
• In Linux/Unix, as you add frames to a stack, they

actually decrease in virtual address order
• Example:

main()

foo()

bar()

Stack “bottom” – 0x13000

0x12600

0x12300

0x11900

Exceeds stack
pageOS allocates a

new page

28

COMP 630: OS Implementation

Problem 1: Expansion
• Recall: OS is free to allocate any free page in the

virtual address space if user doesn’t specify an
address

• What if the OS allocates the page below the “top” of
the stack?
– You can’t grow the stack any further
– Out of memory fault with plenty of memory spare

• OS must reserve stack portion of address space
– Fortunate that memory areas are demand paged

29

COMP 630: OS Implementation

• Unix has been around longer than paging
– Remember data segment abstraction?
– Unix solution:

• Stack and heap meet in the middle
– Out of memory when they meet

Heap Stack

Feed 2 Birds with 1 Scone

Data Segment

Grows Grows

30

COMP 630: OS Implementation

But now we have paging
• Unix and Linux still have a data segment abstraction
– Even though they use flat data segmentation!

• sys_brk() adjusts the endpoint of the heap
– Still used by many memory allocators today

31

COMP 630: OS Implementation

Windows Comparison
• LPVOID VirtualAllocEx(__in HANDLE hProcess,

__in_opt LPVOID lpAddress,
__in SIZE_T dwSize,
__in DWORD flAllocationType,
__in DWORD flProtect);

• Library function applications program to
– Provided by ntdll.dll – the rough equivalent of Unix libc
– Implemented with an undocumented system call

32

COMP 630: OS Implementation

Windows Comparison
• LPVOID VirtualAllocEx(__in HANDLE hProcess,

__in_opt LPVOID lpAddress,
__in SIZE_T dwSize,
__in DWORD flAllocationType,
__in DWORD flProtect);

• Programming environment differences:
– Parameters annotated (__out, __in_opt, etc), compiler

checks
– Name encodes type, by convention
– dwSize must be page-aligned (just like mmap)

33

COMP 630: OS Implementation

Windows Comparison
• LPVOID VirtualAllocEx(__in HANDLE hProcess,

__in_opt LPVOID lpAddress,
__in SIZE_T dwSize,
__in DWORD flAllocationType,
__in DWORD flProtect);

• Different capabilities
– hProcess doesn’t have to be you! Pros/Cons?
– flAllocationType – can be reserved or committed

• And other flags

34

COMP 630: OS Implementation

Reserved memory
• An explicit abstraction for cases where you want to

prevent the OS from mapping anything to an address
region

• To use the region, it must be remapped in the
committed state

• Why?
– My speculation: Gives the OS more information for

advanced heuristics than demand paging

35

COMP 630: OS Implementation

Part 1 Summary
• Understand what a vma is, how it is manipulated in

kernel for calls like mmap
• Demand paging, COW, and other optimizations
• brk and the data segment
• Windows VirtualAllocEx() vs. Unix mmap()

36

COMP 630: OS Implementation

Part 2: Program Binaries
• How are address spaces represented in a binary file?
• How are processes loaded?

37

COMP 630: OS Implementation

Linux: ELF
• Executable and Linkable Format
• Standard on most Unix systems
– And used in JOS
– You will implement part of the loader in lab 3

• 2 headers:
– Program header: 0+ segments (memory layout)
– Section header: 0+ sections (linking information)

38

COMP 630: OS Implementation

Helpful tools
• readelf - Linux tool that prints part of the elf headers
• objdump – Linux tool that dumps portions of a

binary
– Includes a disassembler; reads debugging symbols if

present

39

COMP 630: OS Implementation

Key ELF Sections
• .text – Where read/execute code goes
– Can be mapped without write permission

• .data – Programmer initialized read/write data
– Ex: a global int that starts at 3 goes here

• .bss – Uninitialized data (initially zero by convention)
• Many other sections

40

COMP 630: OS Implementation

How ELF Loading Works
• execve(“foo”, …)
• Kernel parses the file enough to identify whether it is

a supported format
– Kernel loads the text, data, and bss sections

• ELF header also gives first instruction to execute
– Kernel transfers control to this application instruction

41

COMP 630: OS Implementation

Static vs. Dynamic Linking
• Static Linking:
– Application binary is self-contained

• Dynamic Linking:
– Application needs code and/or variables from an external

library

• How does dynamic linking work?
– Each binary includes a “jump table” for external references
– Jump table is filled in at run time by the loader

42

COMP 630: OS Implementation

Jump table example
• Suppose I want to call foo() in another library
• Compiler allocates an entry in the jump table for foo
– Say it is index 3, and an entry is 8 bytes

• Compiler generates local code like this:
– mov rax, 24(rbx) // rbx points to the

// jump table
– call *rax

• Loader initializes the jump tables at runtime

43

COMP 630: OS Implementation

Dynamic Linking (Overview)
• Rather than loading the application, load the loader

(ld.so), give the loader the actual program as an
argument

• Kernel transfers control to loader (in user space)
• Loader:
– 1) Walks the program’s ELF headers to identify needed

libraries
– 2) Issue mmap() calls to map in said libraries
– 3) Fix the jump tables in each binary
– 4) Call main()

44

COMP 630: OS Implementation

Recap
• Understand basics of program loading
• OS does preliminary executable parsing, maps in

program and maybe dynamic loader
• Loader does needed fixup for the program to work

45

COMP 630: OS Implementation

Summary
• We’ve seen a lot of details on how programs are

represented:
– In the kernel when running
– On disk in an executable file
– And how they are bootstrapped in practice

• Will help with lab 3

46

