
COMP 530: Operating Systems

Processes

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

App

What is a process?

2-2

Hardware

Libraries

Kernel

User

Super-
visor

App

Libraries

Daemon

Libraries

System Call Table (350—1200)

Intuitively,
one of
these

COMP 530: Operating Systems

What is a process?
• A process is a program during execution.

– Program = static file (image)
– Process = executing program = program + execution state.

• A process is the basic unit of execution in an operating system
– Each process has a number, its process identifier (pid).

• Different processes may run different instances of the same program
– E.g., my javac and your javac process both run the Java compiler

• At a minimum, process execution requires following resources:
– Memory to contain the program code and data
– A set of CPU registers to support execution

3

COMP 530: Operating Systems

• We write a program in e.g., Java.
• A compiler turns that program into an instruction list.
• The CPU interprets the instruction list (which is more a graph of basic

blocks).

void X (int b) {

 if(b == 1) {

…

int main() {

 int a = 2;
 X(a);

}

Program to process

COMP 530: Operating Systems

void X (int b) {

 if(b == 1) {

…

int main() {

 int a = 2;
 X(a);

}

What you wrote:

void X (int b) {

 if(b == 1) {

…

int main() {

 int a = 2;
 X(a);

} Code

main; a = 2
X; b = 2

Heap

Stack

Process in memory
What is in memory:

Data

COMP 530: Operating Systems

Processes in your computer
• Windows: Look at task manager (via Ctrl+Alt+Del)
• Mac/Linux: ps -eaf

6

COMP 530: Operating Systems

Putting the pieces together
• Programmer (you): Writes code using symbolic names

(x, foo, bar)
• CPU: Expects instructions that use memory addresses

– Recall from COMP 311 (or other assembly course):
• What are the operands for load, store, branch, jump, etc.?
• Addresses!

– MIPS example: ld 0x1000, %r1

• Compiler: Converts symbolic names to memory locations
– And stores “memory blueprints” in binary file/executable

• OS loader: Arranges memory to match “blueprints” when
creating a process

7

COMP 530: Operating Systems

Where do processes come from?
• When I type ‘./a.out’, the binary runs, right?

– Really only true for static binaries (more on this later)

• In reality, a loader sets up the program
– Usually a user-level program
– Can also be in-kernel, or split between both

8

COMP 530: Operating Systems

Where do processes come from?
• In order to run a program, the loader:

– reads and interprets the executable file
– sets up the process’s memory to contain the code & data from

executable
– pushes “argc”, “argv” on the stack
– sets the CPU registers properly & calls “_start()”

• Program starts running at _start()
_start(args) {
 initialize_java();
 ret = main(args);
 exit(ret)
}

“process” is now running; no longer think of “program”

• When main() returns, OS calls “exit()” which destroys the
process and returns all resources

9What bookkeeping does the OS need for processes?

COMP 530: Operating Systems

• A process has code.
– OS must track program counter (code location).

• A process has a stack.
– OS must track stack pointer.

• OS stores state of processes’ computation in a
process control block (PCB).
– E.g., each process has an identifier (process identifier,

or PID)
• Data (program instructions, stack & heap) resides

in memory, metadata is in PCB (which is a kernel
data structure in memory)

Keeping track of a process

COMP 530: Operating Systems

Context Switching
• The OS periodically switches execution from one

process to another
• Called a context switch, because the OS saves one

execution context and loads another

COMP 530: Operating Systems

What causes context switches?
• Waiting for I/O (disk, network, etc.)

– Might as well use the CPU for something useful
– Called a blocked state

• Timer interrupt (preemptive multitasking)
– Even if a process is busy, we need to be fair to other

programs

• Voluntary yielding (cooperative multitasking)
• A few others

– Synchronization, IPC, etc.

COMP 530: Operating Systems

Credit where credit is due
• Brilliant (and ubiquitous) instruction set architecture

design for context switching:
• All execution context effectively captured in CPU

registers.
• Context switch largely amounts:

– Barfing register contents for one process to memory
– Slurping register contents for another from memory into

registers

13

COMP 530: Operating Systems

• OS stores state of processes’ computation in a
process control block (PCB).
– E.g., each process has an identifier (process identifier,

or PID)
• Data (program instructions, stack & heap) resides

in memory, metadata is in PCB (which is a kernel
data structure in memory)

• PCB stores this register state

Keeping track of a process, redux

COMP 530: Operating Systems

Process life cycle
• Processes are always either:

– Executing
– Waiting to execute, or
– Blocked waiting for an event to occur

15

RunningReady

Blocked

Start Done

COMP 530: Operating Systems

Operating System

“System Software”

User Process 1

User Program 2User Process 2

User Process n

...
Process 1 Process 2OS I/O

Device

k: read()

k+1:

startIO()

endio{ interrupt

main{

main{

}

read{

}

}

schedule()

Memory

save
state schedule()

restore
state

save
state

Process contexts

COMP 530: Operating Systems

1. Ready
2. Running
3. Blocked
4. Zombie
5. Exited

When a process is waiting for I/O, what is
its state?

COMP 530: Operating Systems

CPU Scheduling
• Problem of choosing which process to run next

– And for how long until the next process runs

• Why bother?
– Improve performance: amortize context switching costs
– Improve user experience: e.g., low latency keystrokes
– Priorities: favor “important” work over background work
– Fairness

18We will cover techniques later

COMP 530: Operating Systems

When does scheduling happen?
• When a process blocks
• When a device interrupts the CPU to indicate an

event occurred (possibly un-blocking a process)
• When a process yields the CPU

• Preemptive scheduling: Setting a timer to interrupt
the CPU after some time
– Places an upper bound on how long a CPU-bound process

can run without giving another process a turn
• Non-preemptive scheduling: Processes must

explicitly yield the CPU

19

COMP 530: Operating Systems

• OS uses PCBs to represent a process
• Every resource is represented with a queue
• OS puts PCB on an appropriate queue.

– Ready to run queue.
– Blocked for IO queue (Queue per device).
– Zombie queue.

• When CPU becomes available, choose from
ready to run queue

• When an event occurs, remove waiting
process from blocked queue, move to ready
queue.

Scheduling processes

COMP 530: Operating Systems

Consider a Web server:
 get network message (URL) from client
 fetch URL data from disk
 compose response
 send response

How well does this web server perform?
With many incoming requests?

That access data all over the disk?

Why use multiple processes in one app?

A single process cannot overlap CPU and I/O

COMP 530: Operating Systems

Consider a Web server
 get network message (URL) from client
 create child process, send it URL
 Child
 fetch URL data from disk
 compose response
 send response

Now the child can block on I/O, parent keeps working
Different children can block on reading different files

How does server know if child succeeded or failed?

Why use multiple processes in one app?

COMP 530: Operating Systems

• After the program finishes execution, it calls exit()
• This system call:

– takes the “result” of the program as an argument
– closes all open files, connections, etc.
– deallocates memory
– deallocates most of the OS structures supporting the process
– checks if parent is alive:

v If so, it holds the result value until parent requests it; in this case, process does not
really die, but it enters the zombie/defunct state

v If not, it deallocates all data structures, the process is dead

• Process termination is the ultimate garbage collection

Orderly termination: exit()

Web server ex: Child uses exit code for success/failure

COMP 530: Operating Systems

• Child returns a value to parent via exit()
• The parent receives this value with wait()

• Specifically, wait():
– Blocks the parent until child finishes (need a wait queue)
– When a child calls exit(), the OS unblocks the parent and returns the value

passed by exit() as a result of the wait() call (along with the pid of the child)
– If there are no children alive, wait() returns immediately

The wait() system call

COMP 530: Operating Systems

Zombies!!!

25

• A parent can wait indefinitely to call wait()
• The OS to store the exit code for a finished child until

the parent calls wait()
• Hack: Keep PCB for dead processes around until:

– Parent calls wait(), or
– Parent exit()s (don’t need to wait() on grandkids)

• And that is a zombie (done state)
– Will not be scheduled again

COMP 530: Operating Systems

Where do processes come from? (redux)
• Parent/child model
• An existing program has to spawn a new one

– Most OSes have a special ‘init’ program that launches
system services, logon daemons, etc.

– When you log in (via a terminal or ssh), the login program
spawns your shell

COMP 530: Operating Systems

Approach 1: Windows CreateProcess
• In Windows, when you create a new process, you

specify the program
– And can optionally allow the child to inherit some

resources (e.g., an open file handle)

COMP 530: Operating Systems

Approach 2: Unix fork/exec()
• In Unix, a parent makes a copy of itself using fork()

– Child inherits everything, runs same program
– Only difference is the return value from fork()

• Child gets 0; parent gets child pid

• A separate exec() system call loads a new program
– Like getting a brain transplant

• Some programs, like our web server example, fork()
clones (without calling exec()).
– Common case is probably fork+exec

COMP 530: Operating Systems

• The exec() call allows a process to “load” a different
program and start execution at main (actually
_start).

• It allows a process to specify the number of
arguments (argc) and the string argument array
(argv).

• If the call is successful
– it is the same process …
– but it runs a different program !!

• Code, stack & heap is overwritten
– Sometimes memory mapped files are preserved.

• Exec does not return!

Program loading: exec()

COMP 530: Operating Systems

In the parent process:
main()
…
int rv =fork(); // create a child
if(0 == rv) { // child continues here
 exec_status = exec(“calc”, argc, argv0, argv1, …);
 printf(“Something is horribly wrong\n”);
 exit(exec_status);
} else { // parent continues here
 printf(“Shall I be mother?”);
 …
 child_status = wait(rv);
}

Exec should not
return

fork() + exec() example

COMP 530: Operating Systems

!"#$%$&'(
)!*+$,"-*.$%$“/0".1)23”
-4.156!7$%$8

!"#$%$&'9
)!*+$,"-*.$%$“/0".1)23”
-4.156!7$%$8

int rv = fork();
if(rv == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(rv);

int rv = fork();
if(rv == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(rv);

Process Control Blocks (PCBs)

OS
USER

int rv = fork();
if(rv == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(rv);

int rvc_main(){
 irvq = 7;
 do_init();
 ln = get_input();
 exec_in(ln);

!"#$%$&'9
)!*+$,"-*.$%$
-4.156!7$%$8

int rv = fork();
if(rv == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(rv);

A shell forks and execs a calculator

COMP 530: Operating Systems

!"#$%$&'(
)!*+$,"-*.$%$“/0".1)23”
-4.156!7$%$8

!"#$%$&'9
)!*+$,"-*.$%$“/0".1)23”
-4.156!7$%$8

int shell_main() {
 int a = 2;
 … Code

main; a = 2

Heap

Stack

0xFC0933CA

int shell_main() {
 int a = 2;
 … Code

main; a = 2

Heap

Stack

0xFC0933CA

int calc_main() {
 int q = 7;
 … Code

Heap

Stack

0x43178050

!"#$%$&'9
)!*+$,"-*.$%
-4.156!7$%$8

OS
USER

Process Control Blocks (PCBs)

A shell forks and then execs a calculator

COMP 530: Operating Systems

Why separate fork & exec?
• Key issue: Inheritance of file descriptors,

environment, etc.
– Or, making the shell work

• Remember how the shell can do redirection?
– ./warmup < testinput.txt
– File handle 0 (stdin) is opened to read testinput.txt

• The parent (shell) opens testinput.txt before fork()
– The child (warmup) inherits this open file handle

• Even after exec()

33

COMP 530: Operating Systems

The CreateProcess alternative
• Windows does allow you to create a process that is

initially suspended
– You can also change memory and handles of another

process
– And then unblock it

• Somewhat isomorphic
– But a bit cumbersome
– And prone to (different) security issues (loading threads

and libraries in another app!)

34

COMP 530: Operating Systems

• Simple implementation of fork():
– allocate memory for the child process
– copy parent’s memory and CPU registers to child’s
– Expensive !!

• In 99% of the time, we call exec() after calling fork()
– the memory copying during fork() operation is useless
– the child process will likely close the open files & connections
– overhead is therefore high

At what cost, fork()?

Any ideas to improve this?

COMP 530: Operating Systems

Why fork(), again?
• Actual history is fun, but we need some other

concepts for it to make sense
– I promise to revisit this question later in the semester

(remind me on LDOC if we miss it)
– For now, I’ll just submit a controversial opinion that

CreateProcess() is better than fork(), but you need to learn
fork because it is ubiquitous (and easier to learn with help)

• Lots of effort from instructors and textbooks to back-
fill rationales without historical or empirical support

36

COMP 530: Operating Systems

Pro tool: vfork
• If you know you are going to call exec() almost immediately:

– Create a new PCB, stack, register state
– But not a new copy of the full memory

• You can change OS state and call exec safely
• You cannot:

– Return from the function that called fork()
– Touch the heap
– Probably other stuff

• Why does it improve performance? Avoids copies

• Unfortunate example of implementation influence on interface
– Current Linux & BSD 4.4 have it for backwards compatibility

37

COMP 530: Operating Systems

Copy-on-write fork (preview)
• Idea: write protect everything in memory after a

fork()
– Detect and copy only what you touch, until the exec()
– After exec(), remove write protection from child memory

• Common case: exec quickly
– Some overhead to setting copy-on-write, but cheaper than

copying everything

• Uncommon case: fork never execs
– Eventually copy everything

• We will see more about this later…

38

COMP 530: Operating Systems

OS must include calls to enable special control of a process:

• Priority manipulation:

– nice(), which specifies base process priority (initial priority)
– In UNIX, process priority decays as the process consumes CPU

• Debugging support:
– ptrace(), allows a process to be put under control of another process
– The other process can set breakpoints, examine registers, etc.

• Alarms and time:
– Sleep puts a process on a timer queue waiting for some number of seconds,

supporting an alarm functionality

Process control

COMP 530: Operating Systems

Summary
• Understand what a process is
• The high-level idea of context switching and

process states
• How a process is created
• Pros and cons of different creation APIs

– Intuition of copy-on-write fork and vfork

