
COMP 530: Operating Systems

Locking

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

• Software solution (Peterson’s algorithm) works,
but it is unsatisfactory
– Solution is complicated; proving correctness is tricky

even for the simple example
– While thread is waiting, it is consuming CPU time
– Asymmetric solution exists for 2 processes.

• How can we do better?
– Use hardware features to eliminate busy waiting
– Define higher-level programming abstractions to

simplify concurrent programming

Too Much Milk: Lessons

COMP 530: Operating Systems

If two threads execute this program
concurrently, how many different final values
of X are there?

Initially, X == 0.

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2

Concurrency Quiz

COMP 530: Operating Systems

• Model of concurrent execution
• Interleave statements from each thread into a

single thread
• If any interleaving yields incorrect results,

some synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Schedules and Interleavings

COMP 530: Operating Systems

• Key abstraction: mutual exclusion while lock
is held

• Goal: ”Protect” unsafe code from dangerous
interleavings
– At some loss of concurrency

void increment() {
 pthread_mutex_lock(&lock);
 int temp = X;
 temp = temp + 1;
 X = temp;
 pthread_mutex_unlock(&lock);
}

Locks fix this with Mutual Exclusion

COMP 530: Operating Systems

• Locks – implement mutual exclusion
– Two methods

• pthread_mutex_lock(lock) – wait until lock is free, then grab it
• pthread_mutex_unlock(lock) – release the lock, waking up a

waiter, if any

• With locks, too much milk problem is very easy!
– Check and update happen as one unit (exclusive

access)
Lock.Acquire();
if (noMilk) {
 buy milk;
}
Lock.Release();

Lock.Acquire();
x++;
Lock.Release();

Introducing Locks

How can we implement locks?

COMP 530: Operating Systems

Performance: Between rock and hard place
• We need threads for concurrent performance
• We can’t safely execute all code concurrently

– Locks ensure that ”delicate” code does not interleave with
other code that could interleave unsafely

• It is safe to execute everything in one big lock
– But worse performance than a single thread
– No concurrency + overheads

• Goal: get just enough mutual exclusion for safety, but
no more than strictly necessary

7

COMP 530: Operating Systems

How do locks work?
• Two key ingredients:

– A hardware-provided atomic instruction
• Determines who wins under contention

– A waiting strategy for the loser(s)

8

COMP 530: Operating Systems

Atomic instructions
• A “normal” line of code (or CISC instruction) can span

multiple memory operations
– Example: ‘a = b + c’ requires 2 loads and a store
– These loads and stores can interleave with other CPUs’

memory accesses

• An atomic instruction guarantees that the entire
operation is not interleaved with any other CPU
– x86: Certain instructions can have a ‘lock’ prefix
– Intuition: This CPU ‘locks’ all of memory
– Expensive! Not ever used automatically by a compiler;

must be explicitly used by the programmer

9

COMP 530: Operating Systems

Atomic instruction examples
• Atomic increment/decrement (x++ or x--)

– int atomic_inc(int *var) {
int rv = *var;
*var++;
return rv;

}
– Used for reference counting,
– Returns old value that you specifically set
– If *var is 0, and 3 threads do an atomic_inc, one will get 1, one 2, and one 3

• Atomic Test and Set:
– old = ts(&var)
– bool ts(int *) { bool ret = *int; *int = 1; return ret == 0;}
– Sets a value to 1 atomically; returns true if you were the thread that transitioned

from 0 to 1
• Compare and swap

– Common Syntax: cas(&var, old, new)
– {int rv = *var; if (*var == old) *var = new; return rv;}
– Used for many lock-free data structures

10

COMP 530: Operating Systems

Atomic instructions + locks
• Most lock implementations have some sort of

counter
• Say initialized to 1
• To acquire the lock, use an atomic decrement

– Recall: atomic_dec returns the value your thread set
– If you set the value to 0, you win! Go ahead
– If you get < 0, you lose. Wait L
– Atomic decrement ensures that only one CPU will

decrement the value to zero

• To release, set the value back to 1

11

COMP 530: Operating Systems

Waiting strategies
• Spinning: Just poll the atomic counter in a busy loop;

when it becomes 1, try the atomic decrement again
• Blocking: Create a kernel wait queue and go to sleep,

yielding the CPU to more useful work
– Winner is responsible to wake up losers (in addition to

setting lock variable to 1)
– Create a kernel wait queue – the same thing used to wait

on I/O
• Reminder: Moving to a wait queue takes you out of the

scheduler’s run queue

12

COMP 530: Operating Systems

Which strategy to use?
• Main consideration: Expected time waiting for the

lock vs. time to do 2 context switches
– If the lock will be held a long time (like while waiting for

disk I/O), blocking makes sense
– If the lock is only held momentarily, spinning makes sense

• Other, subtle considerations we will discuss later

13

COMP 530: Operating Systems

• Safety
– Only one thread in the critical region

• Liveness
– Some thread that enters the entry section eventually enters the

critical region
– Even if other thread takes forever in non-critical region

• Bounded waiting
– A thread that enters the entry section enters the critical section

within some bounded number of operations.
• Failure atomicity

– It is OK for a thread to die in the critical region
– Many techniques do not provide failure atomicity

Reminder: Correctness Conditions

COMP 530: Operating Systems

Example: Linux spinlock (simplified)

1: lock; decb slp->slock
jns 3f

2: pause

cmpb $0,slp->slock
jle 2b
jmp 1b

3:

// Locked decrement of lock var

// Jump if not set (result is zero) to 3

// Low power instruction, wakes on
// coherence event

// Read the lock value, compare to zero

// If less than or equal (to zero), goto 2

// Else jump to 1 and try again

// We win the lock

15

COMP 530: Operating Systems

Rough C equivalent
while (0 != atomic_dec(&lock->counter)) {

do {
// Pause the CPU until some coherence
// traffic (a prerequisite for the counter
// changing) saving power

} while (lock->counter <= 0);
}

16

COMP 530: Operating Systems

Why 2 loops?
• Functionally, the outer loop is sufficient
• Problem: Attempts to write this variable invalidate it

in all other caches
– If many CPUs are waiting on this lock, the cache line will

bounce between CPUs that are polling its value
• This is VERY expensive and slows down EVERYTHING on the system

– The inner loop read-shares this cache line, allowing all
polling in parallel

• This pattern called a Test&Test&Set lock (vs.
Test&Set)

17

COMP 530: Operating Systems

Test & Set Lock

CPU 0

Cache

Memory Bus

0x1000

RAM

CPU 1

Cache

atomic_dec

Cache Line “ping-pongs” back and forth

while (!atomic_dec(&lock->counter))

0x1000

CPU 2

// Has lock

atomic_dec
Write Back+Evict

Cache Line

18

COMP 530: Operating Systems

Test & Test & Set Lock

CPU 0

Cache

Memory Bus

0x1000

RAM

CPU 1

Cache

read

Line shared in read mode until unlocked

while (lock->counter <= 0))

0x1000

CPU 2

// Has lock

read

Unlock by
writing 1

19

COMP 530: Operating Systems

Why 2 loops?
• Functionally, the outer loop is sufficient
• Problem: Attempts to write this variable invalidate it

in all other caches
– If many CPUs are waiting on this lock, the cache line will

bounce between CPUs that are polling its value
• This is VERY expensive and slows down EVERYTHING on the system

– The inner loop read-shares this cache line, allowing all
polling in parallel

• This pattern called a Test&Test&Set lock (vs.
Test&Set)

20

COMP 530: Operating Systems

pthread_mutex_lock() {
while (ts(lock) == 1)
 ; // spin
}

pthread_mutex_unlock() {
 *lock := 0;
}

With busy-waiting

pthread_mutex_lock() {
while (ts(q_lock) == 1) {
 Put TCB on wait queue for lock;
}

Without busy-waiting, use a queue
pthread_mutex_unlock() {
*q_lock = 0;
if (wait queue is not empty) {
 Move 1 (or all?) waiting threads to ready
queue;
}

Implementing Blocking Locks

Must only one thread be awakened? Is this code fair?

COMP 530: Operating Systems

Reader/writer locks
• Simple optimization: If I am just reading, we can let

other readers access the data at the same time
– Just no writers

• Writers require mutual exclusion

22

COMP 530: Operating Systems

History: Semaphores
• Semaphores implement k-way exclusion

– Where k >= 1

• History: Semaphores were the first lock
• Today: A binary (k=1) semaphore is a lock

– Often a blocking lock

• Non-binary semaphores are rarely useful
– k identical resources typically need k mutual exclusion

locks
• Not k threads interleaving with each other on any of k resources

• Worth knowing the term for interview “trivia”

23

COMP 530: Operating Systems

• When you enter a critical region, check what may
have changed while you were spinning
– Did Jill get milk while I was waiting on the lock?

• Always unlock any locks you acquire

Best Practices for Lock Programming

COMP 530: Operating Systems

• Locks are higher-level programming abstraction
– Mutual exclusion can be implemented using locks

• Lock implementations have 2 key ingredients:
– Hardware instruction: atomic read-modify-write
– Blocking mechanism

• Busy waiting, or
– Cheap Busy waiting important

• Block on a scheduler queue in the OS

• Locks are good for mutual exclusion but weak for
coordination, e.g., producer/consumer patterns.

Implementing Locks: Summary

COMP 530: Operating Systems

• Fine-grain locks
– Greater concurrency
– Greater code complexity
– Potential deadlocks

• Not composable
– Potential data races

• Which lock to lock?
// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
 pthread_mutex_lock(s);
 pthread_mutex_lock(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 pthread_mutex_unlock(d);
 pthread_mutex_unlock(s);
}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
– Simple to develop
– Easy to avoid deadlock
– Few data races
– Limited concurrency

Why locking is also hard (Preview)

