
COMP 530: Operating Systems

Memory Management Basics

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

1

COMP 530: Operating Systems

Background Detour: Splitting Numbers
• In elementary school, one typically learns about the

“ones”, “tens”, “hundreds”, etc.
– E.g., 13 + 24, can be modeled as: (10 * (1 + 2)) + (3 + 4)

• One can apply the same reasoning to space:
– Room numbers in SN/FB: hundreds digit indicates the

floor, remaining digits indicate position within floor
– Street address: lower 2 digits indicate house number,

upper digits indicate block

• Or an array of 10-byte sub-arrays:

2

0 10 20 30 40

1 2 3 4 5 6 7 8 9

COMP 530: Operating Systems

Background Detour: Splitting Numbers (2)

• One could rename “tens” to “index”
– E.g., byte 34 is in sub-array index #3

• One could rename “ones” to “offset”
– E.g., byte 34 is offset 4 in sub-array #3

• In this example, address “34” becomes a tuple (3,4)

• In base 10, this is an intuitive concept
• We will use this in base 2

3

0 10 20 30 40

1 2 3 4 5 6 7 8 9

COMP 530: Operating Systems

Splitting Numbers in Base 2

• Same idea applies, just need to split on powers of
two instead of ten
– Say we go to sub-arrays of size 8:

4

0 10 20 30 40

1 2 3 4 5 6 7 8 9

0 0x8 0x10 0x18 0x20

1 2 3 4 5 6 7

COMP 530: Operating Systems

Why do we care?
• We will see lots of variations on using modular

arithmetic to calculate an index and offset in the next
few lectures

• And why base 2?
– How data is carried on wires in chip
– Easier to implement modular arithmetic in base 2
– Use cheap logical operators instead of expensive division

• When dividing, if n is a power of two:
x / n == x >> log2 (n)
x % n == x & (n-1)

5

COMP 530: Operating Systems

Program
P

• Physical address space — The address space
supported by the hardware
– Starting at address 0, going to address MAXsys

• Virtual address space — A process’s
view of its own memory
– Starting at address 0, going to address MAXprog

0

MAXsys

0

MAXprog

MOV r0, @0xfffa620e

But where do addresses come from?

Review: Address Spaces

COMP 530: Operating Systems

• Which is bigger, physical or virtual address
space?
– A. Physical address space
– B. Virtual address space
– C. It depends on the system.

COMP 530: Operating Systems

Program Relocation
• Program issues virtual addresses
• Machine has physical addresses.
• If virtual == physical, then how can we have

multiple programs resident concurrently?
• Instead, relocate virtual addresses to physical at

run time.
– While we are relocating, also bounds check

addresses for safety.
• I can relocate that program (safely) in two

registers…

COMP 530: Operating Systems

0

MAXsys

Program

Program
P’s

virtual
address
space

0

MAXprog

1000

1500

CPU +

1000

Base
Register

Virtual
Addresses

≤

500

Limit
Register

MEMORY
EXCEPTION

Physical
Addresses

yes

no

Instructions

P’s
physical
address
space

2 register translation

COMP 530: Operating Systems

• With base and bounds registers, the OS needs a
hole in physical memory at least as big as the
process.
– A. True
– B. False

COMP 530: Operating Systems

• External fragmentation
– Unused memory between units of

allocation
– E.g, two fixed tables for 2, but a party of 4

• Internal fragmentation
– Unused memory within

a unit of allocation
– E.g., a party of 3 at

a table for 4

0

MAX

Program
R’s PAS

Program
Q’s
PAS

Execution Stack

Program Code
(“text”)

Data

Execution Stack

The Fragmentation Problem

COMP 530: Operating Systems

• Simple approach:
– Allocate a partition when a process is admitted

into the system
– Allocate a contiguous memory partition to the

process

0

MAX

Program
P2

Program
P3

Program
P1

P5

Program
P4

OS keeps track of...
Full-blocks
Empty-blocks (“holes”)

Allocation strategies
First-fit
Best-fit
Worst-fit

Dynamic Allocation of Partitions

COMP 530: Operating Systems

To allocate n bytes, use the
first available free block such
that the block size is larger
than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 1st free block
available

2K bytes

500 bytes

First Fit Allocation

COMP 530: Operating Systems

• Simplicity!

• Requires:
– Free block list sorted by address
– Allocation requires a search for a suitable partition
– De-allocation requires a check to see if the freed partition could be

merged with adjacent free partitions (if any)

Advantages
! Simple
! Tends to produce larger

free blocks toward the end
of the address space

Disadvantages
! Slow allocation
! External fragmentation

First Fit: Rationale and Implementation

COMP 530: Operating Systems

To allocate n bytes, use the
smallest available free block
such that the block size is
larger than (or equal to) n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 3rd free block
available (smallest)

1K bytes

2K bytes

Best Fit Allocation

COMP 530: Operating Systems

• Avoid fragmenting big free blocks

• To minimize the size of external fragments produced

• Requires:
– Free block list sorted by size
– Allocation requires search for a suitable partition
– De-allocation requires search + merge with adjacent free partitions,

if any

Advantages
! Works well when most

allocations are of small size
! Relatively simple

Disadvantages
! External fragmentation
! Slow de-allocation
! Tends to produce many

useless tiny fragments (not
really great)

Best Fit: Rationale and Implementation

COMP 530: Operating Systems

To allocate n bytes, use the
largest available free block
such that the block size is
larger than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 2nd free block
available (largest)

1K bytes

Worst Fit Allocation

COMP 530: Operating Systems

• Avoid having too many tiny fragments

• Requires:
– Free block list sorted by size
– Allocation is fast (get the largest partition)
– De-allocation requires merge with adjacent free partitions, if any,

and then adjusting the free block list

Advantages
! Works best if allocations

are of medium sizes

Disadvantages
! Slow de-allocation
! External fragmentation
! Tends to break large free

blocks such that large
partitions cannot be allocated

Worst Fit: Rationale and Implementation

COMP 530: Operating Systems

Allocation strategies
• First fit, best fit and worst fit all suffer from

external fragmentation.
– A. True
– B. False

COMP 530: Operating Systems

• Compaction
– Relocate programs to coalesce holes

0

MAX

Program
P2

Program
P3

Program
P1

Program
P4

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

RunningReady

?

 Swapping
Ø Preempt processes & reclaim their memory

Eliminating Fragmentation

COMP 530: Operating Systems

0

2n-1

Program
P’s
VAS

• Schemes so far have considered only a single
address space per process
– A single name space per process
– No sharing

Program P’s VAS

Program
Data

Program
Text

Heap

Run-Time
Stack

How can one share code and data between
programs without paging?

Sharing Between Processes

COMP 530: Operating Systems

0

2n-1

0

2n1-1
0

0

0

2n2-1

2n3-1

2n4-1

0

2n6-1
Libraries

2n5-1

0

Program
Data

Program
Text

Heap

Run-Time
Stack

Program
Text

(shared)

Program
Data

(not shared)

Run-Time
Stack

(not shared)

Heap
(not shared)

User Code

Multiple (sub) Name Spaces

COMP 530: Operating Systems

• New concept: A segment — a memory “object”
– A virtual address space

• A process now addresses objects —a pair (s, addr)
– s — segment number
– addr — an offset within an object

• Don’t know size of object, so 32 bits for offset?

Segment + Address register scheme

s addr

Single address scheme

n10 0n2 0

s

n

addr

Segmentation

Two ways to encode a virtual address

COMP 530: Operating Systems

0

Program

1000

1500

+

1000 Base
Register

Virtual
Addresses

≤

500Limit
Register

MEMORY
EXCEPTION

Physical Memory

yes

no
P’s

Segment

Segment Table

s

CPU

0n 320

s o

Program
P

base limit

STBR

• Add a segment table containing base &
limit register values

Implementing Segmentation

COMP 530: Operating Systems

• Segmentation allows sharing
– And dead simple hardware

• Can easily cache all translation metadata on-chip
– Low latency to translate virtual addresses to physical addresses

• Two arithmetic operations (add and limit check)

• … but leads to poor memory utilization
– We might not use much of a large segment, but we must keep the

whole thing in memory (bad memory utilization).
– Suffers from external fragmentation
– Allocation/deallocation of arbitrary size segments is complex

• How can we improve memory management?
– stay tuned…

Are we done?

COMP 530: Operating Systems

Trivia: Revisiting fork()
• I promised to explain the historical reason for fork()
• On the original machine Unix was designed for, there

was only segmented memory protection, and very,
very little DRAM.

• Easiest way to create a new process was to:
– Write the relevant segments of the parent process to disk

• Effectively, making a copy of the process memory on disk
– Reload copied segments into memory to run child

• So they made a software abstraction that matched
efficient use of early 1970s virtual memory hardware
– And we still (inefficiently) emulate it on modern hardware

26

