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Background Detour: Splitting Numbers
• In elementary school, one typically learns about the 

“ones”, “tens”, “hundreds”, etc.
– E.g., 13 + 24, can be modeled as: (10 * (1 + 2)) + (3 + 4)

• One can apply the same reasoning to space:
– Room numbers in SN/FB: hundreds digit indicates the 

floor, remaining digits indicate position within floor
– Street address: lower 2 digits indicate house number, 

upper digits indicate block

• Or an array of 10-byte sub-arrays:
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Background Detour: Splitting Numbers (2)

• One could rename “tens” to “index”
– E.g., byte 34 is in sub-array index #3

• One could rename “ones” to “offset”
– E.g., byte 34 is offset 4 in sub-array #3

• In this example, address “34” becomes a tuple (3,4)

• In base 10, this is an intuitive concept
• We will use this in base 2
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Splitting Numbers in Base 2

• Same idea applies, just need to split on powers of 
two instead of ten
– Say we go to sub-arrays of size 8:
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Why do we care?
• We will see lots of variations on using modular 

arithmetic to calculate an index and offset in the next 
few lectures

• And why base 2?
– How data is carried on wires in chip
– Easier to implement modular arithmetic in base 2
– Use cheap logical operators instead of expensive division

• When dividing, if n is a power of two:
x / n == x >> log2 (n)
x % n == x & (n-1)
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Program
P

• Physical address space — The address space 
supported by the hardware
– Starting at address 0, going to address MAXsys

• Virtual address space — A process’s 
view of its own memory
– Starting at address 0, going to address MAXprog

0

MAXsys

0

MAXprog

MOV r0, @0xfffa620e

But where do addresses come from?

Review: Address Spaces
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• Which is bigger, physical or virtual address 
space?
– A. Physical address space
– B. Virtual address space
– C. It depends on the system.
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Program Relocation
• Program issues virtual addresses
• Machine has physical addresses.
• If virtual == physical, then how can we have 

multiple programs resident concurrently?
• Instead, relocate virtual addresses to physical at 

run time.
– While we are relocating, also bounds check 

addresses for safety.
• I can relocate that program (safely) in two 

registers…
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• With base and bounds registers, the OS needs a 
hole in physical memory at least as big as the 
process.
– A. True
– B. False
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• External fragmentation
– Unused memory between units of 

allocation
– E.g, two fixed tables for 2, but a party of 4

• Internal fragmentation
– Unused memory within 

a unit of allocation
– E.g., a party of 3 at

a table for 4
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The Fragmentation Problem



COMP 530: Operating Systems

• Simple approach:
– Allocate a partition when a process is admitted 

into the system
– Allocate a contiguous memory partition to the 

process
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Dynamic Allocation of Partitions
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To allocate n bytes, use the 
first available free block such 
that the block size is larger 
than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 1st free block
available

2K bytes

500 bytes

First Fit Allocation
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• Simplicity!

• Requires:
– Free block list sorted by address
– Allocation requires a search for a suitable partition
– De-allocation requires a check to see if the freed partition could be 

merged with adjacent free partitions (if any)

Advantages
! Simple
! Tends to produce larger 

free blocks toward the end 
of the address space

Disadvantages
! Slow allocation
! External fragmentation

First Fit: Rationale and Implementation
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To allocate n bytes, use the 
smallest available free block 
such that the block size is 
larger than (or equal to) n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 3rd free block
available (smallest)

1K bytes

2K bytes

Best Fit Allocation
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• Avoid fragmenting big free blocks

• To minimize the size of external fragments produced

• Requires:
– Free block list sorted by size
– Allocation requires search for a suitable partition
– De-allocation requires search + merge with adjacent free partitions, 

if any

Advantages
! Works well when most 

allocations are of small size
! Relatively simple

Disadvantages
! External fragmentation
! Slow de-allocation
! Tends to produce many 

useless tiny fragments (not 
really great)

Best Fit: Rationale and Implementation
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To allocate n bytes, use the 
largest available free block 
such that the block size is 
larger than n. 

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 2nd free block
available (largest)

1K bytes

Worst Fit Allocation
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• Avoid having too many tiny fragments

• Requires:
– Free block list sorted by size
– Allocation is fast (get the largest partition)
– De-allocation requires merge with adjacent free partitions, if any, 

and then adjusting the free block list

Advantages
! Works best if allocations 

are of medium sizes

Disadvantages
! Slow de-allocation
! External fragmentation
! Tends to break large free 

blocks such that large 
partitions cannot be allocated

Worst Fit: Rationale and Implementation
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Allocation strategies
• First fit, best fit and worst fit all suffer from 

external fragmentation.
– A. True
– B. False
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• Compaction
– Relocate programs to coalesce holes
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Eliminating Fragmentation



COMP 530: Operating Systems

0

2n-1

Program
P’s
VAS

• Schemes so far have considered only a single 
address space per process
– A single name space per process
– No sharing 

Program P’s VAS

Program
Data

Program
Text

Heap

Run-Time 
Stack

How can one share code and data between 
programs without paging?

Sharing Between Processes
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• New concept: A segment — a memory “object”
– A virtual address space

• A process now addresses objects —a pair (s, addr)
– s — segment number
– addr — an offset within an object

• Don’t know size of object, so 32 bits for offset?

Segment + Address register scheme

s addr

Single address scheme

n10 0n2 0

s

n

addr

Segmentation

Two ways to encode a virtual address
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limit register values

Implementing Segmentation
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• Segmentation allows sharing
– And dead simple hardware

• Can easily cache all translation metadata on-chip
– Low latency to translate virtual addresses to physical addresses

• Two arithmetic operations (add and limit check)

• … but leads to poor memory utilization
– We might not use much of a large segment, but we must keep the 

whole thing in memory (bad memory utilization).
– Suffers from external fragmentation
– Allocation/deallocation of arbitrary size segments is complex

• How can we improve memory management?
– stay tuned…

Are we done?
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Trivia: Revisiting fork()
• I promised to explain the historical reason for fork()
• On the original machine Unix was designed for, there 

was only segmented memory protection, and very, 
very little DRAM.

• Easiest way to create a new process was to:
– Write the relevant segments of the parent process to disk

• Effectively, making a copy of the process memory on disk
– Reload copied segments into memory to run child

• So they made a software abstraction that matched 
efficient use of early 1970s virtual memory hardware
– And we still (inefficiently) emulate it on modern hardware 
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