
COMP 530: Operating Systems

Virtual Memory: Paging

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

1

COMP 530: Operating Systems

Reminder: Reading for next class
• The next class will cover the Hoard paper

– Our first assigned reading
– Please read this in advance of next class

2

COMP 530: Operating Systems

• Program addresses are virtual addresses.
– Relative offset of program regions can not change during program

execution. E.g., heap can not move further from code.
– (Virtual address == physical address) is inconvenient.

• Program location is compiled into the program.
• Segmentation:

– Simple: two registers (base, offset) sufficient
– Limited: Virtual address space must be <= physical
– Push complexity to OS kernel:

• Must allocate physically contiguous region for segments
• Must deal with external fragmentation
• Swapping only at segment granularity

• Key idea for today: Fixed size units (pages) for translation
• More complex mapping structure
• Less complex space management

Review

COMP 530: Operating Systems

• Physical memory partitioned into equal
sized page frames
– Example page size: 4KB

• Memory only allocated in page frame
sized increments
– No external fragmentation
– Can have internal fragmentation

(rounding up smaller allocations to 1 page)

• Can map any page-aligned virtual
address to any physical page frame

(0,0)

(fMAX-1,oMAX-1)

Physical
Memory

Solution: Paging

COMP 530: Operating Systems

(0,0)

(fMAX-1,oMAX-1)

PA:

f o

(f,o)

f

o

Physical
Memory

1log2 omaxlog2 (fmax ´ omax)

A physical address can be split into a pair (f, o)
f — frame number (fmax frames)
o — frame offset (omax bytes/frames)
Physical address = omax´f + o

As long as a frame size is a power of 2, easy to split
address using bitwise shift operations
• Prepare for lots of power-of-2 arithmetic…

Physical Address Decomposition

COMP 530: Operating Systems

0

• Suppose a 16-bit address space with (omax =)
512 byte page frames

– Reminder: 512 == 29

– Address 1,542 can be translated to:
• Frame: 1,542 / 512 == 1,542 >> 9 = 3
• Offset: 1,542 % 512 == 1,542 & (512-1) == 6

– More simply: (3,6)

19

PA:

16

(0,0)

(3,6)

f

o

Physical
Memory

111 0 10000000000

3 6

1,542

10

1,542

0

Physical Addressing Example

COMP 530: Operating Systems

• A process’s virtual address space is
partitioned into equal sized pages
– page = page frame

(0,0)

2n-1 =
(pMAX-1,oMAX-1)

p o

(p,o)

p
VA:

o

Virtual
Address
Space

1log2 oMAXlog2 (pmax´omax)

A virtual address is a pair (p, o)
p — page number (pmax pages)
o — page offset (omax bytes/pages)
Virtual address = omax´p + o

Virtual Page Addresses

COMP 530: Operating Systems

Abstraction: 1:1 mapping of page-aligned virtual
addresses to physical frames
• Imagine a big ole’ table (BOT):

– The size of virtual memory / the size of a
page frame

• Address translation is a 2-step process
1. Map virtual page onto physical frame (using

BOT)
2. Add offset within the page

(0,0)

(fMAX-1,oMAX-1)

(f,o)

f

o

Physical
Memory

Page Mapping

COMP 530: Operating Systems

• Pages map to frames
• Pages are contiguous in a VAS...

– But pages are arbitrarily located
in physical memory, and

– Not all pages mapped at all times

Virtual
Address
Space

(p1,o1)

(p2,o2)
Physical
Memory

(f1,o1)

(f2,o2)

Page mapping

COMP 530: Operating Systems

Questions
• The offset is the same in a virtual address and a

physical address.
– A. True
– B. False

COMP 530: Operating Systems

Page Table

• A page table maps virtual
pages to physical frames

CPU

(p,o)

p

P’s
Virtual

Address
Space

Physical
Memory120 910

p o

(f,o)

116 910

f o

Physical
Addresses

Program
P

Virtual
Addresses

f

Page Tables (aka Big Ole’ Table)

COMP 530: Operating Systems

• Contents:
– Flags — dirty bit, resident bit,

clock/reference bit
– Frame number

1 0

Page Table

p

120 910

p o

116 910

f o

Physical
Addresses

Virtual
Addresses

f0PTBR

CPU

+

1 table per process
Part of process metadata/state

Page Table Details

COMP 530: Operating Systems

0 1 0 0 1 0 0

A system with 16-bit addresses
Ø 32 KB of physical memory
Ø 1024 byte pages

CPU

Page Table

Physical
Memory15

p o

(4,1023)

14 910

f o

Physical
Addresses

Virtual
Addresses

0 0 0 0 0 0 0

P’s
Virtual

Address
Space

(3,1023)
(4,0)

(0,0)

1
0

0010 9

Example

Flags|Phys. Addr

COMP 530: Operating Systems

• Problem — VM reference requires 2 memory references!
– One access to get the page table entry
– One access to get the data

• Page table can be very large; a part of the page table can be on
disk.
– For a machine with 64-bit addresses and 1024 byte pages, what is the

size of a page table?

• What to do?
– Most computing problems are solved by some form of…

• Caching
• Indirection

Performance Issues with Paging

COMP 530: Operating Systems

• Cache recently accessed page-to-frame translations in a TLB
– For TLB hit, physical page number obtained in 1 cycle
– For TLB miss, translation is updated in TLB
– Has high hit ratio (why?)

Page Table

120 910

p o

116 910

f o
Physical

Addresses

Virtual
Addresses

CPU

TLB

f

Key Value

p

p

f

?

X

Using a TLB to Cache Translations

COMP 530: Operating Systems

• Add additional levels of indirection
to the page table by sub-dividing
page number into k parts

– Create a “tree” of page tables
– TLB still used, just not shown
– The architecture determines the

number of levels of page table

Third-Level
Page Tables

p2 o
Virtual Address

First-Level
Page Table

p3

Second-Level
Page Tables

p1

p1

p2

p3

Dealing with Large Tables

COMP 530: Operating Systems

• Example: Two-level paging

Second-Level
Page Table

120 1016

p1 o

116 10

f o
Physical

Addresses
Virtual

Addresses

CPU

First-Level
Page Table

page table
p2

f

p1

PTBR

p2

++

Memory

Dealing with Large Tables

COMP 530: Operating Systems

Frames and pages
• Only mapping virtual pages that are in use does

what?
– A. Increases memory utilization.
– B. Increases performance for user applications.
– C. Allows an OS to run more programs concurrently.
– D. Gives the OS freedom to move virtual pages in the

virtual address space.
• Address translation and changing address

mappings are
– A. Frequent and frequent
– B. Frequent and infrequent
– C. Infrequent and frequent
– D. Infrequent and infrequent

COMP 530: Operating Systems

• With large address spaces (64-bits) forward mapped page tables
become cumbersome.
– E.g. 5 levels of tables.

• Instead of making tables proportional to size of virtual address space,
make them proportional to the size of physical address space.
– Virtual address space is growing faster than physical.

• Use one entry for each physical page with a hash table
– Translation table occupies a very small fraction of physical memory
– Size of translation table is independent of VM size

• Page table has 1 entry per virtual page
• Hashed/Inverted page table has 1 entry per physical frame

Large Virtual Address Spaces

COMP 530: Operating Systems

• One entry per frame
– Size of table proportional to DRAM size, not virtual address space

• Index table based on hash of page and process ID
– Must check not just if present, but also for collisions!

Hashed/Inverted Page Tables

COMP 530: Operating Systems

• Hash page numbers to find corresponding frame number
– Page frame number is not explicitly stored (1 frame per entry)
– Protection, dirty, used, resident bits also in entry

f == h(PID, p)

120 9

p o

116 9

f o
Physical

Addresses

Virtual
Address

PTBR

CPU

Hash

PID

Inverted Page Table

10Virt page#

Memory

0

fmax– 1
fmax– 2

running
PID

+ 1

=? =? tag check

Inverted Page Table Lookup

COMP 530: Operating Systems

• Minor complication
– Since the number of pages is usually larger than the number of slots in

a hash table, two or more items may hash to the same location

• Two different entries that map to same location are said to collide

• Many standard techniques for dealing with collisions
– Use a linked list of items that hash to a particular table entry
– Rehash index until the key is found or an empty table entry is reached

(open hashing)

Searching Inverted Page Tables

COMP 530: Operating Systems

Observation
• One cool feature of inverted page tables is that you

only need one for the entire OS
– Recall: each entry stores PID and virtual address
– Multiple processes can share one inverted table

• Forward mapped tables have one table per process

• Back-of-envelope space usage example
– Physical memory size: 16 MB
– Page size: 4096 bytes
– Number of frames: 4096
– Space used for page entries (assuming 8 bytes/entries): 32 Kbytes
– Percentage overhead introduced by page registers: 0.2%
– Size of virtual memory: irrelevant

23

COMP 530: Operating Systems

Questions
• Why use hashed/inverted page tables?

– A. Forward mapped page tables are too slow.
– B. Forward mapped page tables don’t scale to larger

virtual address spaces.
– C. Inverted pages tables have a simpler lookup

algorithm, so the hardware that implements them is
simpler.

– D. Inverted page tables allow a virtual page to be
anywhere in physical memory.

COMP 530: Operating Systems

• A process’s VAS is its context
– Contains its code, data, and stack

• Code pages are stored in a user’s file on disk
– Some are currently residing in memory; most are

not

• Data and stack pages are not

OS determines which portions of a process’s VAS
are mapped in memory at any one time

Code

Data

Stack

File System
(Disk)

OS/MMU

Physical
Memory

Swapping

COMP 530: Operating Systems

• References to non-mapped pages generate
a page fault

– Remember Interrupts?

Program
P’s
VAS

Disk

CPU

Physical
Memory

Page
Table

0

OS resumes/initiates some other process
Read of page completes
OS maps the missing page into memory
OS restart the faulting process

Page fault handling steps:
Processor runs the interrupt handler
OS blocks the running process
OS starts read of the unmapped page

Page Fault Handling

COMP 530: Operating Systems

• To understand the overhead of swapping, compute the effective
memory access time (EAT)
– EAT = memory access time ´ probability of a page hit +

page fault service time ´ probability of a page fault

• Example:
– Memory access time: 60 ns
– Disk access time: 25 ms
– Let p = the probability of a page fault
– EAT = 60(1–p) + 25,000,000p

• To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

Performance Analysis

COMP 530: Operating Systems

Segmentation vs. Paging
• Segmentation has what advantages over

paging?
– A. Fine-grained protection.
– B. Easier to manage transfer of segments to/from the

disk.
– C. Requires less hardware support
– D. No external fragmentation

• Paging has what advantages over
segmentation?
– A. Fine-grained protection.
– B. Easier to manage transfer of pages to/from the disk.
– C. Requires less hardware support.
– D. No external fragmentation.

COMP 530: Operating Systems

Meta-Commentary
• Paging is really efficient when memory is relatively

scarce
– But comes with higher latency, higher management costs

in hardware and software

• But DRAM is getting more abundant!
– Push for larger page granularity (fewer levels of page

tables)
– Or just go back to segmentation??

• If everything fits into memory with space to spare, why not?

29

COMP 530: Operating Systems

• Physical and virtual memory partitioned into equal
size units

• Size of VAS unrelated to size of physical memory

• Virtual pages are mapped to physical frames

• Simple placement strategy

• There is no external fragmentation

• Key to good performance is minimizing page faults

Summary

