
COMP 530: Operating Systems

Data Storage and
I/O Scheduling

Don Porter

Portions courtesy Emmett Witchel and Montek Singh

1

COMP 530: Operating Systems

Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media

2

COMP 530: Operating Systems

OS’s view of a storage device
• Simple array of sectors

– Sectors are usually 512 or 4k bytes
– Also called Logical Block Addresses (LBAs)

• Captures virtual address space that device exports to OS

• OS can issue reads/writes to disk as small as one
sector/LBA

• Depending on how data is placed on device, can also
aggregate into larger requests
– One contiguous LBA range and operation (read/write) per

IO request

COMP 530: Operating Systems

Storing Bits in a Computer
• We are used to the idea of just defining variables,

reading, writing, etc.
• But internally, how does one actually store data?

– How is data stored in real life, before computers?

4

COMP 530: Operating Systems

Discretizing Physical Phenomena
• Key idea: Measure and manipulate

some property of a physical medium
• Silly example: I can store a bit in a

bucket of water
– Empty == 0
– Full == 1
– Read: measure water with sensor
– Write: dump or refill with actuator(s)

• Any concerns?
– What if the bucket has a few drops?
– What if the bucket has a slow leak?

5

“Discretize” ==
round measurement

of a continuous
quantity (volume) to
a discrete value (bit)

https://openclipart.org/detail/325616/bucket

COMP 530: Operating Systems

Lessons from the bit bucket
• Rarely perfectly full or empty

– Rather, need to tolerate some imprecision
– Better bit bucket encoder:

• <1/4 full == 0
• >3/4 full == 1
• 1/4---3/4 == error

• Damage to the media can flip bits
– A leaky bucket can shift its value over time
– Or just evaporation over long enough…

6

COMP 530: Operating Systems

What if I want to store more bits?
• Could use more buckets

– Need more space (or smaller buckets)
• Impact of smaller size on precision? Cost?

• Could take finer measurements
• <1/4 full == 00
• 1/4---1/2 == 01
• 1/2---3/4 == 10
• >3/4 full == 11

– Impact on cost? Risk of error?

7Key strategies: Replicate or Increase Precision

COMP 530: Operating Systems

What about write speed?
• What can I do to make writes faster? Downsides?

– Smaller buckets -> more precise reads
– More hoses/valves can fill more buckets -> more cost

• Splitting the difference:
– Expensive filling mechanism attached to a drone that

relocates over correct bucket:
• Save money, increase latency

8

COMP 530: Operating Systems

Key design questions:
• What is the physical phenomenon?
• How robust is the physical phenomenon to

environmental damage, or passage of time?
• How to scale capacity, vs cost?
• Other engineering constraints or performance

anomalies?

9

COMP 530: Operating Systems

Key design questions: Bit bucket
• What is the physical phenomenon?

– Water volume
• How robust is the physical phenomenon to

environmental damage, or passage of time?
– Not terribly robust to physical shock (not good for an apple

watch), water evaporates over enough time (prob months)
• How to scale capacity, vs cost?

– More buckets or finer measurements
• Other engineering constraints or performance

anomalies?
– “Drone solution” introduces delays, but cheaper than per-

bucket instrumentation

10

COMP 530: Operating Systems

1947: First Fully Electronic Memory
• Williams-Kilburn Tube
• Media: a Cathode Ray Tube (CRT)

– Same as old TVs
• CRTs work by shooting electron

beam at phosphorescent screen
– Pixel “glows” for a fraction of

second
– Encode one bit per pixel on/off

• Computer “read” charge level on
screen with metal pickup plate
– Rewrites signal periodically,

Called refresh

11

Top: Computer
 History Museum
Bottom: Wikipedia

Many media require periodic data refresh

COMP 530: Operating Systems

Williams-Kilburn Tube Lessons
• Write speed limited by how fast glow fades
• Precision: Glow has imperfect fading rate

– Mitigated by writing to nearby, unmeasured space on
screen to pull charge out of an “off” pixel

– Trades capacity for lower latency

• Physical resilience: sensitive to other magnetic fields
– Required constant recalibration in practice

• Refreshing values uses power, increases cost
– But again, a common strategy

• Non-thrifty fix for leaky bucket: periodically measure and top off

12

COMP 530: Operating Systems

Key design questions: Williams-Kilburn
• What is the physical phenomenon?

– Phosphoresence in a cathode-ray tube
• How robust is the physical phenomenon to

environmental damage, or passage of time?
– Sensitive to other magnetic fields
– Holds data for fraction of second before refresh

• How to scale capacity, vs cost?
– Bigger screen or more screens; limited by speed of electron

beam
• Other engineering constraints or performance

anomalies?
– Can trade some space for higher write speed

13

COMP 530: Operating Systems

1949: Delay-line memory
• Encode data in a looped waveform/signal

– Media varies: sound through a mercury tube used first
• High speed of sound in mercury, plus similar acoustic impedance

to quartz crystals
• Audible “hum” from some devices

14

Image Source: wikipedia

COMP 530: Operating Systems

Delay-line memory
• Bits encoded using waveform + time

– Sequential access (not random)
• Must wait for wave to circle around to desired bit

– Capacity determined by number of tubes x length of tube
• Longer tubes increase access time (and, to a lesser degree, cost)
• More tubes increase cost

• Volatile memory: Bits lost once powered off
• Lots of engineering effort to deal with environmental

variation (e.g., temperature, clock variations)
– Mercury later replaced with magnetism, quartz, and

electric delay lines for faster, lower variance
– Not used today; I believe largely because of clock variance

15

COMP 530: Operating Systems

Historical Shout-Out
• Delay-lines were originally used in radar applications

– Delay-line memory invented by Presper Eckert, who
worked first in radar, then computers

– Patented in 1947 by Eckert and John Mauchly
– Used in 2nd real computer: EDSAC

• 16 delay lines, 560 bits each

• Today, ACM/IEEE award for major contributions to
the field of computer architecture is named for
them: the Eckert-Mauchly award
– Given in 1983 to Kilburn
– And in 2004 to our own Fred Brooks

16

COMP 530: Operating Systems

Key design questions: Delay-line memory
• What is the physical phenomenon?

– Sound wave in mercury

• How robust is the physical phenomenon to
environmental damage, or passage of time?
– Susceptible to acoustic interference, requires constant

refreshing

• How to scale capacity, vs cost?
– More tubes or longer tubes

• Other engineering constraints or performance
anomalies?
– Clock variance is a bummer, sequential access within a tube

17

COMP 530: Operating Systems

Next Big Idea: Magnetic Recording
• A powerful electromagnet can change the polarity of

some materials, such as iron oxide

• Media can hold polarity arrangement for decades
• All materials eventually succumb to entropy
• Refresh data every 50 years, rather than every .5 seconds!!

18

COMP 530: Operating Systems

Another illustration, from wikipedia

19

COMP 530: Operating Systems

Magnetic Recording over time

20

Drum memory, 1932-60s
From wikipedia

Cassette tape
From wikipedia

Hard disk
From wikipedia

Many, many variants over time

COMP 530: Operating Systems

More on magnetic recording
• A ton of engineering to increase precision (and

capacity)
– Major cost in the encoding head that does

encoding/decoding
– Most designs have a small number of heads and move

media under the head (e.g., spooling tape under the head)

• Magnetic recording is susceptible to being “erased”
by adjacent magnetic fields
– Engineered to resist weaker magnetic fields
– Magnetic data loss typically requires a powerful magnet

21

COMP 530: Operating Systems

A simple disk model
• Disks are slow. Why?

– Moving parts << circuits

• Programming interface: simple array of sectors
Physical layout:
– Concentric circular “tracks” of sectors on a platter
– E.g., sectors 0-9 on innermost track, 10-19 on next track,

etc.
– Disk arm moves between tracks
– Platter rotates under disk head to align w/ requested

sector

COMP 530: Operating Systems

Disk Model

01
2
3

4 5
6
7

Disk
Head

Disk Head
reads at

granularity of
entire sector

Disk spins at a
constant speed.
Sectors rotate

underneath head.

COMP 530: Operating Systems

Disk Model

Disk
Head01

2
3

4 5
6
7

89
10

11
12

13
14 15 16

17
18
19

20
21

Concentric
tracks

Disk head seeks to
different tracksGap between 7

and 8 accounts for
seek time

COMP 530: Operating Systems

Many Tracks

Disk
Head

COMP 530: Operating Systems

Several (~4) Platters

Platters spin
together at same

speed

Each platter has a head;
All heads seek together

COMP 530: Operating Systems

Implications of multiple platters
• Blocks actually striped across platters
• Also, both sides of a platter can store data

– Called a surface
– Need a head on top and bottom

• Example:
– Sector 0 on platter 0 (top)
– Sector 1 on platter 0 (bottom, same position)
– Sector 2 on platter 1 at same position, top,
– Sector 3 on platter 1, at same position, bottom
– Etc.
– 8 heads can read all 8 sectors simultaneously

COMP 530: Operating Systems

Real Example
• Seagate 73.4 GB Fibre Channel Ultra 160 SCSI disk

• Specs:
– 12 Platters
– 24 Heads
– Variable # of sectors/track
– 10,000 RPM

• Average latency: 2.99 ms
– Seek times

• Track-to-track: 0.6/0.9 ms
• Average: 5.6/6.2 ms

• Includes acceleration and settle time.

– 160-200 MB/s peak
transfer rate

• 1-8K cache

Ø 12 Arms
Ø 14,100 Tracks
Ø 512 bytes/sector

COMP 530: Operating Systems

• Disks are getting denser
– More bits/square inch à small disks with large capacities

• Disks are getting cheaper
– Well, in $/byte – a single disk has cost at least $50-100 for 20 years
– 2x/year since 1991

• Disks are getting faster
– Seek time, rotation latency: 5-10%/year (2-3x per decade)
– Bandwidth: 20-30%/year (~10x per decade)
– This trend is really flattening out on commodity devices; more apparent on

high-end

• Increasingly esoteric constraints to increase density
– Shingled Magnetic Recording, Interlaced Magnetic Recording, Heat-

Assisted Magnetic Recording, etc.

Disks: Technology Trends

Overall: Capacity improving much faster than perf.

COMP 530: Operating Systems

Key design questions: Magnetic Hard Disks
• What is the physical phenomenon?

– Magnetic polarity
• How robust is the physical phenomenon to

environmental damage, or passage of time?
– Susceptible to strong magnetic interference
– Sensitive to physical disturbance (e.g., dropping or shaking it)
– Data lasts for decades without a refresh

• How to scale capacity, vs cost?
– More surfaces
– More precision encoding (smaller surface area)

• Heads not independent (too costly)
• Other engineering constraints or performance

anomalies?
– Latency for head movement

30

COMP 530: Operating Systems

Dynamic RAM (DRAM)
• Encode data as charge in capacitors

– “high charge” == 1, “low charge” == 0

• Reading the charge also discharges it, requiring a
read to re-write the data
– Charge leaks out after 1-10 seconds – not persistent
– Thus, requires periodic refresh

• Circuits relatively cheap to replicate at scale
– Relatively uniform access times across cells (no “drone”)
– Power seems to be bottleneck to capacity

31

COMP 530: Operating Systems

Attacks on DRAM (1)
• Cold boot attack: Dump a computer’s RAM contents

– Without administrator account on OS
– Requires physical possession of the computer

• Recall: Data retention a function of temperature
– Longer when colder

• Literally put a laptop in the freezer
– Leverage seconds of retention while unplugged to quickly

take out DRAM and plug into another computer

32

COMP 530: Operating Systems

Attacks on DRAM (2)
• Rowhammering: Flip bits in memory you don’t have

access to
– E.g., in the kernel or another process’s address space

• Observation: Frequent charge/discharge cycles can
cause disturb charge in adjacent cells

• Idea: Repeatedly read your own memory
– Flip bits in adjacent cells

• Leverage this to gain privilege

33

COMP 530: Operating Systems

Key design questions: DRAM
• What is the physical phenomenon?

– Charge in a capacitor
• How robust is the physical phenomenon to

environmental damage, or passage of time?
– Susceptible to electrical disturbance
– Data lasts for a few seconds

• How to scale capacity, vs cost?
– Replicate circuits

• Other engineering constraints or performance
anomalies?
– Some performance variance from multiplexing

34

COMP 530: Operating Systems

Flash Memory (aka EEPROM)
• A capacitor that holds its charge longer than DRAM

– ~10 yrs fully unplugged

• Low-level physics is complex, based on quantum
effects, I’ll give intuition

35

COMP 530: Operating Systems

nMOS Transistors (stolen from COMP 411)
• Gate = 0

– OFF = disconnect
• no current flows between

source & drain

• Gate = 1
– ON= connect

• current can flow between
source & drain

• positive gate voltage draws in
electrons to form a channel

nMOS transistor operation (from Harris and Harris)

COMP 530: Operating Systems

nMOS Transistor -> Flash

37

Source DrainControl
Gate

Floating
Gate

Disconnected
“bonus” gate

Surrounded by
insulator, holds
charge longer

Insulator

COMP 530: Operating Systems

Manipulating Flash

38

Source DrainControl
Gate

Floating
Gate

Causes quantum
tunneling across

insulator

Insulator

Channel

Current differential
here

Moving electrons
in/out of floating

gate

COMP 530: Operating Systems

Reading Flash

39

Source DrainControl
Gate

Floating
Gate

Charge here

Affects current
here

Insulator

COMP 530: Operating Systems

Flash details
• Like DRAM, cheap enough to replicate (nearly)

everything – no expensive sensor to move around
• Program/erase via high current on control gate

– No charge == 1
– Program (add electrons to floating gate) to convert to a 0
– Erase (remove electrons from flt gate) to pull back to a 1

• Sense charge level via current measurement of
control gate

40

COMP 530: Operating Systems

Flash Performance Caveat
• Erasing 7x slower than programming
• Trick: Hide erase cost by adding more cells than

advertised
– E.g., an 800 GB SSD may actually have 1 TB of cells

• For engineering reasons, write in KB blocks,
– Erase in MB erase blocks

• Add a ”page table” to redirect writes for a logical
block address (LBA) to a new location on each write
– Called a Flash Translation Layer (FTL)

41

COMP 530: Operating Systems

The FTL and SSD firmware
• The FTL is firmware (really software) that runs inside

an SSD
• An SSD is really a small embedded computer

– Often with a few ARM cores and 100s MB of DRAM
– Runs software to implement the translation table
– And manage actual reads/writes of flash cells

• In the background, FTL erases blocks
– Try to go for mostly stale contents, then recycle space
– If some live data in erase block, must first copy elsewhere

42No longer a simple machine to reason about…

COMP 530: Operating Systems

The TRIM command
• Indicates to the device a logical block (sector) is free

– So FTL can avoid copying junk contents when erasing block
– Abstraction introduced for flash (useful elsewhere)

• As opposed to leaving junk in place until overwrite
– Harmless on disks, adds overhead on flash

• TRIM issued by file system to device (more soon…)

43

COMP 530: Operating Systems

Scaling Flash
• Replication is one common strategy

– New technology: 3D stacked flash
• Another is increasing precision

– Rather than just measuring charged, not charged, measure
charge more finely

– And charge more carefully
– This is Single Level Cell (1 bit/cell)

• vs. Multi-Level Cell (2 bits) vs TLC (3 bits/cell) vs QLC (4 bits/cell) vs
PLC (5 bits/cell)

– Trade write speed (and endurance) for capacity
• Same capacity in SLC will be faster, last longer, (and

cost more) than in MLC…PLC

44

COMP 530: Operating Systems

Flash Endurance Caveats
• Over time, a cell wears out

– Sending electrons across the insulator damages the
insulator

– Around 10,000 program/erase cycles, but varies
• Reduced by higher precision encoding
• Repeatedly adding electrons hastens wear

• Over time, electrons get stuck in the floating gate
– Becomes more difficult to erase
– And causes skew (bit flips) in higher precision encodings

45

COMP 530: Operating Systems

Flash Wearout: A Real Thing

46

COMP 530: Operating Systems

Key design questions: Flash
• What is the physical phenomenon?

– Charge in a floating gate
• How robust is the physical phenomenon to

environmental damage, or passage of time?
– Limited writes, but high tolerance for physical damage
– Data lasts for about 10 years

• How to scale capacity, vs cost?
– Replicate circuits and increase precision

• Other engineering constraints or performance
anomalies?
– Large erase blocks -> Copying/erasing in FTL

47

COMP 530: Operating Systems

Big picture: Cost/Speed vs Size
• In 2023:

Cost: Max Capacity Sold in one dev
– DRAM: $1.94 / GB 32 GB
– SSD: $0.03/GB 16 TB
– HDD: $0.02/GB 22 TB

• Note: Cost picked based on first non-sponsored hit
on newegg.com (i.e., random sample), capacity
based on maximum available

48

COMP 530: Operating Systems

Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media

49

COMP 530: Operating Systems

How to Optimize Storage Performance?
• Two key techniques:

– Large IOs and locality on device
– I/O scheduling

50

COMP 530: Operating Systems

OS’s view of a storage device
• Simple array of sectors

– Sectors are usually 512 or 4k bytes
– Also called Logical Block Addresses (LBAs)

• Captures virtual address space that device exports to OS

• OS can issue reads/writes to disk as small as one
sector

• Depending on how data is placed on device, can also
aggregate into larger requests
– One contiguous LBA range and operation (read/write) per

IO request

COMP 530: Operating Systems

The Case for Larger I/Os

52

From Conway et al, “Filesystems Fated for Senescence?…”FAST ‘17

COMP 530: Operating Systems

Large IOs
• Regardless of device or internals,

– Fewer, big IO requests >> more small ones

• How to ensure large requests?
– Heavily affected by placement on device by file system

• (a topic for next lecture)

– Or hold requests in memory for a bit, to see if they can be
combined

• Very common optimization to delay writes for a few seconds

53

COMP 530: Operating Systems

The Disk Scheduling Problem: Background
• Goals: Maximize disk throughput

– Bound latency
• Between file system and disk, you have a queue of

pending requests:
– Read or write a contiguous logical block address (LBA)

range
• You can reorder these as you like to improve

throughput
• What reordering heuristic to use? If any?
• Heuristic is called the IO Scheduler

– Or “Disk Scheduler” or “Disk Head Scheduler”

54

COMP 530: Operating Systems

Let’s Start with Hard Disks
• Latency of a given operation is a function of current

disk arm and platter position
• Each request changes these values
• Idea: build a model of the disk

– Maybe use delay values from measurement or manuals
– Use simple math to evaluate latency of each pending

request
– Greedy algorithm: always select lowest latency

COMP 530: Operating Systems

3 Key HDD Latencies
• I/O delay: time it takes to read/write a sector
• Rotational delay: time the disk head waits for the

platter to rotate desired sector under it
– Note: disk rotates continuously at constant speed

• Seek delay: time the disk arm takes to move to a
different track

COMP 530: Operating Systems

Example formula
• s = seek latency, in time/track
• r = rotational latency, in time/sector
• i = I/O latency, in seconds

• Time = (Δtracks * s) + (Δsectors * r) + I
• Note: Δsectors must factor in position after seek is

finished. Why?
Example read time:

seek time + latency + transfer time
(5.6 ms + 2.99 ms + 0.014 ms)

Evaluation: how many tracks head moves across

COMP 530: Operating Systems

Practical Simplification
• Most hard disks don’t export low-level geometry

– But LBA layout (mostly) sequential on disk

• In practice, use LBA distance as proxy for track
distance
– I.e., we may not know exactly how many tracks an IO

request crosses in practice, but we can assume bigger gaps
in LBA space correspond to more tracks to cross

58

COMP 530: Operating Systems

• Assume a queue of requests exists to read/write tracks:
– and the head is on track 65

0 150125100755025

15016147147283

65

I/O Scheduling Algorithm 1: FCFS

FCFS: Moves head 550 tracks

Next req… Incoming reqs

COMP 530: Operating Systems

• Greedy scheduling: shortest seek time first
– Rearrange queue from:

To:

0 150125100755025

15016147147283

72821471501614

SSTF scheduling results in the head moving 221 tracks
Can we do better?

I/O Scheduling Algorithm 2: SSTF

SSTF: 221 tracks (vs 550 for FCFS)

COMP 530: Operating Systems

Other problems with greedy?
• “Far” requests will starve

– Assuming you reorder every time a new request arrives

• Disk head may just hover around the “middle” tracks

COMP 530: Operating Systems

• Move the head in one direction until all requests have
been serviced, and then reverse.

• Also called Elevator Scheduling

161472 83147150

• Rearrange queue from:

To:

0 150125100755025

15016147147283

16147283147150

I/O Scheduling Algorithm 3: SCAN

SCAN: 187 tracks (vs. 221 for SSTF)

COMP 530: Operating Systems

0 150125100755025

I/O Scheduling Algorithm 4: C-SCAN
• Circular SCAN: Move the head in one direction

until an edge of the disk is reached, and then
reset to the opposite edge

C-SCAN: 265 tracks (vs. 221 for SSTF, 187 for SCAN)

• Marginally better fairness than SCAN

COMP 530: Operating Systems

Scheduling Checkpoint
• SCAN seems most efficient for these examples

– C-SCAN offers better fairness at marginal cost
– Your mileage may vary (i.e., workload dependent)

• File systems would be wise to place related data
”near” each other
– Files in the same directory
– Blocks of the same file

• You will explore the practical implications of this
model in Lab 5!

64

COMP 530: Operating Systems

So what about IO scheduling for SSDs?
• Elevator scheduler is pointless on an SSD

– LBA locality across requests irrelevant
– Larger requests do help

• SSDs often use a no-op scheduler in practice
– Or simply delay IO requests to combine

• Possible room for improvement in future
– Devices themselves still evolving rapidly

65

COMP 530: Operating Systems

Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media

66

COMP 530: Operating Systems

• Multiple file systems can share a disk: Partition space
• Disks are typically partitioned to minimize the maximum seek time

– A partition is a collection of cylinders
– Each partition is a logically separate disk

Partition A Partition B

Disk Partitioning

COMP 530: Operating Systems

Parallel performance with disks
• Idea: Use more of them working together

– Just like with multiple cores

• Redundant Array of Inexpensive Disks (RAID)
– Intuition: Spread logical blocks across multiple devices
– Ex: Read 4 LBAs from 4 different disks in parallel

• Does this help throughput or latency?
– Definitely throughput, can construct scenarios where one

request waits on fewer other requests (latency)

• It can also protect data from a disk failure
– Transparently write one logical block to 1+ devices

68

COMP 530: Operating Systems

• Blocks broken into sub-blocks that are stored on separate
disks
– similar to memory interleaving

• Provides for higher disk bandwidth through a larger
effective block size

3

8 9 10 11
12 13 14 15
 0 1 2 3

OS disk
block

8 9 10 11

Physical disk blocks

21

12 13 14 15 0 1 2 3

Disk Striping: RAID-0

COMP 530: Operating Systems

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

• To increase the reliability of the disk,
redundancy must be introduced
– Simple scheme: disk mirroring (RAID-1)
– Write to both disks, read from either.

xx

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

Primary
disk

Mirror
disk

RAID 1: Mirroring

Can lose one disk without losing data

COMP 530: Operating Systems

x

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity
Block

x

xxxx

RAID 5: Performance and Redundancy
• Idea: Sacrifice one disk to store the parity bits of other

disks (e.g., xor-ed together)
• Still get parallelism
• Can recover from failure of any one disk
• Cost: Extra writes to update parity

COMP 530: Operating Systems

Disk 1

x x

Disk 2 Disk 3

x

Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity

Block
x+1

Parity

a
b
c

d
e
f

g
h
i

j
k
l

m
n
o

Block
x+2

Parity
p
q
r

s
t
u

v
w
x

y
z

aa

bb
cc
dd

Block
x+3

Parity
ee
ff
gg

hh
ii
jj

Block
x

Block
x+1

Block
x+2

Block
x+3

xx

RAID 5: Interleaved Parity

COMP 530: Operating Systems

Other RAID variations
• Variations on encoding schemes, different trades for

failures and performance
– See wikipedia
– But 0, 1, 5 are the most popular by far

• More general area of erasure coding:
– Store k logical blocks (message) in n physical blocks (k < n)
– In an optimal erasure code, recover from any k/n blocks
– Xor parity is a (k, k+1) erasure code
– Gaining popularity at data center granularity

73

COMP 530: Operating Systems

• Hardware (i.e., a chip that looks to OS like 1 disk)
– +Tend to be reliable (hardware implementers test)
– +Offload parity computation from CPU

• Hardware is a bit faster for rewrite intensive workloads
– -Dependent on card for recovery (replacements?)
– -Must buy card (for the PCI bus)
– -Serial reconstruction of lost disk

• Software (i.e., a “fake” disk driver)
– -Software has bugs
– -Ties up CPU to compute parity
– +Other OS instances might be able to recover
– +No additional cost
– +Parallel reconstruction of lost disk

Where is RAID implemented?

Most PCs have “fake” HW RAID: All work in driver

COMP 530: Operating Systems

Word to the wise
• RAID is a good idea for protecting data

– Can safely lose 1+ disks (depending on configuration)

• But there is another weak link: The power supply
– I have personally had a power supply go bad and fry 2/4

disks in a RAID5 array, effectively losing all of the data

75RAID is no substitute for backup to another machine

COMP 530: Operating Systems

Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media

76

COMP 530: Operating Systems

A Few Emerging Media
• Byte-addressable, non-volatile RAM

– Resistive media: Memristor
• Phase-Change Memory

• Capacity-optimized storage
– Glass

77

COMP 530: Operating Systems

Example: Phase-Change Memory (PCM)
• Chalcogenide glass: 2 chemical states as solid

– Crystalline or amorphous solid
– Depends on how fast it cools
– Each state has different electrical resistivity and different optical

refraction
• Optical refraction is how CDs, DVDs, Blu-Ray encode bits
• PCM uses resistivity
• Slower to write (must melt and cool cell)

– Than to read (just measure current)
– Overall performance <10x slower than DRAM, uses less power

• Retention projected at 300 years; no refresh needed
• Heating element does wear out (100m writes)

– Bytes still readable

78

COMP 530: Operating Systems

Key design questions: PCM
• What is the physical phenomenon?

– Electrical resistivity of chalcogenide glass
• How robust is the physical phenomenon to

environmental damage, or passage of time?
– Limited writes, but high tolerance for physical damage
– Data estimated to last 300 years (but limited experience)

• How to scale capacity, vs cost?
– Replicate circuits; not clear if precision can be raised

• Other engineering constraints or performance
anomalies?
– Limited write endurance, but last value retained
– Writes slower than reads

79

COMP 530: Operating Systems

Memristors
• Several different materials under study manipulate

resistivity
– Generically called Memristor

• ReRAM
• Spin-Transfer Torque memory

• Active area of development, moving quickly
– Motivated in part by difficulty scaling refresh of DRAM

• Current prototypes slower than DRAM, within an order of
magnitude

– Will probably change during your career!

80

COMP 530: Operating Systems

Microsoft’s Project Silica
• Focus on very, very long-term storage

– Example: Archiving UNC student data for >5 yrs ago
• Don’t need immediately, but occasional requests for a transcript

• Encode data with laser-etched, quartz glass
– Write once, read many times
– Very high endurance, retention
– Cheap material

• Some cost to move material to sensor (robot)

– No cost to retain other than space
– Too slow to try to compete with RAM

81

COMP 530: Operating Systems

Silica Video

82

COMP 530: Operating Systems

Editorial: Where is all this going?
• My personal guess: Market will segment

– Really fast storage (compete with DRAM on speed)
– Cheap, bulk storage (compete on total $/GB)

• HDDs mostly moving in this direction
• Some flash companies trying to compete here too
• Costs likely to include operating $$ and carbon

• HDD and SSD internals will also get esoteric
– Conventional scaling techniques have plateaued
– Interesting experiments with new encoding techniques
– And new constraints on updates in place (vs copying)

• Hybrid devices increasingly common
83

COMP 530: Operating Systems

Summary
• Know the 4 key questions to ask about any key storage

technology
– Familiarity with HDD and Flash in particular

• Understand how to get good performance from storage
– Large IOs (always), LBA locality (HDDs)

• Understand I/O scheduling algorithms
• Understand RAID, partitioning, TRIM

84

