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Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media
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OS’s view of a storage device
• Simple array of sectors

– Sectors are usually 512 or 4k bytes
– Also called Logical Block Addresses (LBAs)

• Captures virtual address space that device exports to OS

• OS can issue reads/writes to disk as small as one 
sector/LBA

• Depending on how data is placed on device, can also 
aggregate into larger requests
– One contiguous LBA range and operation (read/write) per 

IO request
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Storing Bits in a Computer
• We are used to the idea of just defining variables, 

reading, writing, etc.
• But internally, how does one actually store data?

– How is data stored in real life, before computers?
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Discretizing Physical Phenomena
• Key idea: Measure and manipulate 

some property of a physical medium
• Silly example: I can store a bit in a 

bucket of water
– Empty == 0
– Full == 1
– Read: measure water with sensor
– Write: dump or refill with actuator(s)

• Any concerns?
– What if the bucket has a few drops?
– What if the bucket has a slow leak?
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“Discretize” == 
round measurement 

of a continuous 
quantity (volume) to 
a discrete value (bit)

https://openclipart.org/detail/325616/bucket
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Lessons from the bit bucket
• Rarely perfectly full or empty

– Rather, need to tolerate some imprecision
– Better bit bucket encoder:

• <1/4 full == 0
• >3/4 full == 1
• 1/4---3/4 == error

• Damage to the media can flip bits
– A leaky bucket can shift its value over time
– Or just evaporation over long enough…
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What if I want to store more bits?
• Could use more buckets

– Need more space (or smaller buckets)
• Impact of smaller size on precision?  Cost?

• Could take finer measurements
• <1/4 full == 00
• 1/4---1/2 == 01
• 1/2---3/4 == 10
• >3/4 full == 11

– Impact on cost?  Risk of error?

7Key strategies: Replicate or Increase Precision 
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What about write speed?
• What can I do to make writes faster?  Downsides?

– Smaller buckets -> more precise reads
– More hoses/valves can fill more buckets -> more cost

• Splitting the difference:
– Expensive filling mechanism attached to a drone that 

relocates over correct bucket:
• Save money, increase latency
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Key design questions:
• What is the physical phenomenon?
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
• How to scale capacity, vs cost?
• Other engineering constraints or performance 

anomalies?
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Key design questions: Bit bucket
• What is the physical phenomenon?

– Water volume
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
– Not terribly robust to physical shock (not good for an apple 

watch), water evaporates over enough time (prob months)
• How to scale capacity, vs cost?

– More buckets or finer measurements
• Other engineering constraints or performance 

anomalies?
– “Drone solution” introduces delays, but cheaper than per-

bucket instrumentation
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1947: First Fully Electronic Memory
• Williams-Kilburn Tube
• Media: a Cathode Ray Tube (CRT)

– Same as old TVs
• CRTs work by shooting electron 

beam at phosphorescent screen
– Pixel “glows” for a fraction of

second
– Encode one bit per pixel on/off

• Computer “read” charge level on
screen with metal pickup plate
– Rewrites signal periodically,

Called refresh
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Top: Computer 
   History Museum
Bottom: Wikipedia

Many media require periodic data refresh
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Williams-Kilburn Tube Lessons
• Write speed limited by how fast glow fades
• Precision: Glow has imperfect fading rate

– Mitigated by writing to nearby, unmeasured space on 
screen to pull charge out of an “off” pixel

– Trades capacity for lower latency

• Physical resilience: sensitive to other magnetic fields
– Required constant recalibration in practice

• Refreshing values uses power, increases cost
– But again, a common strategy

• Non-thrifty fix for leaky bucket: periodically measure and top off 
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Key design questions: Williams-Kilburn
• What is the physical phenomenon?

– Phosphoresence in a cathode-ray tube
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
– Sensitive to other magnetic fields
– Holds data for fraction of second before refresh

• How to scale capacity, vs cost?
– Bigger screen or more screens; limited by speed of electron 

beam
• Other engineering constraints or performance 

anomalies?
– Can trade some space for higher write speed
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1949: Delay-line memory
• Encode data in a looped waveform/signal

– Media varies: sound through a mercury tube used first
• High speed of sound in mercury, plus similar acoustic impedance 

to quartz crystals
• Audible “hum” from some devices
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Delay-line memory
• Bits encoded using waveform + time

– Sequential access (not random)
• Must wait for wave to circle around to desired bit

– Capacity determined by number of tubes x length of tube
• Longer tubes increase access time (and, to a lesser degree, cost)
• More tubes increase cost

• Volatile memory: Bits lost once powered off
• Lots of engineering effort to deal with environmental 

variation (e.g., temperature, clock variations)
– Mercury later replaced with magnetism, quartz, and 

electric delay lines for faster, lower variance
– Not used today; I believe largely because of clock variance
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Historical Shout-Out
• Delay-lines were originally used in radar applications

– Delay-line memory invented by Presper Eckert, who 
worked first in radar, then computers

– Patented in 1947 by Eckert and John Mauchly
– Used in 2nd real computer: EDSAC 

• 16 delay lines, 560 bits each

• Today, ACM/IEEE award for major contributions to 
the field of computer architecture is named for 
them: the Eckert-Mauchly award
– Given in 1983 to Kilburn
– And in 2004 to our own Fred Brooks
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Key design questions: Delay-line memory
• What is the physical phenomenon?

– Sound wave in mercury

• How robust is the physical phenomenon to 
environmental damage, or passage of time?
– Susceptible to acoustic interference, requires constant 

refreshing

• How to scale capacity, vs cost?
– More tubes or longer tubes

• Other engineering constraints or performance 
anomalies?
– Clock variance is a bummer, sequential access within a tube
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Next Big Idea: Magnetic Recording
• A powerful electromagnet can change the polarity of 

some materials, such as iron oxide

• Media can hold polarity arrangement for decades
• All materials eventually succumb to entropy
• Refresh data every 50 years, rather than every .5 seconds!!
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Another illustration, from wikipedia
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Magnetic Recording over time
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Drum memory, 1932-60s
From wikipedia

Cassette tape
From wikipedia

Hard disk
From wikipedia

Many, many variants over time
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More on magnetic recording
• A ton of engineering to increase precision (and 

capacity)
– Major cost in the encoding head that does 

encoding/decoding
– Most designs have a small number of heads and move 

media under the head (e.g., spooling tape under the head)

• Magnetic recording is susceptible to being “erased” 
by adjacent magnetic fields
– Engineered to resist weaker magnetic fields
– Magnetic data loss typically requires a powerful magnet
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A simple disk model
• Disks are slow.  Why?

– Moving parts << circuits

• Programming interface: simple array of sectors 
Physical layout: 
– Concentric circular “tracks” of sectors on a platter
– E.g., sectors 0-9 on innermost track, 10-19 on next track, 

etc.
– Disk arm moves between tracks
– Platter rotates under disk head to align w/ requested 

sector
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Disk Model
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Disk Model
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Many Tracks

Disk
Head
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Several (~4) Platters

Platters spin 
together at same 

speed

Each platter has a head; 
All heads seek together
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Implications of multiple platters
• Blocks actually striped across platters
• Also, both sides of a platter can store data

– Called a surface
– Need a head on top and bottom

• Example:
– Sector 0 on platter 0 (top)
– Sector 1 on platter 0 (bottom, same position)
– Sector 2 on platter 1 at same position, top, 
– Sector 3 on platter 1, at same position, bottom
– Etc.
– 8 heads can read all 8 sectors simultaneously
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Real Example 
• Seagate 73.4 GB Fibre Channel Ultra 160 SCSI disk

• Specs:
– 12 Platters
– 24 Heads
– Variable # of sectors/track 
– 10,000 RPM

• Average latency: 2.99 ms
– Seek times

• Track-to-track: 0.6/0.9 ms
• Average: 5.6/6.2 ms

• Includes acceleration and settle time.

– 160-200 MB/s peak 
transfer rate

• 1-8K cache

Ø 12 Arms
Ø 14,100 Tracks
Ø 512 bytes/sector



COMP 530: Operating Systems

• Disks are getting denser
– More bits/square inch à small disks with large capacities

• Disks are getting cheaper 
– Well, in $/byte – a single disk has cost at least $50-100 for 20 years
– 2x/year since 1991

• Disks are getting faster
– Seek time, rotation latency: 5-10%/year (2-3x per decade)
– Bandwidth: 20-30%/year (~10x per decade)
– This trend is really flattening out on commodity devices; more apparent on 

high-end

• Increasingly esoteric constraints to increase density
– Shingled Magnetic Recording, Interlaced Magnetic Recording, Heat-

Assisted Magnetic Recording, etc.

Disks: Technology Trends

Overall: Capacity improving much faster than perf.
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Key design questions: Magnetic Hard Disks
• What is the physical phenomenon?

– Magnetic polarity 
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
– Susceptible to strong magnetic interference
– Sensitive to physical disturbance (e.g., dropping or shaking it)
– Data lasts for decades without a refresh

• How to scale capacity, vs cost?
– More surfaces
– More precision encoding (smaller surface area)

• Heads not independent (too costly)
• Other engineering constraints or performance 

anomalies?
– Latency for head movement
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Dynamic RAM (DRAM)
• Encode data as charge in capacitors

– “high charge” == 1, “low charge” == 0

• Reading the charge also discharges it, requiring a 
read to re-write the data
– Charge leaks out after 1-10 seconds – not persistent
– Thus, requires periodic refresh

• Circuits relatively cheap to replicate at scale
– Relatively uniform access times across cells (no “drone”)
– Power seems to be bottleneck to capacity
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Attacks on DRAM (1)
• Cold boot attack: Dump a computer’s RAM contents

– Without administrator account on OS
– Requires physical possession of the computer

• Recall: Data retention a function of temperature
– Longer when colder

• Literally put a laptop in the freezer
– Leverage seconds of retention while unplugged to quickly 

take out DRAM and plug into another computer
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Attacks on DRAM (2)
• Rowhammering: Flip bits in memory you don’t have 

access to
– E.g., in the kernel or another process’s address space

• Observation: Frequent charge/discharge cycles can 
cause disturb charge in adjacent cells

• Idea: Repeatedly read your own memory
– Flip bits in adjacent cells

• Leverage this to gain privilege
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Key design questions: DRAM
• What is the physical phenomenon?

– Charge in a capacitor
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
– Susceptible to electrical disturbance
– Data lasts for a few seconds

• How to scale capacity, vs cost?
– Replicate circuits

• Other engineering constraints or performance 
anomalies?
– Some performance variance from multiplexing
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Flash Memory (aka EEPROM)
• A capacitor that holds its charge longer than DRAM

– ~10 yrs fully unplugged

• Low-level physics is complex, based on quantum 
effects, I’ll give intuition
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nMOS Transistors (stolen from COMP 411)
• Gate = 0

– OFF = disconnect
• no current flows between 

source & drain

• Gate = 1
– ON= connect

• current can flow between 
source & drain

• positive gate voltage draws in 
electrons to form a channel

nMOS transistor operation (from Harris and Harris)
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nMOS Transistor -> Flash 

37
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Manipulating Flash 

38
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Causes quantum 
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Reading Flash 
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Flash details
• Like DRAM, cheap enough to replicate (nearly) 

everything – no expensive sensor to move around
• Program/erase via high current on control gate

– No charge == 1
– Program (add electrons to floating gate) to convert to a 0
– Erase (remove electrons from flt gate) to pull back to a 1

• Sense charge level via current measurement of 
control gate 
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Flash Performance Caveat
• Erasing 7x slower than programming
• Trick: Hide erase cost by adding more cells than 

advertised
– E.g., an 800 GB SSD may actually have 1 TB of cells

• For engineering reasons, write in KB blocks, 
– Erase in MB erase blocks

• Add a ”page table” to redirect writes for a logical 
block address (LBA) to a new location on each write
– Called a Flash Translation Layer (FTL)
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The FTL and SSD firmware
• The FTL is firmware (really software) that runs inside 

an SSD
• An SSD is really a small embedded computer

– Often with a few ARM cores and 100s MB of DRAM
– Runs software to implement the translation table
– And manage actual reads/writes of flash cells

• In the background, FTL erases blocks 
– Try to go for mostly stale contents, then recycle space
– If some live data in erase block, must first copy elsewhere

42No longer a simple machine to reason about…
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The TRIM command
• Indicates to the device a logical block (sector) is free

– So FTL can avoid copying junk contents when erasing block
– Abstraction introduced for flash (useful elsewhere)

• As opposed to leaving junk in place until overwrite
– Harmless on disks, adds overhead on flash

• TRIM issued by file system to device (more soon…)
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Scaling Flash
• Replication is one common strategy

– New technology: 3D stacked flash
• Another is increasing precision 

– Rather than just measuring charged, not charged, measure 
charge more finely

– And charge more carefully
– This is Single Level Cell (1 bit/cell) 

• vs. Multi-Level Cell (2 bits) vs TLC (3 bits/cell) vs QLC (4 bits/cell) vs 
PLC (5 bits/cell)

– Trade write speed (and endurance) for capacity
• Same capacity in SLC will be faster, last longer, (and 

cost more) than in MLC…PLC
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Flash Endurance Caveats
• Over time, a cell wears out

– Sending electrons across the insulator damages the 
insulator

– Around 10,000 program/erase cycles, but varies
• Reduced by higher precision encoding
• Repeatedly adding electrons hastens wear

• Over time, electrons get stuck in the floating gate
– Becomes more difficult to erase
– And causes skew (bit flips) in higher precision encodings

45



COMP 530: Operating Systems

Flash Wearout: A Real Thing
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Key design questions: Flash
• What is the physical phenomenon?

– Charge in a floating gate
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
– Limited writes, but high tolerance for physical damage
– Data lasts for about 10 years

• How to scale capacity, vs cost?
– Replicate circuits and increase precision

• Other engineering constraints or performance 
anomalies?
– Large erase blocks -> Copying/erasing in FTL
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Big picture: Cost/Speed vs Size
• In 2023:

Cost: Max Capacity Sold in one dev
– DRAM: $1.94 / GB 32 GB 
– SSD:      $0.03/GB 16 TB
– HDD:     $0.02/GB 22 TB

• Note: Cost picked based on first non-sponsored hit 
on newegg.com (i.e., random sample), capacity 
based on maximum available
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Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media
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How to Optimize Storage Performance?
• Two key techniques:

– Large IOs and locality on device
– I/O scheduling
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OS’s view of a storage device
• Simple array of sectors

– Sectors are usually 512 or 4k bytes
– Also called Logical Block Addresses (LBAs)

• Captures virtual address space that device exports to OS

• OS can issue reads/writes to disk as small as one 
sector

• Depending on how data is placed on device, can also 
aggregate into larger requests
– One contiguous LBA range and operation (read/write) per 

IO request
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The Case for Larger I/Os

52

From Conway et al, “Filesystems Fated for Senescence?…”FAST ‘17
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Large IOs
• Regardless of device or internals, 

– Fewer, big IO requests >> more small ones

• How to ensure large requests?
– Heavily affected by placement on device by file system

• (a topic for next lecture)

– Or hold requests in memory for a bit, to see if they can be 
combined

• Very common optimization to delay writes for a few seconds
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The Disk Scheduling Problem: Background
• Goals: Maximize disk throughput

– Bound latency
• Between file system and disk, you have a queue of 

pending requests:
– Read or write a contiguous logical block address (LBA) 

range
• You can reorder these as you like to improve 

throughput
• What reordering heuristic to use?  If any?
• Heuristic is called the IO Scheduler

– Or “Disk Scheduler” or “Disk Head Scheduler”
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Let’s Start with Hard Disks
• Latency of a given operation is a function of current 

disk arm and platter position
• Each request changes these values
• Idea: build a model of the disk

– Maybe use delay values from measurement or manuals
– Use simple math to evaluate latency of each pending 

request
– Greedy algorithm: always select lowest latency
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3 Key HDD Latencies
• I/O delay: time it takes to read/write a sector
• Rotational delay: time the disk head waits for the 

platter to rotate desired sector under it
– Note: disk rotates continuously at constant speed

• Seek delay: time the disk arm takes to move to a 
different track
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Example formula
• s = seek latency, in time/track
• r = rotational latency, in time/sector
• i = I/O latency, in seconds

• Time = (Δtracks * s) + (Δsectors * r) + I
• Note: Δsectors must factor in position after seek is 

finished.  Why?
Example read time:

seek time + latency + transfer time
(5.6 ms  +  2.99 ms +  0.014 ms)  

Evaluation: how many tracks head moves across
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Practical Simplification
• Most hard disks don’t export low-level geometry

– But LBA layout (mostly) sequential on disk

• In practice, use LBA distance as proxy for track 
distance
– I.e., we may not know exactly how many tracks an IO 

request crosses in practice, but we can assume bigger gaps 
in LBA space correspond to more tracks to cross
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• Assume a queue of requests exists to read/write tracks:
– and the head is on track 65

0 150125100755025

15016147147283

65

I/O Scheduling Algorithm 1: FCFS

FCFS: Moves head 550 tracks

Next req… Incoming reqs
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• Greedy scheduling: shortest seek time first
– Rearrange queue from:

To:

0 150125100755025

15016147147283

72821471501614

SSTF scheduling results in the head moving 221 tracks
Can we do better?

I/O Scheduling Algorithm 2: SSTF

SSTF: 221 tracks (vs 550 for FCFS)
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Other problems with greedy?
• “Far” requests will starve

– Assuming you reorder every time a new request arrives

• Disk head may just hover around the “middle” tracks
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• Move the head in one direction until all requests have 
been serviced, and then reverse.

• Also called Elevator Scheduling      

161472 83147150

• Rearrange queue from:

To:

0 150125100755025

15016147147283

16147283147150

I/O Scheduling Algorithm 3: SCAN

SCAN: 187 tracks (vs. 221 for SSTF)
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0 150125100755025

I/O Scheduling Algorithm 4: C-SCAN
• Circular SCAN: Move the head in one direction 

until an edge of the disk is reached, and then 
reset to the opposite edge

C-SCAN: 265 tracks (vs. 221 for SSTF, 187 for SCAN)

• Marginally better fairness than SCAN
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Scheduling Checkpoint
• SCAN seems most efficient for these examples

– C-SCAN offers better fairness at marginal cost
– Your mileage may vary (i.e., workload dependent)

• File systems would be wise to place related data 
”near” each other
– Files in the same directory
– Blocks of the same file

• You will explore the practical implications of this 
model in Lab 5!
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So what about IO scheduling for SSDs?
• Elevator scheduler is pointless on an SSD

– LBA locality across requests irrelevant
– Larger requests do help

• SSDs often use a no-op scheduler in practice
– Or simply delay IO requests to combine

• Possible room for improvement in future
– Devices themselves still evolving rapidly
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Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media
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• Multiple file systems can share a disk: Partition space
• Disks are typically partitioned to minimize the maximum seek time

– A partition is a collection of cylinders
– Each partition is a logically separate disk

Partition A Partition B

Disk Partitioning
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Parallel performance with disks
• Idea: Use more of them working together

– Just like with multiple cores

• Redundant Array of Inexpensive Disks (RAID)
– Intuition: Spread logical blocks across multiple devices
– Ex: Read 4 LBAs from 4 different disks in parallel

• Does this help throughput or latency?
– Definitely throughput, can construct scenarios where one 

request waits on fewer other requests (latency)

• It can also protect data from a disk failure
– Transparently write one logical block to 1+ devices
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• Blocks broken into sub-blocks that are stored on separate 
disks
– similar to memory interleaving

• Provides for higher disk bandwidth through a larger 
effective block size

3

8   9  10 11
12 13 14 15 
 0   1   2   3

OS disk
block

8   9  10 11

Physical disk blocks

21

12 13 14 15 0   1   2   3 

Disk Striping: RAID-0
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0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

• To increase the reliability of the disk, 
redundancy must be introduced
– Simple scheme: disk mirroring (RAID-1)
– Write to both disks, read from either.

xx

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

Primary
disk

Mirror
disk

RAID 1: Mirroring

Can lose one disk without losing data
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x

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity
Block

x

xxxx

RAID 5: Performance and Redundancy
• Idea: Sacrifice one disk to store the parity bits of other 

disks (e.g., xor-ed together)
• Still get parallelism
• Can recover from failure of any one disk
• Cost: Extra writes to update parity
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Disk 1

x x

Disk 2 Disk 3

x

Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity

Block
x+1

Parity

a
b
c

d
e
f

g
h
i

j
k
l

m
n
o

Block
x+2

Parity
p
q
r

s
t
u

v
w
x

y
z

aa

bb
cc
dd

Block
x+3

Parity
ee
ff
gg

hh
ii
jj

Block
x

Block
x+1

Block
x+2

Block
x+3

xx

RAID 5: Interleaved Parity
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Other RAID variations
• Variations on encoding schemes, different trades for 

failures and performance
– See wikipedia
– But 0, 1, 5 are the most popular by far

• More general area of erasure coding: 
– Store k logical blocks (message) in n physical blocks (k < n)
– In an optimal erasure code, recover from any k/n blocks
– Xor parity is a (k, k+1) erasure code
– Gaining popularity at data center granularity
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• Hardware (i.e., a chip that looks to OS like 1 disk)
– +Tend to be reliable (hardware implementers test)
– +Offload parity computation from CPU

• Hardware is a bit faster for rewrite intensive workloads
– -Dependent on card for recovery (replacements?)
– -Must buy card (for the PCI bus)
– -Serial reconstruction of lost disk

• Software (i.e., a “fake” disk driver)
– -Software has bugs
– -Ties up CPU to compute parity
– +Other OS instances might be able to recover
– +No additional cost
– +Parallel reconstruction of lost disk

Where is RAID implemented?

Most PCs have “fake” HW RAID: All work in driver
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Word to the wise
• RAID is a good idea for protecting data

– Can safely lose 1+ disks (depending on configuration)

• But there is another weak link: The power supply
– I have personally had a power supply go bad and fry 2/4 

disks in a RAID5 array, effectively losing all of the data

75RAID is no substitute for backup to another machine
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Today’s Lecture
• How do computers store and access bits?
• Review current and emerging storage technologies

– Hard Disk Drives (HDDs)
– Solid State Drives (SSDs, aka flash)

• Reasoning about volatility vs. persistence
• Key trade-offs
• How to optimize I/O performance
• Practical miscellany
• Emerging media
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A Few Emerging Media
• Byte-addressable, non-volatile RAM

– Resistive media: Memristor
• Phase-Change Memory

• Capacity-optimized storage
– Glass
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Example: Phase-Change Memory (PCM)
• Chalcogenide glass: 2 chemical states as solid

– Crystalline or amorphous solid
– Depends on how fast it cools
– Each state has different electrical resistivity and different optical 

refraction
• Optical refraction is how CDs, DVDs, Blu-Ray encode bits
• PCM uses resistivity
• Slower to write (must melt and cool cell)

– Than to read (just measure current)
– Overall performance <10x slower than DRAM, uses less power

• Retention projected at 300 years; no refresh needed
• Heating element does wear out (100m writes)

– Bytes still readable
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Key design questions: PCM
• What is the physical phenomenon?

– Electrical resistivity of chalcogenide glass
• How robust is the physical phenomenon to 

environmental damage, or passage of time?
– Limited writes, but high tolerance for physical damage
– Data estimated to last 300 years (but limited experience)

• How to scale capacity, vs cost?
– Replicate circuits; not clear if precision can be raised

• Other engineering constraints or performance 
anomalies?
– Limited write endurance, but last value retained
– Writes slower than reads
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Memristors
• Several different materials under study manipulate 

resistivity
– Generically called Memristor

• ReRAM
• Spin-Transfer Torque memory

• Active area of development, moving quickly
– Motivated in part by difficulty scaling refresh of DRAM

• Current prototypes slower than DRAM, within an order of 
magnitude

– Will probably change during your career!
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Microsoft’s Project Silica
• Focus on very, very long-term storage

– Example: Archiving UNC student data for >5 yrs ago
• Don’t need immediately, but occasional requests for a transcript

• Encode data with laser-etched, quartz glass
– Write once, read many times
– Very high endurance, retention
– Cheap material

• Some cost to move material to sensor (robot)

– No cost to retain other than space
– Too slow to try to compete with RAM
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Silica Video
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Editorial: Where is all this going? 
• My personal guess: Market will segment

– Really fast storage (compete with DRAM on speed)
– Cheap, bulk storage (compete on total $/GB)

• HDDs mostly moving in this direction
• Some flash companies trying to compete here too
• Costs likely to include operating $$ and carbon

• HDD and SSD internals will also get esoteric
– Conventional scaling techniques have plateaued
– Interesting experiments with new encoding techniques
– And new constraints on updates in place (vs copying)

• Hybrid devices increasingly common
83
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Summary
• Know the 4 key questions to ask about any key storage 

technology
– Familiarity with HDD and Flash in particular

• Understand how to get good performance from storage
– Large IOs (always), LBA locality (HDDs)

• Understand I/O scheduling algorithms
• Understand RAID, partitioning, TRIM
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