
COMP 530: Operating Systems

File Systems:
Crash Consistency

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

File Systems: Consistency Issues
• File systems maintain many data structures

– Free list/bit vector
– Directories
– File headers and inode structures
– Data blocks

• All data structures are cached for better performance
– Works great for read operations
– … but what about writes?

• If modified data is in cache, and the system crashes à all modified data
can be lost

• If data is written in wrong order, data structure invariants might be
violated (this is very bad, as data or file system might not be consistent)

– Solutions:
• Write-through caches: Write changes synchronously à consistency at

the expense of poor performance
• Write-back caches: Delayed writes à higher performance but the risk of

losing data

COMP 530: Operating Systems

What about Multiple Updates?
• Several file system operations update multiple data structures

• Examples:
– Move a file between directories

• Delete file from old directory
• Add file to new directory

– Create a new file
• Allocate space on disk for file header and data
• Write new header to disk
• Add new file to a directory

• What if the system crashes in the middle?
– Even with write-through, we have a problem!!

• The consistency problem: The state of memory+disk might not
be the same as just disk. Worse, just disk (without memory)
might be inconsistent.

COMP 530: Operating Systems

Which is a metadata consistency
problem?

• A. Null double indirect pointer
• B. File created before a crash is missing
• C. Free block bitmap contains a file data

block that is pointed to by an inode
• D. Directory contains corrupt file name

COMP 530: Operating Systems

Consistency: Unix Approach
• Meta-data consistency

– Synchronous write-through for meta-data
– Multiple updates are performed in a specific order
– When crash occurs:

• Run “fsck” to scan entire disk for consistency
• Check for “in progress” operations and fix up problems
• Example: file created but not in any directory à delete file; block

allocated but not reflected in the bit map à update bit map

– Issues:
• Poor performance (due to synchronous writes)
• Slow recovery from crashes

COMP 530: Operating Systems

Consistency: Unix Approach (Cont’d.)
• Data consistency

– Asynchronous write-back for user data
• Write-back forced after fixed time intervals (e.g., 30 sec.)
• Can lose data written within time interval

– Maintain new version of data in temporary files;
replace older version only when user commits

• What if we want multiple file operations to occur
as a unit?
– Example: Transfer money from one account to

another à need to update two account files as a unit
– Solution: Transactions

COMP 530: Operating Systems

Transactions
• Group actions together such that they are

– Atomic: either happens or does not
– Consistent: maintain system invariants
– Isolated (or serializable): transactions appear to happen one after

another. Don’t see another tx in progress.
– Durable: once completed, effects are persistent

• Critical sections are atomic, consistent and isolated, but not durable

• Two more concepts:
– Commit: when transaction is completed
– Rollback: recover from an uncommitted transaction

COMP 530: Operating Systems

Implementing Transactions
• Key idea:

– Turn multiple disk updates into a single disk write!

• Example:
Begin Transaction

x = x + 1
y = y – 1

Commit

• Sequence of steps:
– Write an entry in the write-ahead log containing old and new values

of x and y, transaction ID, and commit
– Write x to disk
– Write y to disk
– Reclaim space on the log

• In the event of a crash, either “undo” or “redo” transaction

Create a write-ahead log for
the transaction

COMP 530: Operating Systems

Transactions in File Systems
• Write-ahead logging à journaling file system

– Write all file system changes (e.g., update directory, allocate
blocks, etc.) in a transaction log

– “Create file”, “Delete file”, “Move file” --- are transactions

• Eliminates the need to “fsck” after a crash

• In the event of a crash
– Read log
– If log is not committed, ignore the log
– If log is committed, apply all changes to disk

• Advantages:
– Reliability
– Group commit for write-back, also written as log

• Disadvantage:
– All data is written twice!! (often, only log meta-data)

COMP 530: Operating Systems

Where on the disk would you put the
journal for a journaling file system?

1. Anywhere
2. Outer rim
3. Inner rim
4. Middle
5. Wherever the inodes are

COMP 530: Operating Systems

Transactions in File Systems: A more
complete way

• Log-structured file systems
– Write data only once by having the log be the only copy of data and

meta-data on disk

• Challenge:
– How do we find data and meta-data in log?

• Data blocks à no problem due to index blocks
• Meta-data blocks à need to maintain an index of meta-data blocks

also! This should fit in memory.

• Benefits:
– All writes are sequential; improvement in write performance is

important (why?)

• Disadvantage:
– Requires garbage collection from logs (segment cleaning)

COMP 530: Operating Systems

File System: Putting it All Together
• Kernel data structures: file open table

– Open(“path”) à put a pointer to the file in FD table; return index
– Close(fd) à drop the entry from the FD table
– Read(fd, buffer, length) and Write(fd, buffer, length) à refer to the

open files using the file descriptor

• What do you need to support read/write?
– Inode number (i.e., a pointer to the file header)
– Per-open-file data (e.g., file position, …)

COMP 530: Operating Systems

Putting It All Together (Cont’d.)
• Read with caching:

ReadDiskCache(blocknum, buffer) {
ptr = cache.get(blocknum) // see if the block is in cache
if (ptr)

Copy blksize bytes from the ptr to user buffer
else {

newOSBuf = malloc(blksize);
ReadDisk(blocknum, newOSBuf);
cache.insert(blockNum, newOSBuf);
Copy blksize bytes from the newOSBuf to user buffer

}

• Simple but require block copy on every read

• Eliminate copy overhead with mmap.
– Map open file into a region of the virtual address space of a process
– Access file content using load/store
– If content not in memory, page fault

COMP 530: Operating Systems

Putting It All Together (Cont’d.)
• Eliminate copy overhead with mmap.

– mmap(ptr, size, protection, flags, file descriptor, offset)
– munmap(ptr, length)

Virtual address space

Refers to contents of mapped file

void* ptr = mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, 3, 0);
int foo = *(int*)ptr;

foo contains first 4 bytes of the file referred to by file descriptor 3.

