
COMP 530: Operating Systems

Condition Variables

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

• Now that you have seen locks, is that all there is?

• No, but what is the “right” way to build a parallel
program?
– People are still trying to figure that out.

• Compromises:
– between making it easy to modify shared variables

AND
– restricting when you can modify shared variables.
– between really flexible primitives AND
– simple primitives that are easy to reason about.

Synchronization

COMP 530: Operating Systems

• Synchronizing on a condition.
– When you start working on a synchronization problem, first

define the mutual exclusion constraints, then ask “when does
a thread wait”, and create a separate synchronization
variable representing each constraint.

• Bounded Buffer problem – producer puts things in a
fixed sized buffer, consumer takes them out.
– What are the constraints for bounded buffer?
– 1) only one thread can manipulate buffer queue at a time

(mutual exclusion)
– 2) consumer must wait for producer to fill buffers if none full

(scheduling constraint)
– 3) producer must wait for consumer to empty buffers if all full

(scheduling constraint)

Moving Beyond Locks

COMP 530: Operating Systems

• Locks ensure mutual exclusion
• Bounded Buffer problem – producer puts things in

a fixed sized buffer, consumer takes them out.
– Synchronizing on a condition.

Class BoundedBuffer{
 …
 void* buffer[];
 pthread_mutex_t lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 pthread_mutex_lock(&lock);
 while (count == n); //spin
 Add c to the buffer;
 count++;
 pthread_mutex_unlock(&lock);
}

BoundedBuffer::Remove(c){
 pthread_mutex_lock(&lock);
 while (count == 0); // spin
 Remove c from buffer;
 count--;
 pthread_mutex_unlock(&lock);
}

What is wrong
with this?

Beyond Locking

COMP 530: Operating Systems

Class BoundedBuffer{
 …
 void* buffer[];
 pthread_lock_t lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 while (count == n); //spin
 pthread_mutex_lock(&lock);
 Add c to the buffer;
 count++;
 pthread_mutex_unlock(&lock);
}

BoundedBuffer::Remove(c){
 while (count == 0); // spin
 pthread_mutex_lock(&lock);
 Remove c from buffer;
 count--;
 pthread_mutex_unlock(&lock);
}

What is wrong
with this?

Beyond Locks

COMP 530: Operating Systems

BoundedBuffer::Deposit(c){
 if (count == n) sleep();
 pthread_mutex_lock(&lock);
 Add c to the buffer;
 count++;
 pthread_mutex_unlock(&lock);
 if(count == 1) wakeup(remove);
}

BoundedBuffer::Remove(c){
 if (count == 0) sleep();
 pthread_mutex_lock(&lock);
 Remove c from buffer;
 count--;
 pthread_mutex_unlock(&lock);
 if(count==n-1) wakeup(deposit);
}

What is wrong
with this?

Beyond Locks

Class BoundedBuffer{
 …
 void* buffer[];
 pthread_lock_t lock;
 int count = 0;
}

COMP 530: Operating Systems

BoundedBuffer::Deposit(c){
 pthread_mutex_lock(&lock);
 if (count == n) sleep();
 Add c to the buffer;
 count++;
 if(count == 1) wakeup(remove);
 pthread_mutex_unlock(&lock);
}

BoundedBuffer::Remove(c){
 pthread_mutex_lock(&lock);
 if (count == 0) sleep();
 Remove c from buffer;
 count--;
 if(count==n-1) wakeup(deposit);
 pthread_mutex_unlock(&lock);
}

What is wrong
with this?

Beyond Locks

Class BoundedBuffer{
 …
 void* buffer[];
 pthread_lock_t lock;
 int count = 0;
}

COMP 530: Operating Systems

BoundedBuffer::Deposit(c){
 while(1) {
 pthread_mutex_lock(&lock);
 if(count == n) {
 pthread_mutex_unlock(&lock);
 continue;}
 Add c to the buffer;
 count++;
 pthread_mutex_unlock(&lock);
 break;
}}

BoundedBuffer::Remove(c){
 while(1) {
 pthread_mutex_lock(&lock);
 if (count == 0) {
 pthread_mutex_unlock(&lock);
 continue;
 }
 Remove c from buffer;
 count--;
 pthread_mutex_unlock(&lock);
 break;
}}

What is wrong
with this?

Beyond Locks
Class BoundedBuffer{
 …
 void* buffer[];
 pthread_lock_t lock;
 int count = 0;
}

COMP 530: Operating Systems

• Correctness requirements for bounded buffer producer-consumer
problem
– Only one thread manipulates the buffer at any time (mutual exclusion)
– Consumer must wait for producer when the buffer is empty

(scheduling/synchronization constraint)
– Producer must wait for the consumer when the buffer is full

(scheduling/synchronization constraint)

• Solution: condition variables
– An abstraction that supports conditional synchronization
– Condition variables are associated with a monitor lock
– Enable threads to wait inside a critical section by releasing the monitor

lock.

Introducing Condition Variables

COMP 530: Operating Systems

• Three operations
– int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
• Aka “wait()”
• Release lock
• Go to sleep
• Reacquire lock upon return

– int pthread_cond_signal(pthread_cond_t *cond);
• Aka “notify” or “signal”
• Wake up a waiter, if any

– int pthread_cond_broadcast(pthread_cond_t *cond);
• Aka “notifyall” or “broadcast”
• Wake up all the waiters

• Implementation
– Requires a per-condition variable queue to be maintained
– Threads waiting for the condition wait for a notify()

Wait() specifies a lock
to be released as a parameter

Condition Variables: Operation

COMP 530: Operating Systems

• Coke machine as a shared buffer

• Two types of users
– Producer: Restocks the coke machine
– Consumer: Removes coke from the machine

• Requirements
– Only a single person can access the machine at any time
– If the machine is out of coke, wait until coke is restocked
– If machine is full, wait for consumers to drink coke prior to restocking

• How will we implement this?
– What is the class definition?
– How many lock and condition variables do we need?

Using Condition Variables: An Example

COMP 530: Operating Systems

Class CokeMachine{
 …
 Storge for cokes (buffer)
 pthread_mutex_t lock;
 int count = 0;
 pthread_cond_t notFull, notEmpty;
}

CokeMachine::Deposit(){
 pthread_mutex_lock(&lock);
 while (count == n) {
 pthread_cond_wait(¬Full,
 &lock); }
 Add coke to the machine;
 count++;
 pthread_cond_notify(¬Empty);
 pthread_mutex_unlock(&lock);
}

CokeMachine::Remove(){
 pthread_mutex_lock(&lock);
 while (count == 0) {
 pthread_cond_wait(¬Empty,
 &lock); }
 Remove coke from to the machine;
 count--;
 pthread_cond_notify(¬Full);
 pthread_mutex_unlock(&lock);
}

Coke Machine Example

COMP 530: Operating Systems

• Always wait and notify condition variables with the
mutex held.

• Period.

– Fine print: There are cases where notification outside of a
lock can be safe, but the code tends to be fragile, error-
prone, and easy for another developer to break.

– In many cases you can lose notifications and hang
(liveness)

– Moreover there is no clear advantage to breaking this
convention. So just don’t do it.

Word to the Wise…

COMP 530: Operating Systems

• Non-deterministic order of thread execution è concurrency problems
– Multiprocessing

• A system may contain multiple processors è cooperating threads/processes
can execute simultaneously

– Multi-programming
• Thread/process execution can be interleaved because of time-slicing

• Goal: Ensure that your concurrent program works under ALL possible
interleaving

• Define synchronization constructs and programming style for
developing concurrent programs

• Locks à provide mutual exclusion
• Condition variables à provide conditional synchronization

Summary

