Name/PID: \qquad

COMP520: Written Assignment 1

Q1. Nullable, Starters, Followers. Determine the Nullable and the Starter/Follower sets for the grammar non-terminals.

S ::=ABc
A ::= a B | $\boldsymbol{\varepsilon}$
$\mathrm{B}::=\mathbf{b} \mid \boldsymbol{\varepsilon}$

Non-terminals $=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
Terminals $=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Q2. Prediction Sets. Identify the choice points (if any). Next, determine the Predict sets.
S ::=ABc
$\mathrm{A}::=\mathbf{a} \mathrm{B} \mid \boldsymbol{\varepsilon}$
$\mathrm{B}::=\mathrm{b} \mid \boldsymbol{\varepsilon}$

Non-terminals $=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
Terminals $=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Q3. LL(1) Condition. Is this Grammar LL(1)? Why or why not?
S : : = A B c
$\mathrm{A}::=\mathbf{a} \mathrm{B} \boldsymbol{\varepsilon}$
$\mathrm{B}::=\mathbf{b} \mid \boldsymbol{\varepsilon}$
$\mathrm{NT}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
$\mathrm{T}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Q4. Nullable, Starters, Followers. Determine the Nullable and the Starter/Follower sets for the grammar non-terminals.
$\mathrm{S}::=\mathrm{Ac}$
A ::= a A* ${ }^{\text {b }}$ b
$\mathrm{NT}=\{\mathrm{S}, \mathrm{A}\}$
$\mathrm{T}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Q5. Prediction Sets. Identify the choice points (if any). Next, determine the Predict sets.
$\mathrm{S}::=\mathrm{A} \mathbf{c}$
$\mathrm{A}::=\mathbf{a} \mathrm{A}^{*} \mathrm{~b} \mid \mathrm{b}$
$\mathrm{NT}=\{\mathrm{S}, \mathrm{A}\}$
$\mathrm{T}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Q6. LL(1) condition. Is this grammar LL(1)? Why or why not?
$\mathrm{S}::=\mathrm{A} \mathbf{c}$
$\mathrm{A}::=\mathbf{a} \mathrm{A}^{*} \mathrm{~b} \mid \mathrm{b}$
$\mathrm{NT}=\{\mathrm{S}, \mathrm{A}\}$
$\mathrm{T}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Q7. Rewrite Rules, Recursion. Rewrite the CFG to an equivalent CFG where no non-terminal rule contains itself. You will need to add NT rules.

Consider the grammar G_{0} :
S ::=A \$
A ::= (A)
$\mathrm{A}::=\mathrm{A}+\mathrm{A}$
A $::=$ num
$\mathrm{NT}=\{\mathrm{S}, \mathrm{A}\}$
$\mathrm{T}=\{(),$, num,,$+ \$\}$
num $=\operatorname{digit}(\operatorname{digit}) *$
digit $=0,1,2,3,4,5,6,7,8,9$

Q8. Checking input. For each w_{i}, is $w_{i} \in \mathrm{~L}\left(\mathrm{G}_{0}\right)$?

$$
\begin{aligned}
& \mathrm{w}_{0}=(()) \$ \\
& \mathrm{w}_{1}=(((3)+(5)) \$ \\
& \mathrm{w}_{2}=\$ \\
& \mathrm{w}_{3}=() \$ \\
& \mathrm{w}_{4}=1 \$
\end{aligned}
$$

