Quiz 05 Review Session

COMP 210 / 2024 Summer Session I

Ajay Gandecha

Quiz 05 Format

- 30 minutes at the start of class.
- On paper - bring a pencil!
- Question Types:
- Multiple choice, T/F, select all that apply, fill in the blank, (drawing trees)

Exercise Check-In Question

- Similar format to the exercise question on the last quiz.
- Review Ex08. \rightarrow sizeC
- Questions? \rightarrow find max ()$\subset 1$
\rightarrow insert ()
\rightarrow printinonder Traceal() $O(N)$

On Quiz 05^{\downarrow}

- Trees, Binary Trees, Binary Search Trees
- Time Complexity of Binary Search Trees
- 「Priority Queues, Min. Binary Heaps J

BST Operations - Time Complexities

Sorting with a BST

- Insert all values
- Read in an in-order traversal.

traverse (left) print (root)
 hawse (right)
- Time ComplexityAverage Sort: $O(n \mid \ln n)+O(n)=O(n \log N) \Leftarrow$ $1,3,4,5,6,7,8 \leftarrow$ sumter! $O\left(n^{2}\right)+O(N)=O\left(n^{2}\right)$
- Worst Case Sort:
(1) Add items
(2) In order tracesal

Priority Queue

- Queue, except value dequeued should have the lowest priority value.

Minimum Binary Tree

- Binary Trees where given ANY root r in the tree:
- Every value in the left and right subtree > root's value.
- The height of the left and right subtree differ by a maximum of 1 .
- Enqueue: $\mathrm{O}(\log \mathrm{N})$
- Dequeue: $\mathrm{O}(\log \mathrm{N})$

Minimum Binary Heap

- Since our trees always grow along the bottom, our trees are always full.
- Only missing spaces are on the bottom right-hand side.
- So, we can represent our tree as a list.

Minimum Binary Heap (MBT as a List) Invariants

- Indexes

$$
\begin{array}{ll}
\text { - "left" at (i*2)+1 } \\
\text { - "right" at (i*2)+2 }
\end{array}
$$

- If left index is >= size of list, then parent is a leaf $\$$
- If left = size-1, then parent has left, but no right.

Minimum Binary Heap (MBT as a List) Invariants

 $\rightarrow p e c k() \rightarrow$ findwin $($)- Get (worst case): O(1)

- Insert (avg case): O(1) - worst case: O(logN)
- Remove (avg + worst case): O(logN)

Very efficient! *

Insert Practice
(1) Add $\&$ to the follown:

(2) Add 1 th the Gillowing

(2) Abe 3 to the follown:

$$
[4,6,8,9,11,10,12]
$$

Delek Praçice
(1) Delef 2 from the follown:

(2) Dolete 4 from the fillourns:

$$
[4,6,8,9,11,10,12]
$$

Insert Practice
(1) Add 8 to the following:

(2) Add 1 th the following

(3) Abl 3 to the follow:

$$
[4,6,8,9,11,10,12]
$$

Delek Practice
(1) Delete 2 from the following:

(2) Delete 4 from the following:

$$
[4,6,8,11,9,10,12]
$$

Enqueve to MBH
(1) AdS item as the right-most leaf in the tree.
(2) "Bubble up"

- Keep swapping up the enqueued item with its parent node if the parent node is large than the enqueved item (which orates the invariant)

Ex Enqueue 2 to:

1)

2)

Swap 2 and 7
since $2<7$.
3)
 $13 \frac{13}{7}$
Swap 2 and 3 since $2<3$.

Tree is valid, so we are dose!

Dequeue from MBH

* we only ever dequeue the root (element with smallest priority value).
(1) Swap the final item in the tree (leaf) with the root. Then, delek the minimum (now at the end of the tree).
(2) "Bubble Down"
- Swap the root with the minimum of its two children. Repeat until the root is no longer larger then either of its children.

Ex Dequare from

