Quiz 03 Review Session

COMP 210 / 2024 Summer Session I

Ajay Gandecha

Quiz 03 Format

- 30 minutes at the start of class.
- Should be shorter :)
- On paper - bring a pencil!
- Question Types:
- Multiple choice, T/F, select all that apply, fill in the blank, diagramming (?)
- No code writing on this quiz - but be able to trace given Java code!

Exercise Check-In Question

- Similar format to the exercise question on Quiz 02.
- Review Ex05-Linked List pt. 1 \longrightarrow is Symnetrical
- Questions?
\rightarrow remactt
\rightarrow mulfifly
\rightarrow is Equal

On Quiz 0

- Stacks (LIFO data structure)
- Queues (FIFO data structure)
- Basic Sorting, Big-O Analysis

Review: Big-O Analysis

- We need a way to determine how efficiently algorithms run.
- We need notation to be able to compare the efficiency of algorithms.
- This is called Big-O Notation.
- We can tell how efficient algorithms run by comparing how many operations an algorithm performs compared to the number of inputs we supply to it.

Big-O Complexity Chart

\qquad (push) (remove)
Stack Data Structure
\rightarrow linked !:ct

- LIFO (last in, first out)
- Operations: . push (), . pop (), -get (f).

Linkalister
(tail or not)

$$
\begin{aligned}
& \text { Trust prove in } \\
& \text { ort } \\
& 112-3
\end{aligned}
$$

- FIFO (first in, first out)
- Operations: .enqueue (), . dequeue(), .get ()

Sorting

- We can create algorithms to convert an unsorted list into a sorted one.
- Many different approaches... (some not covered in class):
- Quick sort
- Merge sort
- Bubble sort
- ... and more!
- We can compare these different methods by comparing their time complexity.

Sorting

- Comparable<T>
- Has method: a.compareTo (b)

■ $=1$ if $a>b$
■ $=0$ if $a==b$

- $=-1$ if $a<b$
- TLDR: Helps us sort items (to sort, we need to compare items to each other).

$$
\begin{aligned}
& \text { Big-O Sorting Example - LinkedList<T> } \\
& \text { Selation surt } \\
& \text { = If dose with } \\
& \text { an Arraylist } \\
& \text { Insterd. } \\
& \text { List<T> sort(List<T> list) \{ } \\
& \text { for(int } i=0 ; i<l i s t . s i z e()-1 ; i++)\{0(N) \\
& \text { int minIndex }=i ; O(1) \\
& \text { for(int j = i; j < list.size() ; j++) }\{0(N)
\end{aligned}
$$

$$
\begin{aligned}
& \text { \} } \\
& \text { return list; } \\
& \text { \} } \\
& n[1+n[0(N)]+n]
\end{aligned}
$$

Ali

$$
n[1+n[1]+1]
$$

$$
n[n+2] \rightarrow \frac{o\left(n^{2}\right)}{\bigcap_{\omega / \text { Arrulist }}}
$$

$$
\begin{aligned}
& n\left[1+n^{2}+n\right] \\
& n+n^{3}+n^{2} \Rightarrow \frac{O\left(n^{3}\right)}{\square}
\end{aligned}
$$

