
Quiz 03 Review Session
COMP 210 / 2024 Summer Session I

Ajay Gandecha

Quiz 03 Format

● 30 minutes at the start of class.

● Should be shorter :)

● On paper - bring a pencil!

● Question Types:

○ Multiple choice, T/F, select all that apply, fill in the blank, diagramming (?)

○ No code writing on this quiz - but be able to trace given Java code!

Exercise Check-In Question

● Similar format to the exercise question on Quiz 02.

● Review Ex05 - Linked List pt. 1.

● Questions?

isSymmetrical

removeAt
multiply
isEqual

On Quiz 02

● Stacks (LIFO data structure)

● Queues (FIFO data structure)

● Basic Sorting, Big-O Analysis

Review: Big-O Analysis

● We need a way to determine how efficiently algorithms run.

○ We need notation to be able to compare the efficiency of algorithms.

○ This is called Big-O Notation.

● We can tell how efficient algorithms run by comparing how many operations an

algorithm performs compared to the number of inputs we supply to it.

Big-O
Graph

Comparisons

r

IE

n5
8

m m

1 37 oca

Stack Data Structure

● LIFO (last in, first out)

● Operations: .push(), .pop(), .get()

013 X

rush remove

late Fry I add

oi
ist.am name

FEELI4 IT
ago

1 1 OLD

if AL ON ON ON

If
main

Queue Data Structure

● FIFO (first in, first out)

● Operations: .enqueue(), .dequeue(), .get()

E I stir

E
add remote k

neakia seff

on on on

AL n N OLD

Sorting
● We can create algorithms to convert an unsorted list into a sorted one.

● Many different approaches… (some not covered in class):

○ Quick sort

○ Merge sort

○ Bubble sort

○ … and more!

● We can compare these different methods by comparing their time complexity.

Sorting
● Comparable<T>

○ Has method: a.compareTo(b)

■ = 1 if a>b

■ = 0 if a == b

■ = -1 if a < b

○ TLDR: Helps us sort items (to sort, we need to compare items to each other).

I

Big-O Sorting Example - LinkedList<T>

List<T> sort(List<T> list) {

 for(int i = 0; i < list.size() - 1; i++) {

 int minIndex = i;

 for(int j = i; j < list.size(); j++) {

 if(list.get(j).compareTo(list.get(i)) == -1) minIndex = j;

 }

 list.swapAt(i, minIndex); // O(?)

 }

 return list;

}

selection
SILL

OCN
OCD

OCN

a
In

Avon
II 80W

AL OCD

nE n out in

NEEDAL

n Hn 1 I
n n n 0 n

n n 2 n

