
Quiz 02 Review Session
COMP 210 / 2024 Summer Session I

Ajay Gandecha

Quiz 02 Format

● 30 minutes at the start of class.

● On paper - bring a pencil!

● Question Types:

○ Multiple choice, T/F, select all that apply, fill in the blank.

○ No code writing on this quiz - but be able to trace given Java code!

Exercise Check-In Question

● …

On Quiz 02

● Big-O Analysis

○ Analyzing code snippets for runtime analysis, including recursive code

● The List Abstract Data Type

○ Understand ArrayList and LinkedList on the heap

○ Explain trade-offs between both, justified using big-O notation

Review: Big-O Analysis

● We need a way to determine how efficiently algorithms run.

○ We need notation to be able to compare the efficiency of algorithms.

○ This is called Big-O Notation.

● We can tell how efficient algorithms run by comparing how many operations an

algorithm performs compared to the number of inputs we supply to it.

Big-O
Graph

Comparisons

Recursive Example 1

void foo(int n) {

 if(n<=0) return 1;

 return 1 + foo(n-1);

}

Recursive Example 2

void fib(int n) {

 if(n<2) return n;

 return fib(n-1) + fib(n-2);

}

Recursive Example 3

void fib(int n) {

 if(n<=1) return n;

 return fib(n/2) + fib(n/2);

}

ArrayList Representation

● Recall that List is an abstract data type.

● ArrayList is one implementation of the List interface.

ArrayList Representation

LinkedList Representation

● LinkedList is another implementation of the List interface.

LinkedList Representation

Deriving List Time Complexities

get(0) get(i) get(n) insert(0) insert(i) insert(n) remove(0) remove(i)

ArrayList

LinkedList
(Head only)

LinkedList
(Head and

Tail)

