
A Preliminary Examination of Schedulability
under Lock Servers∗

Catherine E. Nemitz
The University of North Carolina at Chapel Hill

nemitz@cs.unc.edu

ABSTRACT
Allowing nested resource access in a real-time system intro-
duces several challenges. Addressing these challenges within
a synchronization protocol often leads to significant protocol
overhead. Recently, a protocol-independent method was de-
veloped that significantly reduces this overhead; lock servers
manage the execution of complex protocols, largely indepen-
dently from the tasks that require resource access. However,
some lock server configurations change the blocking caused
by the underlying protocol. This leaves an as-of-yet unan-
swered question: how does the use of lock servers impact
schedulability? I present a preliminary examination of that
question and briefly explore how the assignment of tasks to
lock servers can impact schedulability.

Keywords
multiprocessor locking protocols, nested locks, real-time lock-
ing protocols, priority-inversion blocking

1. INTRODUCTION
Real-time systems, those which require timing guaran-

tees as a component of system correctness, require an effi-
cient synchronization protocol to enable safe resource shar-
ing while meeting deadlines. A particular challenge to pro-
tocol efficiency is the presence of nested resource requests,
which occur in real-world systems [1, 3, 5] when multiple
resources must be held simultaneously.

Synchronization protocols are necessary to ensure safe re-
source sharing, but contribute two fundamental types of de-
lay to task execution. Blocking occurs when a task must wait
due to the protocol managing access to resources. Blocking
varies between protocols based on how each protocol orders
tasks to grant resource access. The other delay introduced
by locking protocols is overhead—the time required to exe-
cute the protocol logic and determine which task(s) may be
granted access to resources at each time.

Until recently, approaches taken by locking protocols to
handle nested resource access either (i) artificially limit nest-
ing [8, 14], (ii) may cause significant blocking [6, 7, 9, 14, 15],

∗Work supported by NSF grants CNS 1409175, CNS
1563845, CNS 1717589, and CPS 1837337, ARO grant
W911NF-17-1-0294, and funding from General Motors. This
material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship Program un-
der Grant No. DGS-1650116. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

or (iii) cause significant overhead [10]. A recently developed
method [12] allows the reduction of protocol overhead and,
depending on the configuration, may change the computa-
tion of worst-case blocking. This reveals a need—to fully
examine the tradeoffs of overhead and blocking under this
new approach in the context of schedulability.

In light of this, I take the uniform variant of the contention-
sensitive real-time nested locking protocol (U-C-RNLP), as a
case study and explore the impacts of the various lock server
configurations on schedulability. While one lock server con-
figuration tends to outperform all others in this preliminary
study, the results also show that with better accounting tech-
niques and methods of task allocation, the other configura-
tions may lead to higher schedulability in more scenarios.

Organization. I begin by giving necessary background on
the system model and on related work Sec. 2. Next, I present
preliminary schedulability results Sec. 3. Finally, I conclude
and present directions for future work in Sec. 4.

2. BACKGROUND AND PRIOR WORK
I begin by describing the system model before giving rel-

evant details about the different lock server configurations
and the functionality of the U-C-RNLP.

System Model. In this paper, I assume the standard spo-
radic task model, in which an arbitrary task is denoted τi.
As described in more detail in Sec. 2, clustered scheduling
is required for some lock server configurations, so I assume
Clustered Earliest-Deadline-First (C-EDF) scheduling.

When a task τi requires access to one or more resources,
it issues a request Ri. I focus on a spin-based locking pro-
tocol, in which τi busy waits until it is granted access to
its resources, after which it executes non-preemptively un-
til completing at most Li time units later. The maximum
critical-section length is denoted Lmax.

Lock Servers. Lock servers [12] build on an idea fundamen-
tal to remote core locking [11] by isolating the execution of
the lock logic to a few processes to better utilize the cache(s).
This is the mechanism that allows such a drastic reduction
in overhead. There are four fundamental lock server types,
which are distinguished by locality and mobility.

Let us begin by assuming a single lock server and exploring
the two types of mobility. A static lock server is pinned to a
single core. In contrast, a floating lock server moves between
cores. More specifically, when a task is busy-waiting for
access to its required resource(s), it can instead assume the
role of the lock server; until it is satisfied, it cannot continue
its execution, but it can execute the lock logic on behalf of



Protocol
Worst-Case

Acquisition Delay
Overhead (µs)
on Platform 1

Overhead (µs)
on Platform 2

U-C-RNLP (ci + 1) · Lmax 23.5 29.2
U-C-RNLP + SGLS (ci + 1) · Lmax 13.5 8.0
U-C-RNLP + SLLS (ci,s + 1)(Lmax,1 + Lmax,2) 8.7 2.8
U-C-RNLP + FGLS (ci + 1) · Lmax 11.5 9.1
U-C-RNLP + FLLS (ci,s + 1)(Lmax,1 + Lmax,2) 10.8 3.1

Table 1: Blocking bounds and overhead of each lock server configuration with the U-C-RNLP.

other tasks. In general, a static lock server will result in
lower overhead than a floating lock server, as eliminating
mobility can allow lock state to remain in the L1 cache.

Now let us consider the locality options. A global lock
server executes the protocol logic on behalf of all tasks, while
a local lock server handles only a subset of all tasks. The
local lock server configurations originally presented [12] des-
ignate one lock server per CPU socket. A set of local lock
servers tend to have lower overhead than a global lock server,
as some level of cache affinity can be maintained. Combin-
ing both distinctions, a set of static local lock servers will
have the lowest overhead of the four possible configurations.
However, the use of local lock servers comes with a tradeoff:
an additional synchronization mechanism is required in or-
der to ensure tasks managed by different lock servers execute
safely. This changes the worst-case blocking for the proto-
col used, which I describe in more detail after presenting the
basic functionality of the locking protocol I consider.

U-C-RNLP. Though lock servers provide a means for re-
ducing overhead that is protocol independent, they require
use of some protocol. For this work, I focus on the Uniform
C-RNLP (U-C-RNLP) variant of the C-RNLP [10].

The U-C-RNLP maintains a table of waiting and satisfied
requests that indicates when each request will be satisfied.
When a new request is issued, it is added to the first (“ear-
liest”) row in which there are no requests for an overlapping
set of resources. Entire rows are satisfied concurrently; when
a request completes, it is removed from the table and, if it
was the last request in its row, it indicates that any requests
in the subsequent row may become satisfied immediately.

The worst-case blocking for a request Ri handled by the
U-C-RNLP is thus dependent on the number of other re-
quests that conflict (require one or more of the same re-
sources) with Ri. This is the contention that Ri may ex-
perience and is denoted ci. This leads to the bound of the
U-C-RNLP (without any lock server) shown in Table 1. Es-
sentially, there are at most ci+1 rows of requests that will be
satisfied before Ri is satisfied, and it may take up to Lmax

time units for all requests of a given row to complete.
When lock servers are used, the worst-case acquisition de-

lay depends on the configuration. With a single lock server,
as with the Floating Global Lock Server (FGLS) or the
Static Global Lock Server (SGLS), the blocking remains un-
changed from that of the basic U-C-RNLP protocol without
lock servers. However, with multiple lock servers, like with
the Floating Local (FLLS) and Static Local (SLLS) con-
figurations, additional coordination is required between the
different lock servers before resource access may be granted.

Refining the notion of a maximum critical-section length
per local lock server allows a tighter bound to be computed.
The maximum critical-section length of any request man-
aged by Lock Server 1 (resp., Lock Server 2) is denoted

Lmax,1 (resp., Lmax,2). Additionally, I refine the contention
of a request Ri to specify the number of contending requests
also served by Lock Server s, which is denoted ci,s. The
bounds on acquisition delay for the U-C-RNLP with each
lock server configuration is shown in Table 1.

3. SCHEDULABILITY ANALYSIS
In this section, I describe my evaluation methodology and

present the results. This evaluation is centered around the
question of schedulability, but synchronization protocol over-
head and blocking must first be accounted for. I computed
both of these components and then incorporated them into
the open-source schedulability toolkit SchedCAT [2].

3.1 Overhead
Synchronization protocol overhead is platform dependent.

To accurately compare the tradeoffs of different lock server
configurations, overhead must be computed on any test plat-
form. For this preliminary investigation, I explore two plat-
forms. Platform 1 is a dual-socket, 8-cores-per-socket Intel
CPU platform. The second platform I consider, Platform
2, is a dual-socket, 18-cores-per-socket Intel CPU platform.
Both platforms have three cache levels, with the lowest level
shared across an entire socket, but not between sockets.
Based on this two-socket structure, for the local lock server
configurations, I use one local server per socket.

In order to measure the overhead of each configuration, I
used the methodology described in [12]. I varied critical-
section lengths, testing Li ∈ {1, 15, 100}µs with nesting
depth of either 2 or 4. The highest overhead for each con-
figuration tended to be for nesting depth of 2 and Li = 1µs,
which is depicted in Fig. 1 for both platforms. The highest
overhead values I measured are recorded in Table 1; these
are the values I incorporated into the schedulability study
by inflating the execution time of a task.

3.2 Blocking
To compute blocking, I use the bounds presented in Ta-

ble 1. In the implementation of these computations in the
SchedCAT framework, I also made a refinement to tighten
the analysis, by applying a period-based constraint [13], as
it may not always take Lmax for each row of requests to
complete. Instead, I use a set of the largest critical-section
lengths; I account for the number of times each critical sec-
tion could delayRi based on the relative periods of the tasks.
Once I have computed the blocking a task may encounter, I
inflate its execution time by this amount.

3.3 Schedulability
The taskset under analysis is divided into clusters by a

Worst-Fit bin packing heuristic, which considers the utiliza-
tion of a task to be its “weight” and the bin size to be U = 1.



2 4 6 8 10 12 14 16
Number of Tasks

0

5

10

15

20

25

T
o
ta

l 
O

v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

(a) Platform 1

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

T
o
ta

l 
O

v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

(b) Platform 2

Figure 1: Total protocol overhead.

Category Name Value

Critical-Section Short [1,15]
Length (µs) Bimodal [1,15] or [15,100]

Moderate [15,100]

Period (ms) Short [3,33]
Moderate [10,100]

Table 2: Named parameter distributions.

After accounting for the blocking and overhead a task may
incur, I apply Baruah’s G-EDF schedulability test [4] to each
cluster individually. If all clusters pass this test, the taskset
is deemed schedulable.

I examined a range of scenarios; the parameter values are
summarized in Tables 2 and 3. I focused on nested re-
quests; non-nested requests can be handled efficiently by
other means [13]. Also, I assumed each task issues at most
one request. For each value of system utilization consid-
ered, 100 tasksets were examined. To analyze the static lock
server configurations, I assumed an entire core was dedicated
to each server. I reevaluate this pessimistic decision below.

Platform 1. I begin with a series of observations from the
72 scenarios explored on Platform 1. Fig. 2 represents one
such scenario, in which tasks have short periods, 50% of
tasks issue a request, and the nesting depth is 2.

Obs. 1. The schedulability of the U-C-RNLP with the
FGLS is always as good or better than that of the U-C-RNLP
with no lock server.

Category Options

Task Utilization [0.1,0.4]
Period Short, Long

Percentage Issuing Requests
5%,10%,20%,
50%, 80%, 100%

Critical-Section Length
Short, Bimodal,
Moderate

Number of Resources 64
Nested Probability 1.0
Nesting Depth 2, 4

Table 3: Schedulability study parameter choices. For each range
of values, a value is selected uniformly at random.

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

Figure 2: Schedulability on Platform 1 under a scenario in
which tasks have short periods, 50% of tasks issue a request,
and the nesting depth is 2.

This is illustrated in Fig. 2, and is as expected; these
two protocol configurations have the same blocking, but the
FGLS leads to reduced overhead.

Obs. 2. The performance of the FLLS relative to the base-
line U-C-RNLP is dependent on the percentage of tasks that
require resource access.

If the percentage of tasks issuing requests is at most 10%,
FLLS is as good or better than the baseline in 98.6% of
scenarios. If instead 50% or more of the tasks issue requests,
FLLS is worse than the baseline in 93.1% of scenarios.

Obs. 3. The SLLS is always the worst option, and the
SGLS is almost always the second worst.

These poor results despite significantly lower overhead
highlights the need to develop a better method of ensuring
rapid lock server response to newly issued requests while also
allowing an analysis method that is not overly pessimistic.
For example, a high-priority task could be dedicated to this
without requiring the dedication of an entire core.

Platform 2. Next I considered performance on Platform
2. The same scenario depicted in Fig. 2 for Platform 1 is
shown in Fig. 3 for Platform 2.

Obs. 4. Similar performance trends hold for Platform 2.

Relative to the baseline, the FGLS and FLLS are more
dominant on Platform 2 for systems with requests with short
critical-section lengths; FGLS is better than the baseline
in 95.8% of the scenarios and if at most 50% of tasks is-
sue requests, the FLLS configuration is always better than
the baseline. However, for other critical-section lengths, the



0 5 10 15 20 25 30 35 40
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
H

R
T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

Figure 3: Schedulability on Platform 2 under a scenario in
which tasks have short periods, 50% of tasks issue a request,
and the nesting depth is 2.

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty NOLOCK
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
U-C-RNLP + SLLS (by L)
U-C-RNLP + FLLS (by L)

Figure 4: Schedulability on Platform 1 under a scenario in
which tasks have short periods, 10% of tasks issue a request,
and the nesting depth is 4. (Note: the U-C-RNLP + FGLS
line is equivalent to that for the U-C-RNLP + FLLS.)

FLLS performs less well relative to the baseline on Platform
2, and is as good or better than the baseline only when 5%
of tasks issue requests.

3.4 Methods for assigning tasks to clusters
I developed a basic heuristic to attempt to reduce block-

ing for local lock server configurations by leveraging the per-
cluster definitions of maximum critical-section length. I ex-
plore this with a set of scenarios with bimodal critical-section
lengths and for all percentages of tasks issuing requests ex-
cept 100% (my assignment method performs poorly even at
80%). I assigned any τi with Ri with Li ≤ 15µs to Cluster 1
and τi with Ri with Li > 15µs to Cluster 2. All tasks that
did not issue requests were then assigned with Worst-Fit.

Obs. 5. Different assignment techniques greatly impact the
schedulability under local lock server configurations.

For the FLLS configurations, switching to the assignment
heuristic described above clearly improved schedulability in
40.0% of the 20 scenarios, tested on both Platform 1 and
Platform 2. Similarly, the SLLS improved in 32.5% of sce-
narios. (These improvements ignore the 32.5% of scenarios
for both platforms in which there was no significant change.)

Switching assignment heuristics also resulted in scenar-
ios in which the FLLS with the new critical-section-length-
dependent allocation method (labeled “by L” in Fig. 4) out-
performed all other configurations. One such scenario is
depicted in Fig. 4, in which tasks had short periods, 10% of
tasks issued a request, and the nesting depth was 4.

4. CONCLUSIONS
I have explore the impact of lock server configurations on

task system schedulability. While a single configuration, the
Floating Global Lock Server, emerged as most effective in
this preliminary study, the performance of other configu-
rations can clearly be improved. With better methods for
assigning tasks to clusters, schedulability under local lock
servers improved. Additionally, more fine-grained methods
for accounting for static lock servers would likely improve the
results under those options significantly. For example, other
tasks could be allowed to execute on the same cores and sim-
ply incur a penalty for each time the lock server may need
to execute. In the future, I also plan to explore the tradeoffs
of lock server configurations on four-socket systems; four lo-
cal lock servers could be employed on such a platform, but
doing so effectively will likely require further work on allo-
cating tasks to clusters in order to reduce blocking.

5. REFERENCES
[1] AUTOSAR Release 4.4, Classic Platform,

Specification of Operating System.
https://www.autosar.org/, 2019.

[2] SchedCAT: Schedulability test collection and toolkit.
https://github.com/brandenburg/schedcat, 2019.
Accessed: 2019-02-07.

[3] D. Bacon, R. Konuru, C. Murthy, and M. Serrano.
Thin locks: Featherweight synchronization for Java. In
PLDI ’98.

[4] S. Baruah. Techniques for multiprocessor global
schedulability analysis. In RTSS ’07.

[5] B. Brandenburg and J. Anderson. Feather-trace: A
lightweight event tracing toolkit. In OSPERT ’07.

[6] A. Burns and A. Wellings. A schedulability compatible
multiprocessor resource sharing protocol - MrsP. In
ECRTS ’13.

[7] D. Faggioli, G. Lipari, and T. Cucinotta. The
multiprocessor bandwidth inheritance protocol. In
ECRTS ’10.

[8] P. Gai, G. Lipari, and M. Di Natale. Minimizing
memory utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In RTSS ’01.

[9] J. Garrido, S. Zhao, A. Burns, and A. Wellings.
Supporting nested resources in MrsP. In Ada-Europe
International Conference on Reliable Software
Technologies ’17.

[10] C. Jarrett, B. Ward, and J. Anderson. A
contention-sensitive fine-grained locking protocol for
multiprocessor real-time systems. In RTNS ’15.

[11] J. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: migrating
critical-section execution to improve the performance
of multithreaded applications. In USENIX ATC’12.

[12] C. Nemitz, T. Amert, and J. Anderson. Using lock
servers to scale real-time locking protocols: Chasing
ever-increasing core counts. In ECRTS ’18.

[13] C. Nemitz, T. Amert, and J. Anderson. Real-time
multiprocessor locks with nesting: optimizing the
common case. Real-Time Systems, 55(2), 2019.

[14] H. Takada and K. Sakamura. Real-time scalability of
nested spin locks. In RTCSA ’95.

[15] B. Ward and J. Anderson. Supporting nested locking
in multiprocessor real-time systems. In ECRTS ’12.


