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Abstract

We present az-buffered image-space-based rendering technique
that allows navigation in complex static environments. The ren-
dering speed is relatively insensitive to the complexity of the scene
as the rendering is performeda priori, and the scene is converted
into a bounded complexity representation in the image space. Real-
time performance is attained by using hardware texture mapping
to implement the image-space warping and hardware affine trans-
formations to compute the viewpoint–dependent warping function.
Our proposed method correctly simulates the kinetic depth effect
(parallax), occlusion, and can resolve the missing visibility infor-
mation by combiningz-buffered environment maps from multiple
viewpoints.
CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Display Algorithms, Viewing Al-
gorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism - Animation, Texture; I.4.8 [Image Processing]: Scene
Analysis - Range data.
Additional Keywords: image-based rendering, synthetic environ-
ments, image morphing, visibility.

1 Introduction

Traditional approaches to graphics acceleration for the navigation
of a three-dimensional environment have involved:

� reducing the geometric complexity of the scene, by using
level-of-detail hierarchies (Turk, 1992; Schroeder, Zarge and
Lorensen, 1992; Rossignac and Borrel, 1993; Cohen et al.,
1996; Hoppe, 1996; DeRose, Lounsbery and Warren, 1993;
He et al., 1996), and by visibility-based culling(Airey,1990;
Teller and S´equin, 1991; Greene and Kass, 1993; Luebke and
Georges, 1995; Greene, 1996).

� reducing the rendering complexity by using texture mapping
(Blinn and Newell, 1976; Blinn, 1978), and by using vari-
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ous levels of complexity in shading and illumination mod-
els(Bergman et al., 1986).

� exploiting frame-to-frame coherence with one of the above
(Bishop et al., 1994; Xia and Varshney, 1996).

However, as the complexity of the three-dimensional object-
space has increased beyond the bounded image-space resolution,
image-based rendering has begun to emerge as a viable alternative
to the conventional three-dimensional geometric modeling and ren-
dering, in specific application domains. Image-space-based render-
ing has been used to navigate (although with limited freedom of
movement) in environments modeled from real-world digitized im-
ages (Chen, 1995; Szeliski, 1996; McMillan and Bishop, 1995).
More recent approaches (Gortler et al., 1996; Levoy and Hanrahan,
1996) generalize the idea of plenoptic modeling by characterizing
the complete flow of light in a given region of space. A clever com-
bination of simple geometric building blocks with view-dependent
textures derived from image-based rendering (Debevec, Taylor and
Malik, 1996) has resulted in a viable technique for navigation in
environments that can be described by those simple blocks. The
potential of image-based rendering specifically for the navigation
in generic synthetic environments, however, has been investigated
in fewer instances (Chen and Williams,1993).

In this paper we present a conceptual discussion and an imple-
mented system for the problem of image-based rendering using
image-space simplification and morphing. Given a collection ofz-
buffered images representing an environment from fixed viewpoints
and view directions, our approach first constructs an image-space
simplification of the scene as a pre-process, and then reconstructs
a view of this scene for arbitrary viewpoints and directions in real-
time. We achieve speed through the use of the commonly available
texture-mapping hardware, and partially rectify the visibility gaps
(“tears”) pointed out in previous work on image-based rendering
(Chen and Williams,1993; Chen, 1995) through morphing.

2 Image-based Navigation

Image-based rendering uses images as the basic primitive for gen-
erating other images, as opposed to the more traditional approach
that renders directly from geometric models. Images are a sampled
version of the scene, viewed from a certain position and direction,
and not a full representation of the actual scene. Since the images
used as the basis for the rendering are generated and viewed from
different points of view, they represent view-dependent informa-
tion only for the originally generated positions. Thus, image-based
rendering methods have an inherent difficulty in dealing with view-
dependent effects, such as specular highlights, reflection, and re-
fraction. However, view-independent effects that are usually very
expensive to simulate – such as diffuse reflections, soft shadows
and caustics – can be used with image-based rendering without any
additional runtime cost.

Navigation in an environment using image-based rendering can
be classified into four different levels based on freedom allowed in
user-movement:



1. Discrete viewpoints, discrete view directions

2. Discrete viewpoints, continuous view directions

3. Continuous viewpoints, discrete view directions

4. Continuous viewpoints, continuous view directions

The first group is the simplest approach, providing a very limited
immersive experience and interaction. The images are rendered or
digitized for selected positions and selected viewing directions and
during navigation the one that is closest to the desired is displayed.
One early instance of this situation is described in (Lippman, 1980),
and the same concept has been used at the consumer level more
recently (Cyan, 1994).

The second group uses one image, or a series of images stitched
together, to represent the environment around a certain point of
view, which is equivalent to providing a complete sample of the
plenoptic function (McMillan and Bishop, 1995) for that point.
This form of information enables the simulation of a rotation of
the observer, around the original point of view, to look in any direc-
tion by reprojecting the given images to the new viewing frustum.
To allow observer limited translation (at discrete viewpoints), the
solution is to have a set of environment maps, each computed for
a different viewpoint. If these points are carefully selected and not
very far from each other, it is possible to simulate movement by
selecting the closer environment map. This jump between discrete
viewpoints around which one can rotate almost freely allows for a
quality of simulation that can be consideredacceptable for some sit-
uations, as shown by current applications of Quicktime VR (Chen,
1995), for instance.

The third group has been bypassed in theliterature and its re-
sults are subsumed in the fourth group in which the user is allowed
freedom to continuously translate and rotate. In “View Interpola-
tion for Image Synthesis” (Chen and Williams,1993), the mapping
function and the depth are obtained from the camera model and the
rendering. The mapping is applied as an image warping transfor-
mation, and a binary combination of the images is performed based
on depth—the front most pixel wins. That technique is not actu-
ally based on environment maps, but on single images with depth
information. The movement of the observer had to be restricted,
though, to achieve the desired performance. In “Plenoptic Model-
ing” (McMillan and Bishop, 1995), the nodes are represented by
cylindrical maps, which the authors describe as a complete sample
of the plenoptic function. They focus on the image-based model-
ing aspect of the problem, concentrating on the techniques for re-
construction of a complete sample of the plenoptic function from
a set of overlapping partial samples from non-computer-generated
sources (photographs or video frames). The navigation, however,
was limited and required closely spaced nodes and user input for
proper matching.

When the environment is modeled from photographs or video,
the depth information has to be inferred from the disparities in-
duced by translations of the camera. This is an important problem
in computer vision to which a considerable effort has been ded-
icated (Aggarwal and Nandakumar, 1988). However, the driving
problem for our work is smooth navigation in complex computer-
generated virtual environments, that are slow to render, and for
which we have access toz-buffered images at fixed viewpoints and
view-directions. Thus, our work falls in category four listed above.

3 Environment Mapping and Morphing

Changes of visibility that occur as an observer moves freely in an
environment can be simulated by using precomputed views of the
scene at selected viewpoints. Anodeis associated with every se-
lected viewpoint and consists of an environment map with depth

(a) (b)

Figure 1: Visibility: (a) Rotation (b) Translation.

and color information for every direction. This is essentially an
extension to the plenoptic function, that also associates depth infor-
mation to each direction, in addition to color.1

Each node provides limited information about the world, which
is not sufficient to determine the view from an arbitrary viewpoint
and direction. If the desired visualization parameters differ only in
the direction, there is no parallax and no new areas can become visi-
ble (see Figure 1). If they differ in the position, however, parallax is
introduced and the restricted information provided by a single node
becomes evident.

This problem can be overcome by combining the information
from neighboring nodes—through node morphing—to create an
image for any viewpoint and direction. Morphing two nodes in-
volves two warpings to register the information, followed by a com-
bination (Gomes et al., 1995). The particular case of image morph-
ing is extensively discussedin (Wolberg, 1990). The depth informa-
tion and the visualization parameters allow the determination of the
mapping functions between the original views and the new arbitrary
view. After applying these mappings, the warped information can
be combined with local control, used to determine the predominant
information at each region.

A more detailed discussion of this form of morphing is presented
in the next sections. We will focus on a simpler case of two planar
z-buffered images, although it can be directly applied to environ-
ment maps.

3.1 Environment Map Warping

An adequate mathematical model for acontinuousimage with
depth is a function that relates points in a subset of the Euclidean
plane to colors in a color space and to depths. Az-buffered image
can be considered as a functionIz : U � R

2
! C �R, whereC

is a color space.

The class of rendering processes that are relevant to our appli-
cation are those that are able to yield az-buffered image. Each of
those processes can be seen as a functionR that maps a scene,S
(the collection of models and information that define a scene) and
a projectionP (a transformation derived from a set of visualization
parameters) into az-buffered image:

R : S �P ! I
z; (1)

P = fP : R3
! R

3
g: (2)

Given az-buffered imageIz1 and the projection transformation
P1 that originated this image, we are interested in applying a repro-
jection using a new set of visualization parameters described byP
to obtain a new imageIz. Our specific case is depicted in Figure 2.
This is a transformation of the domain of definition of the original
image, or a warping transformationW = P �P�1

1
, that essentially

reprojects the image to a different point of view2.



Figure 2: Environment map warping.

Figure 3: Blending from two nodes (visibility gaps in black).

Figure 4: Environment map morphing.

3.2 Environment Map Morphing

The information from a single node is not sufficient to generate an
arbitrarily different view, that is, this particular form of warping is
not described in general by an onto function. Therefore, to cover
the domain of the resulting imageIz it is generally necessary to
combine the information from two or more nodes.

This combination is exemplified in figure 3, which shows an im-
age obtained in real-time from the combination of two nodes. The
top left node was originally generated as a top view of the sphere;
the top right node, as a side view. Notice how the visibility infor-
mation that is missing from the top view is completely filled by the
second node. Similarly, the visibility gaps in the secondnode are
covered by the first.

By applying the warping process described in the previous sec-
tion to each node individually, we get two differentz-buffered im-
agesIz

0

1 andIz
0

2 —from P1 andP2, respectively—as illustrated in
figure 4. What remains is the combination ofIz

0

1 andIz
0

2 , a range
transformationB which, for each point(x; y), depends solely on
the values of thez-buffered images at that position, resulting in the
imageIzf = B(Iz

0

1 ; I
z0

2 ). Different forms of this blending function
are described in section 6.

4 Image-Space Simplification

Given an environment map with depth and color information at a
viewpoint, we have seen that it is possible to create views from new
positions and directions by appropriately warping the environment
map. To generate environment maps for viewpoints intermediate to
the previously selected nodes, we morph neighboring environment
maps into an intermediate one.

Our solution to the image-space-based rendering problem sim-
plifies the environment, as seen from a given viewpoint, by linear
polygons. This polygonal mesh is created by triangulating the depth
information associated with the environment map, as shown in the
example in Figure 5(b). Each triangle in this mesh represents an
object (or part of an object) at a certain depth.

The parallax effect can then be correctly simulated by warping
each of these triangles appropriately. Since image warping can
be efficiently performed with hardware assistance through texture
mapping, we determine the appropriate projective transformation
which is then applied to this mesh textured by the environment

1This implies indirectly that the modeled world is opaque.
2It also fills in the gaps in the domain of definition with a background

color/depth, and solves foldovers usingz-buffering.



(a) (b)

(c)

Figure 5: Range image triangulation: (a) Input image; (b) 2D tex-
ture coordinates; (c) 3D triangulation textured by input image

map colors. The hardwarez-buffer is used to resolve occlusions,
or meshfoldovers. Multiple nodes are used to fill in the gaps re-
sulting from meshtearsby combiningz-buffered images from var-
ious nodes using alpha blending and the stencil or the accumulation
buffer (Neider, Davis and Woo, 1993).

The polygonal mesh derived from the depth information is in
fact a 3D triangulation that, when viewed from the original view-
point, will look exactly like the flat image. The triangulation can
be reprojected to any other arbitrary viewpoint in space by using
standard viewing transformations, such as in the side view shown
in Figure 5(c).

4.1 Choice of the Environment Map Geometry

Although spherical maps are the most natural way to represent the
environment information, they are not necessarily the most conve-
nient or efficient. Other representations have been used, such as
cubical (Greene, 1986) and cylindrical maps (Chen, 1995; McMil-
lan and Bishop, 1995). Spheres are difficult to represent digitally
without significant variation in the information density, whereas
cylinder-based techniques have the problem of limiting the field of
view to avoid dealing with the caps. Cylindrical maps are conve-
nient for generating panoramic images—by stitching together sev-
eral partially overlapping photographs from planar rotations of the
view direction.

Although cubes do not represent texture information homoge-
neously, the cube representation is the easiest to obtain for synthetic
images and can be stored as six conventional rectangular images,
which can be output by virtually any rendering software (see Fig-
ure 6). Moreover, each of the sides can be considered independently
during most of the process. These reasons led us to use cubical en-
vironment maps. A reprojection of a cube texture-mapped by the
environment of Figure 6 is shown for a given view direction in Fig-
ure 7; the seams of the cube are highlighted to indicate the new
viewing direction.

Figure 6: Unfolded cubical environment map.

Figure 7: Cube reprojection in a given viewing direction.

4.2 Image-space Triangulation

This step of the algorithm corresponds to the inverse projection
that takes thez-buffered image space into the object space (such
asP�1

1
, in Figure 2). The goals of the triangulation step are:

� to match the object silhouettes, which correspond to depth dis-
continuities in the range images, asaccurately as possible;

� to detect the areas in the depth information that are almost
linear, and approximate them by triangles, which effectively
corresponds to a view-dependent simplification of the object
models.

Since this must be done while minimizing the error in the scene
representation, it is important to subdivide the non-linear areas of
the objects that are away from discontinuities as well, so that the
geometry representation is more faithful, and the parallax effect
within the objects can be simulated. Also, due to the perspective
projection, the more distant an object is, the less relevant it is to the
observer, and the less noticeable is its parallax effect. In this way,
the mesh should approximate the object edges, and its sampling
density should be inversely proportional to the depth.

The implemented algorithm constructs an image-space Delau-
nay triangulation using a Voronoi diagram to adaptively sample the
image based on the depth component, similar to previous work by
the authors (Darsa and Costa, 1996). Figure 8 shows an image, its
depth image and the corresponding triangulation (viewed from the
original point of view), in which the farthest objects are sampled
more sparsely, and the areas near the edges are sampled finely.

Another triangulation created by inverse projecting depth infor-
mation to 3D is shown in the sequence in Figure 9, where an ob-



(a) (b) (c)

Figure 8: Triangulation using depth and discontinuity.

(a) (b) (c)

Figure 9: Handling Visibility Changes in Translation.

server is moving away from the spheres—9(b) shows the view from
the position where thenode was generated. Note how the visibil-
ity changes are correctly handled, with the closer sphere covering
a greater part of the other spheres (9(a)) and the visibility gaps ap-
pearing where no information was available (9(c)). Methods to fill-
in these visibility gaps using information from neighboring nodes
are presented in Section 6.

The projection transformation that relates the triangulation and
thez-buffered image, when applied to each vertex of the 3D trian-
gulation, yields the texture coordinates that have to be assigned to
that vertex.

4.3 View-dependent Texture Mapping

Simply assigning the texture coordinates, however, does not result
in the desired behavior, since the graphics engine generally inter-
polates the interior pixels of each triangle using perspective correc-
tion. This texture mapping correction, essentially a divide byz, is
performed on a per-pixel basis for the texture coordinates (Segal
et al., 1992). In our case, however, the texture maps already have
the necessary perspective distortion in them. Letting the hardware
perform perspective correction results in an incorrect double per-
spective effect. Figure 10(a) shows such double perspective effect
for an oblique view of a checkerboard pattern mapped to a square.
Disabling perspective correction is necessary to obtain the correct
effect shown in (b). To achieve this effect in OpenGL we transform
the texture coordinates according to the depth of the corresponding
vertices so that the automatic perspective correction is nullified (Se-
gal, 1996). Details of this transformation appear in the Appendix.

(a) (b)

Figure 10: Handling Perspective: (a) Double Perspective; (b) Com-
pensated.

(a) (b)

Figure 11: Triangulation qualities from two differentnodes.

Figure 12: Node triangulation viewed from within the node.

4.4 Triangle Quality Measure

Each triangle of the mesh carries a certain amount of texture infor-
mation, which we will measure by a triangle quality factor. This
quality is related to the angle that the normals of the triangles make
with the view ray, i.e., how oblique is the triangle in relation to the
image plane for a perspective projection. Triangles with greater an-
gles are projected to proportionally smaller areas in 2D and thus,
less pixels will be texture mapped to it. The quality that is assigned
to each triangle can be calculated therefore as the dot product be-
tween the normal to each triangle and the ray direction:

w = kN:V k = j cos(�)j

The quality of the triangles is a static property, that is computed
before navigation for the observer in the original position. It de-
notes the proportion of pixels from the texture map that are used in
the representation of this triangle. When the observer moves, this
quality indicates how much a triangle can be warped without no-
ticeable error. If the quality of a triangle is low, a modification in
the observer position can cause it to become more visible, and the
low quality of its texture would become apparent. In this case, we
combine or replace it by a better quality triangle, from a triangu-
lation of another node. Figure 11 shows the qualities—indicated
as gray levels with white being the best—of the triangles of two
different nodes viewed from the same position.

5 Single Node Navigation

A node consists of a cubical environment map and its triangulation
as discussed in Section 4. An example of this is shown in Figure 12.
The navigation inside a node involves projecting these triangula-
tions for a given viewpoint and viewing direction. The projection
and the subsequentz-buffering correctly handle the visibility and
the perspective for regions where adequate information is available.

The six sides of a node are not normally all visible at once. A
cube divides the space into six pyramidal regions that are joined by



Figure 13: View frustum culling.

(a) (b)

Figure 14: Visibility gaps: (a) black; (b) filled by linear interpola-
tion.

their apices at the center of the cube . We cull the triangulations in
large batches, by computing the intersection of the viewing frustum
with the six pyramidal regions to determine which sides of the node
can possibly take part in the view. In Figure 13, for instance, just the
triangles from the highlighted sides are sent through the graphics
pipeline.

When an observer translates, regions not visible from the origi-
nal viewing parameters appear. These visibility gaps can be either
shown in a background color or can be filled by a linear interpo-
lation of the colors of their vertices. Both options are shown in
Figure 14, where the observer has moved down and to the right
from the original position, which was directly above the sphere. In
an image-based navigation system, the visibility information from
the original viewpoint is projected to a 2D plane and any obscured
objects are “lost”. Therefore, the system at this stage does not have
any information to fill uncovered areas and an interpolation is just
a crude approximation that is acceptable for very small gaps. Nev-
ertheless, some systems rely on this type of technique. We shall
next discuss an approach that uses information from other nodes to
fill-in the missing visibility information where possible.

6 Multiple Node Navigation

Given a set of nodes, solving the visibility problem for a certain
viewpoint and direction involves two subproblems: selecting the
appropriate nodes and combining the information from these nodes.
If the nodes are uniformly distributed, the selection of the nodes that
are closer to the observer is a simple solution that yields acceptable
results. This is the approach that we have implemented. The re-
mainder of this section discusses the combination of information
from two nodes. Combination of information from three or more
nodes proceeds in the same manner if we are iteratively combin-
ing information from two nodes at a time, until all or most of the
visibility gaps are filled.

The information from two different nodes has to be merged to
form a new view of the scene in real-time, combining or replacing
triangles based on their quality (see section 4.4). We next some

ways to perform such merging.

6.1 Mesh Layering

(a) (b)

(c)

Figure 15: Mesh Layering

This node merging technique begins by projecting the triangles of
the visible triangulations from the node that is closest to the ob-
server. Clearly, if the observer is not at the center of the node, vis-
ibility gaps can appear. The next closestnode is then reprojected,
and the process can be repeated until all the visibility gaps are filled,
or a subset of the neighboring nodes has been used. Az-buffer is
employed for hidden surface removal. Although this simple scheme
fills most of the visibility gaps, it suffers from the drawback that,
for triangles with similarz-values but different qualities, the winner
is determined solely by the depth ordering, which can cause parts
of low quality triangles to dominate over high quality ones that are
slightly farther. Figure 15 shows the visibility gaps (in black) from
two different nodes. Notice the the discontinuities, especially in the
rainbow in Figure 15(c) generated using this method.

6.2 Binary Merge

To allow the quality measure to play a more important role, we
store the quality ofeach triangle on a pixel-by-pixel basis to the
stencil or alpha buffer during its rasterization. The combination of
the two images is now performed by first comparing thez-values.
If the z values are sufficiently different, the pixel that is closer to the
observer wins; otherwise, the pixel that is output to the final image
will be the one that has a higher quality. Although this function
is not a continuous blend it yields good results. Figure 16 shows
a combination using this technique (see Figure 11 for the triangle
qualities).



Figure 16: Binary merge.

Figure 17: Weighted blending.

6.3 Simple Weighted Blending

This method is an extension of the binary merge approach with the
difference that for closez-values, the output pixel is an interpola-
tion of the pixels from different nodes, with the alpha factor based
on the relative quality values. Since the quality values of two trian-
gles do not, in general, sum to1, we choose the output pixel to be a
quality-weighted average of the input pixels:

p =
q1p1 + q2p2

q1 + q2

The result using this computation is shown in Figure 17, where the
combination produced a smoother image.

6.4 Positional Weighted Blending

The weighted average technique can be further refined by consid-
ering the position of the observer: the closer is the observer to the
center of a node, the more should be the influence of that node on
the resulting image. This is achieved by multiplying the qualities
stored in the buffers by a factor proportional to the distancedi of
the observer from the center of the nodei:

p =
tq1p1 + (1� t)q2p2

tq1 + (1� t)q2
; t =

d2

d1 + d2
:

This solution produces a smooth morphing between the nodes
(see Figure 18). When the observer is exactly at the center of a
node, the resulting image is exact, and it becomes a combination of
the two nodes as the observer moves. Although the accumulation
buffer of OpenGL can produce a weighted average of two images it
cannot be used here directly, sinceq1 andq2 do not sum to1. For
this, qi must be normalized on a pixel-by-pixel basis which makes
this approach impractical for OpenGL. However, in other systems
it might be possible to directly execute this solution in the graphics
pipeline.

Figure 18: Positional weighted blending.

Figure 19 shows frames of an animation obtained by blending
two nodes using the weighted average technique in software. The
center of the first node is directly in front of the rainbow torus,
and the second is to the its left and front of the first center. In
the navigation, the observer starts at the center of the first node, is
translated to the left, then rotates to the right in the last two frames.

7 Results and Conclusions

We have described an image-based rendering technique for navi-
gation of 3D environments by using viewpoint-dependent warping
and morphing. The method relies on a set of cubical environment
maps that are pre-rendered from a collection of fixed (and prefer-
ably uniformly distributed) viewpoints within the virtual model.
Every given viewpoint is represented by a node that consists of a
cubical environment map and an associated 3D triangulation of the
six faces of the map. We have described the construction of such
triangulations of the faces and discussed navigation by combining
information from multiplenodes. Our scheme relies heavily on,
and derives its speed from, hardware texture mapping facilities.

We have tested our implementation on a model of the Stone-
henge generated by us. The initial model was ray-traced and two
cubical environment maps, each consisting of six256 � 256 im-
ages (with depth) were generated. From these786K data points,
we obtained a simplified representation consisting of a total of30K
texture-mapped triangles using a top-down approach to generate a
Delaunay triangulation. We have tested our system on a single SGI
Challenge R10000 processor with – one Raster Manager, Infinite
Reality with 64 MB of texture memory, and 2 MB of secondary
cache. We compared mesh layering, binary merge, weighted blend-
ing, and positional weighted blending schemes for the same naviga-
tion path consisting of 250 frames between the two nodes. For mesh
layering we achieved an average frame-rate of 9.59 frames per sec-
ond, for binary merge 4.27 frames per second, for weighted blend-
ing 3.58 frames per second, and for positional weighted blending
3.53 frames per second. Our current implementation does not use
triangle strips; from our past experience with triangle strips, the
above frame-rates should roughly double with triangle strips. The
results are shown in Figures 16, 17, 18, and 19. The differences
amongst these figures although present are subtle and not very ob-
vious at the scale at which these figures have been reproduced in
this paper. The difference between mesh layering and positional
weighted blending, for instance, is more obvious in Figure 20 in
the spurious triangles near the left side of the sphere in the mesh
layering approach.

In our current implementation, reprojection of the second node is
done for the entire image. However, to speed-up the results, a mask
can be created to determine the visibility gaps exactly and the sec-
ondary projections restricted to the missing parts of the scene. This
can be done by using a binary stencil and modifying the viewing



Figure 19: Navigating in Image-Space: Top Row – Frames from Node 1; Middle Row – Frames from Node 2; Bottom Row – Frames from
Positional Weighted Blending of Node 1 and Node 2

(a) (b)

Figure 20: Mesh layering (a) versus Positional weighted blending
(b).

frustum to be restricted to the bounding box of the visibility gaps.
An approach similar to this has been shown to work well (Luebke
and Georges, 1995).

The triangulation scheme that was used could take advantage of
further improvements. Its current version is better suited when the
sampling process is expensive, since it never discards samples. In
many situations, such as with range images, the information is al-

ready fully sampled, and resampling it incurs a minimal cost. In
these cases, it is better to use a technique that works bottom up, by
trying to combine similar areas that can be approximated by a lin-
ear polygon, instead of top down, trying to guess sample positions.
Also, the triangulation of each of the sides of the environment map
could not actually be performed in an entirely independent way, to
avoid cracks at the seams. A single integrated triangulation step
may yield a better junction between the sides.

The use of multi-resolution images, as well as multi-resolution
triangulations, could be useful, if the nodes are positioned sparsely.

The position of thenodes is currently determined manually by
the user, as part of the scene modeling. Ideally, a minimum amount
of nodes should be positioned in such a way so as to cover all the
areas of interest in the scene. Also, the problem of selecting the
subset of the nodes that will be combined at a given position during
navigation must be solved in an efficient way, so that the node re-
projections are kept to a minimum. There is a clear coherence in the
node selection that adapts itself to a working set model, where the
active nodes are cached, and a node replacement occurs sparsely.



Figure 21: Linear and perspective corrected interpolations.
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A Disabling perspective correction

A texture coordinate in OpenGL is specified by a tuple(s; t; r; q).
After multiplying the texture coordinates by the texture matrix,
OpenGL interprets the result(s0; t0; r0; q0) as homogeneous texture
coordinates. This computation is performed at each triangle vertex
and the information is interpolated by the rasterizer to yield a value
for each pixel. If the interpolation used is linear, the results differ
from those obtained from the actual computation at each pixel, as
illustrated in Figure 21. For the computation of the texture coordi-
nates at the pixelM , at the center of the image, linear interpolation
yields(s1+s2)=2, which is incorrect since those are the texture co-
ordinates of pointL. With perspective correction the computation
atM must yield the coordinates ofP . This is done by linearly inter-
polating(s1=w1; t1=w1) and(s2=w2; t2=w2) at each pixel where
wi is the homogeneous coordinate of the polygon vertexi. Ther
andq texture coordinates are also divided bywi, and interpolated
in the same way, although they are not needed for simple texture
mapping. At each pixel, a division is performed using the interpo-
lated values of(s=w; t=w;r=w; q=w), yielding (s=q; t=q), which
are the final texture coordinates. To disable this effect, which is not
possible in OpenGL directly3, we transform, a priori, the original
texture coordinates(si; ti) into (wisi; witi; 0; wi), so that at the
end of the transformation performed by OpenGL, we have(si; ti),
at no performance cost. In our case, the 3D triangulation includes
the depth of each vertex which is the requiredw value.
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