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Abstract: We present a novel constraint-based motion interpolation algorithm to improve
the performance of local planners in sample-based motion planning. Given two free-space
configurations of a robot, our algorithm computes a one-dimensional trajectory subject to
distance constraints between the closest features of the robot and the obstacles. We derive
simple and closed form solutions to compute a path that guarantees no collisions between
these closest features. The resulting local planner is fast and can improve the performance of
sample-based planners with no changes to the underlying sampling strategy. In practice, we
observe speedups on benchmarks for rigid robots with narrow passages.

1 Introduction
The problem of computing an interpolating motion between two configurations
arises in different applications including robot motion planning, kinematics, dynamic
simulation, CAD/CAM, and keyframe animation. Given the initial and final config-
urations, the goal is to compute a one-dimensional function that interpolates the two
configurations. Moreover, some applications impose constraints on the resulting tra-
jectory such as smoothness or limits on its derivatives.

In this paper, we address the problem of computing a collision-free interpolating mo-
tion between two free-space configurations. The goal is to compute a trajectory that
is less likely to intersect with any obstacles in the configuration space (C-space). The
main motivation is the local planning step in sample-based planners, which attempts
to connect two nearby free-space samples with a collision-free path. Typically, the
local planners operate in two steps: computation of an interpolating path and check-
ing that path for collisions with the obstacles. In practice, one of the most time-
consuming steps in sample-based planners is checking whether the motion produced
by the local planner is collision-free or not [3, 7, 15, 17, 18].

The performance of sample-based planners may degrade when the free space has
narrow passages. The narrow passages are defined as small regions of free space
whose removal or perturbation can change the connectivity of the free space. Most
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of the prior work in improving the performance of planners has focused on increasing
the probability of sampling in these regions [2, 6, 9, 22]. The underlying philosophy
of these sampling strategies is that the planner would eventually generate a suffi-
cient number of samples in and around the narrow passages, which can be easily
connected using simple local planning algorithms (e.g. linear interpolation). How-
ever, the problem of generating sufficient number of samples in narrow passages is
non-trivial. Moreover, the narrow passages may have poor visibility properties [9],
which can result in high failure rates for the interpolation paths computed by the
local planners. Some powerful local planners have been proposed to connect the
samples [1, 7, 10], but they can either result in more expensive collision checking or
do not take into account the position of the obstacles in the environment.

Main Results: We present a novel motion interpolation algorithm to improve the per-
formance of local planners for sample-based motion planning. Given two free-space
configurations, q0 and q1, our algorithm maintains distance constraints between the
closest feature pairs at these configurations. We derive simple and closed form so-
lutions to guarantee that the sign of the distance between each feature pair does not
vary along the trajectory. As a result, there are no collisions between the closest
features along that trajectory. Since a local planning algorithm is typically invoked
between nearby configurations, the closest features are the most likely candidates for
collisions. As a result, our motion interpolation algorithm is more likely to result in
a collision-free path as compared to other interpolation schemes that ignore the po-
sition of the obstacles in the environment. Our local planner can be combined with
sample-based planners with no changes to the sampling strategy or techniques used
to compute nearest neighbors. We have combined our algorithm with a retraction-
based planner that generates more samples near the contact space and narrow pas-
sages. We observe performance gains of the overall planner on benchmarks with
narrow passages. Overall, our constrained interpolating motion offers the following
benefits:

• Simplicity: We present simple and closed form solutions to compute the path
based on the closest features.

• Efficiency: The main additional overhead of our interpolation algorithm is the
computation of closest features at the initial and final configurations, which only
takes up to a few milli-seconds.

• Generality: Our local planning algorithm is general to all rigid robots that can
be represented as polygonal soups. It can also maintain constraints for compliant
motion planning.

• Improved performance: Our local planning algorithm explicitly takes into ac-
count the position of the obstacles in the environment and is effective in connect-
ing nodes in or near the narrow passages.



Constrained Motion Interpolation with Distance Constraints 3

Organization: The rest of the paper is organized in the following manner. We sur-
vey related work on motion interpolation and local planning algorithms in Section 2.
Section 3 introduces the notation and gives an overview of our approach. We present
the constrained interpolation algorithm for a single distance constraint in Section 4
and extend it to handle multiple constraints in Section 5. We highlight the perfor-
mance of our local planning algorithm on challenging benchmarks in Section 6. We
discuss some properties and extensions of our interpolation scheme in Section 7.

2 Previous Work
In this section, we give a brief overview of previous work on motion interpolation
and local planning algorithms.

2.1 Motion Interpolation
Many formulations have been proposed to interpolate the motion between two con-
figurations. The simplest algorithms use straight-line linear interpolation or spherical
linear interpolation [12]. Other algorithms tend to compute the minimal-length curve
based on appropriate distance metrics, or maintain smoothness constraints [5,14,20].
However, these algorithms may not take into account the position of the obstacles in
the environment. A related problem is to generate constrained motion that main-
tains a contact with the given surface or avoid obstacles [11]. Other more general
variational-based interpolation schemes [8, 19] have also been proposed. However,
the formulation and path computation using these approaches can be expensive as
compared to other interpolation techniques.

2.2 Local Planning
The local planning algorithms generate an interpolating motion and check the result-
ing path for collision with the obstacles. The simplest local planners perform discrete
collision detection along a finite number of samples on the continuous path. Discrete
collision checking is easy and can be efficiently performed using bounding volume
hierarchies. However, there is no guarantee that the portions on the path that are not
sampled are collision-free. In order to overcome this issue, some continuous colli-
sion detection algorithms based on distance bounds or adaptive bisection have been
proposed [15, 18, 23].

Many researchers have analyzed the performance of local planning algorithms and
distance metrics, and suggested techniques to improve the performance of the overall
motion planner [1,7,12]. Improved algorithms for local planning have been designed
by combining them with potential field approaches [7] or path optimization [10].
However, these improved local planning algorithms are expensive and can have ad-
ditional overhead in terms of collision checking.
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Fig. 1. Motion Interpolation between two configurations q0 and q1: (a) There is collision at
the intermediate configuration qt if we use a linear interpolation; (b) Using our constrained
interpolation algorithm, we obtain a collision-free trajectory for this case. (c) We take into
account multiple closest feature pairs ((V0,F0) and (V1,F1) in this case) at the two configu-
rations, and guarantee no collisions among these feature pairs along the trajectory.

3 Overview
In this section, we give an overview of our constrained motion interpolation scheme.
We further present our formulation for specifying distance constraints algebraically.
The interpolation scheme discussed here is for rigid robots. Later in Section 7.4, we
present a simple heuristic to extend it to articulated models.

3.1 Notation
We assume that the rigid robot and the obstacles are polyhedral models. We denote
the features of vertices, edges, and faces on the boundary of the robot or obstacles as
V, E, and F, respectively. We use superscripts to enumerate the features, e.g. V0, V1,
V2, and so forth. For the moving robot, we use subscripts to denote the position of its
feature at time t, e.g. a specific vertex V at t = 0, t = 1 or t is denoted as V0, V1, or Vt ,
respectively. A configuration q for a rigid robot is represented by using a vector T for
translation and a rotation matrix R, i.e. q = (R,T). In order to interpolate two given
configurations q0 and q1, without loss of generality, we assume q0 = (I, [0,0,0]t)
and the rotational component of q1 is the rotation matrix about z-axis by θ .

The motion interpolation problem is to compute a one-dimensional trajectory -
{Mt = (Rt ,Tt)|t ∈ [0,1]} with M0 = q0 and M1 = q1. For example, undergoing a
linear interpolating motion, the robot has constant angular and translation velocities
with

Rt =

 cos(θ t) −sin(θ t) 0
sin(θ t) cos(θ t) 0

0 0 1

 (1)

and Tt is (1− t)T0 + tT1.

When the robot moves along an interpolating motion, the position of any point x on
the model at time t can be computed:

xt = Rtx0 +Tt , (2)
where x0 is the position of x at time t = 0.

3.2 Constrained Motion Interpolation
Most prior motion interpolation schemes do not take into account the position of
the robot and the obstacles in the environment. The resulting interpolating motion
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may not be collision-free when the robot is near an obstacle. Formally speaking, this
corresponds to the situation when the two interpolated configurations q0 and q1 are
close to the contact space, a subset of configurations in C-space at which the robot
only touches one or more obstacles without any penetration. Fig. 1(a) shows one
example where the robot is near the obstacle. A simple linear interpolation scheme
will generate a motion where the robot’s rotational center o undergoes a straight line
motion. However, due to the affect of the rotation, the other points on the robot (e.g.
V) follow a non-linear trajectory. Since the robot is near the obstacle in this example,
the vertex V collides with the face F on the obstacle when the robot moves. The
collision may happen even when the robot undergoes a small rotation only if the
vertex V is far from o.

Our goal is to compute an interpolating motion that is less likely to result in a col-
lision between the robot and the obstacles. In order to generate such a trajectory
between q0 and q1, we compute the closest feature pairs between the robot at both
configurations and the obstacles. Every feature corresponds to a vertex (V), an edge
(E), or a face (F) on the boundary. Moreover, we impose constraints so that there
is no collision among these closest features along the interpolated trajectory. This
is also highlighted in Fig. 1(b), where the constrained motion ensures that the clos-
est feature pair (V,F) does not collide when the robot moves. Intuitively, in many
cases the closest features are the most likely candidates for a collision between the
robot and the obstacles. By ensuring that there is no collision amongst these closest
features, our interpolation algorithm is more likely to compute a collision-free trajec-
tory for the entire robot. In this manner, our interpolation scheme takes into account
the position of the robot and the obstacles in the environment. Moreover, we show
that there is very little extra overhead of using our interpolation algorithm over prior
methods.

3.3 Distance Constraints
The main issue to formulate the constrained interpolation is the representation of
non-collision constraints among the closest features. We use a sufficient condition
given by the following lemma:

Lemma 1. Let {Pi} the set of the closest feature pairs between the robot at the con-
figuration q0 and the configuration q1, and the obstacles. If the sign of the distance
function dt for each feature pair (formally defined in Section 3.4) dose not change
when the robot moves along this trajectory, then there is no collision in each feature
pair Pi.

We highlight the use of distance constraints based on an example. Consider the case
in Fig. 1(b), where there is only one closest feature pair (V, F) between the robot and
the obstacles. Let V0 (V1) as the position of the vertex V at the configuration q0(q1).
The signed distance between V0 (V1) and the plane containing the face F is d0 (d1),
respectively. Furthermore, we assume the signed distances d0 and d1 have the same
sign. In this case, a constrained motion can be computed by imposing the distance dt
is a linear interplant of d0 and d1 with t. This ensures the sign of distance function
does change along the motion. In this way, our constrained motion guarantees that
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there is no collision between these features along the trajectory (as per Lemma 1).
Given d0 and d1 with the same signs, in order to guarantee that the sign of the whole
distance function does not change, a simple but sufficient way is to perform a lin-
ear interpolation on the signed distances. Quadratic or more complex interpolation
functions may be chosen.

Multiple Distance Constraints: In many cases, taking multiple distance constraints
into account increases the probability of computing a collision-free path for the local
planner. Fig. 1(c) shows such an example. If we can guarantee that the signs of the
distance functions between feature pairs (V0,F0) and (V1,F1) do not change along
the trajectory, then there is no collision between these feature pairs throughout the
motion.

Solving the Constrained System: Under multiple constraints, the motion interpo-
lation is formulated as a constrained system:

C(Rt ,Tt) = 0, (3)
where C denotes the collection of distance constraints.

The system is non-linear due to the rotational component Rt . For simplicity, we
choose a simple interpolation scheme for Rt that is independent of the position of the
obstacles (e.g. a linear interpolation in Eq. (1)). By plugging Rt , the system reduces
to a linear one with three variables in the translational component Tt . If the total
number of closest features is less than three, this system is under-constrained and
one has to choose a meaningful solution from the infinite solution set. If there are
exactly three independent distance constraints, the system has a unique solution. We
address these issues in more details in Sections 4 and 5.

3.4 Formulation of Distance Constraints
Given a pair of features from the robot and the obstacles, we want to impose a con-
straint that the signed distance between the pair of features varies linearly. We con-
sider three possible types of closest feature pairs between the boundaries:

1. (V,F): the closest features are a vertex on the robot and a face of the obstacle,
2. (F,V): the closest features are a face of the robot and a vertex of the obstacle,
3. (E,E): the closest features are an edge of the robot and an edge of the obstacle.

To handle other types of closest feature pairs, we first decompose them. For example,
a (V,E) pair can be decomposed into two (V,F) pairs.

(V,F) Distance Constraint: Suppose the equation of the plane containing the face
F is {x|N · x + D = 0,‖N‖ = 1,x ∈ R3}. Let d0 as the signed distance between the
vertex V0 (V at q0) and this plane. Similarly, d1 is defined as the distance for q1.
Given d0 and d1 with same signs, we want the sign of distance function between the
vertex V and the plane does not change when the robot moves. This constraint can
be satisfied by: N · (RtV0 +Tt)+D−dt = 0, (4)
with dt = (1− t)d0 + td1, a linear interpolant of the signed distances d0 and d1.
This constraint can be reformulated as Nt ·Tt + st = 0, where:{

Nt = N,

st = N ·RtV0 +D−dt .
(5)
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(F,V) Distance Constraint: Given a face on the robot at q0 with the plane equation
{x|N0 ·x+D0 = 0,‖N0‖= 1,x ∈ R3} and a vertex V on the obstacle, the sign of the
distance function between the plane and the point should not change between t = 0
and t = 1 (Fig. 2(a)). This can be expressed as:

(RtN0) · (V−Tt)+D0 −dt = 0, (6)
where dt = (1− t)d0 + td1.

We reformulate this constraint as Nt ·Tt + st = 0, where:{
Nt = −RtN0,

st = (RtN0) ·V+D−dt .
(7)

(E,E) Distance Constraint: Given an edge on the robot at q0 with end points a0
0 and

a1
0, and an edge on the obstacle with end points b0 and b1, the sign of the distance

function between the lines containing the edges should not change between t = 0 and
t = 1 (Fig. 2(b)). In this case, the normal of the plane that contains both the lines is
given as: Nt = Normalize((b1 −b0)× (Rt(a1

0 −a0
0))) (8)

This constraint can be expressed as:
Nt · (Rta0

0 +Tt −b0)−dt = 0, (9)
where dt = (1− t)d0 + td1.

The constraint then can be reformulated as Nt ·Tt + st = 0, with st = Nt · (Rta0
0 −

b0)−dt .

4 Motion Interpolation: Single Distance Constraint
In the previous section, we presented our formulation for specifying the distance
constraints for different types of feature pairs. In order to compute the interpolating
motion, we need to consider different combinations of closest feature pairs at the
configuration q0 and q1. In this section, we present our motion interpolation algo-
rithm for a single (V, F), (F, V), or (E,E) distance constraint. In other words, the
closest feature pair at q0 and q1 is identical. With only one distance constraint, the
system for computing the motion (Eq. (3)) is under-constrained even if the rotational
component R(t) is given. Its solution set at any time t is a two-dimensional plane.
We compute an interpolation motion using a simple geometric construction scheme.
The resulting motion satisfies the distance constraint specified in Section 3.4.

4.1 Motion Interpolation with (V,F) Distance Constraint
We first consider the case when the closest features of the robot and the obstacle are a
vertex V and a face F, respectively. In order to generate an interpolation motion that
satisfies the distance constraint between features V and F at any time t, our algorithm
rotates the robot around the vertex V at q0 (denoted as V0), instead of its origin o
(Fig. 1). The robot is meanwhile translated along the vector from V0 to V1 (V at q1).
More specifically, the equation to compute the coordinate of any point on the robot
x at time t can be expressed as:

xt = Rt(x0 −V0)+V0 + t(V1 −V0), (10)

Therefore, we can represent this motion as:
xt = Rtx0 +Tt ,
Tt = −RtV0 +V0 + t(V1 −V0),

(11)

where Rt is any interpolant on the rotational component.
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Fig. 2. (a) Motion Interpolation with a single (F,V) distance constraint (Section 4.2). We high-
light the closest points on the face F of the robot at t = 0 , a0

0 and at t = 1, a1
1. The closest

feature on the obstacle is the vertex V. (b) Motion Interpolation with a single (E,E) Distance
Constraint (Section 4.3). These edges correspond to La on the robot and Lb on the obstacle.
We also highlight the closest points on the edges at t = 0 and t = 1.

4.2 Motion Interpolation with (F,V) Distance Constraint
Lets consider the case when the closest features of the robot and the obstacle are a
face F and a vertex V, respectively. The goal is to generate an interpolating motion
that satisfies the distance constraint for these features. Based on Fig. 2(a), we denote
a0

0 and a1
1 as the projected points of the point V on the plane containing F at the

configurations q0 and q1, respectively. We use the symbol a1
0 to denote the point a1

at time t = 0. At time t, we first compute the point at
0, which is the linear interplant of

t on the points a0
0 and a1

0; we then compute at
t , which is the point at

0 at time t by using
Eq. (2). If we impose the motion such that at

t is the closest point between the point V
and the plane containing F at time t, the distance constraint between the point V and
this plane can be expressed as:V−dtNt = Rtat

0 +Tt , (12)
where dt is a linear interpolant on the signed distances d0 and d1; Nt = RtN0, where
N0 as the normal of the plane at q0.

Therefore, the translational component Tt is given as:
Tt = V−dt(RtN0)−Rtat

0. (13)

4.3 Motion Interpolation with (E,E) Distance Constraint
Lets consider the case when the closest features are both edges. The line containing
such edges on the robot and the obstacle are denoted as La and Lb, respectively (Fig.
2(a)). Moreover, we use the symbols b0 and a0

0 as the closest points on the lines Lb
and La, respectively, at time t = 0, while b1 and a1

1 are the closest points between the
lines at time t = 1. We further denote:

bt = (1− t)b0 + tb1,
at

0 = (1− t)a0
0 + ta1

0,
at

t = Rtat
0 +Tt ,

Nt = Normalize(Rt(a1
0 −a0

0)× (b1 −b0)).

(14)

If we impose the motion such that at
t and bt are the closest points between the line

La at time t and the line Lb, their distance constraint now can be expressed as:

Rtat
0 +Tt = bt +dtNt , (15)

where dt is a linear interpolant on the signed distances of d0 and d1.
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Therefore, Tt can be represented as:
Tt = dtNt +bt −Rtat

0. (16)

One can show that our motion interpolation algorithm satisfies the distance con-
straint, as stated by the following lemma:

Lemma 2. The motion interpolated by Eq. (11), (13), or (16) satisfies the input dis-
tance constraint between the given feature pairs specified by Eq. (5), (7), or (9),
respectively.

5 Motion Interpolation: Multiple Distance Constraints
In the previous section, we presented our motion interpolation algorithm for a single
constraint. Our formulation had assumed that the closest features at configurations q0
and q1 are same and thereby handle a single distance constraint. In this section, we
extend to the case of multiple distance constraints. We compute the locally closest
feature pairs between the robot and obstacles. We derive closed forms for our con-
strained interpolation which can consider up to three locally closest feature pairs. By
taking into account multiple constraints, the resulting interpolating motion conforms
better to the local geometry of C-obstacles in the configuration space.

5.1 Two Distance Constraints
Similar to the earlier cases, we again assume that the rotational component of the
motion, Rt , is interpolated by a simple interpolant (e.g. linear interpolation). The
goal of our motion interpolation is to compute so that the signed distances between
each of two locally closest features vary according a given interpolant. This can be
expressed as: {

N0
t ·Tt + s0

t = 0,

N1
t ·Tt + s1

t = 0,
(17)

where Ni and si is any type of distance constraint formulated in Section 3.4.

The goal is to compute Tt for this system. With three unknown variables and two
equations, this is an under-constrained system. Furthermore, for a given value of
time t, the system is linear since both Ni

t and si
t can be calculated according to our

distance constraint formulation in Section 3.4. In general, the solution to this linear
system is a one-dimensional set. In order to solve the system, we specify one more
constraint explicitly as follows. The two equations at time t in Eq. (17) determine a
line in R3. We first compute a base point ζ at any time t (denoted as ζt ) on this line:

N0
t ·ζt + s0

t = 0,

N1
t ·ζt + s1

t = 0,

N2
t ·ζt = 0.

(18)

Here N2
t is given as: N2

t = Normalize(N0
t ×N1

t ). (19)

ζ at time t can be easily computed by the following equation:

ζt =

 N0
t

N1
t

N2
t

−1

[−s0
t ,−s1

t ,0]T . (20)
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Fig. 3. Computation of the translational component Tt of the interpolating motion with two
distance constraints. We use the distance constraints for each type of feature pair defined in
Section 3.4, and compute the vector N2

t accordingly.

Based on it, we can show that both ζ0 and ζ1 are 0.

Now, the base point ζt is displaced along the direction N2
t . The equation to compute

Tt can be expressed as:
Tt = ζt + tλN2

t

=

 N0
t

N1
t

N2
t

−1

[−s0
t ,−s1

t ,0]T + tλN2
t ,

(21)

where λ = T1 ·N2
1, so that the result of this equation at time t = 1 interpolates T1.

5.2 Three Distance Constraints
Next we consider the case when there are three pairs of closest features between the
robot and obstacles. In this case, we obtain a linear system with three constraints. In
general, Tt can be calculated by solving this linear system:

N0
t ·Tt + s0

t = 0,

N1
t ·Tt + s1

t = 0,

N2
t ·Tt + s2

t = 0,

(22)

where Ni and si is any type of distance constraint formulated in Section 3.4, as shown
in Eqs. (6), (8) or (10).

Therefore: Tt =

 N0
t

N1
t

N2
t

−1

[−s0
t ,−s1

t ,−s2
t ]

T . (23)

Lemma 3. The motion computed by Eq. (21) or (23) satisfies the input two or three
distance constraints between the given feature pairs.

5.3 Degenerate Situations
Our algorithm to compute the interpolating motion with multiple distance constraints
is general. Depending on the specific pairs of closest features, it uses the appropriate
formulations derived in Section 3.4. However, the formulation can result in degen-
erate situations, which can happen during the normalization operation in Eq. (19)
or the matrix inverse operation in Eqs. (21) and (23). Conceptually, the degeneracy
happens when Nt for two specific constraints becomes parallel at some time t. We
can easily detection these situations by computing a bound on dot-product of Nt for
the whole interval t ∈ [0,1], either using discrete sampling or a continuous scheme
based on interval arithmetic computation. Once a degenerate case is detected, our
algorithm generates a new motion interpolation by only considering a subset of the
given distance constraints (e.g. only one constraint instead of two constraints).
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Fig. 4. Benchmarks: We highlight the collision-free paths computed for Notch-g, Alpha Puzzle
and Flange benchmarks. Each benchmark has narrow passages. The performance improve-
ment using our constrained motion interpolation algorithm is summarized in Table 2.

6 Implementations and Performance
We have implemented our constrained motion interpolation algorithm and used it for
local planning step in sample-based motion planning. All the timings reported in this
section were taken on a 3.6GHz Xeon PC.

6.1 Implementation and Performance
Our implementation makes no assumption about the models or connectivity and is
applicable to all general rigid models that can be represented as polygonal soups.

Distance Computation for Polygonal Soup Models: In order to compute multiple
closest feature pairs between the robot and the obstacles, we extend a distance com-
putation algorithm in library - PQP [13]. More specifically, we determine all feature
pairs between the robot at q0 and q1, and obstacles, whose distances are less than a
user-specified tolerance. This can be efficiently performed by making use of bound-
ing volume hierarchy in PQP. We then use a simple heuristic of clustering to choose
a set of representative feature pairs, i.e. the locally closest feature pairs between the
models [21]. As shown in Fig. 5, we compute two locally closest feature pairs in (a)
and three pairs in (b). Compared with other distance computation algorithms (such
as Lin-Canny or GJK algorithms), our implementation is able to handle polygonal
soup models and compute a set of locally closest feature pairs.

Constrained Motion Interpolation: We use the set of locally closest feature pairs
to setup the distance constraints for computing the interpolation motion. Our formu-
lation can take up to three feature pairs. If any feature pair results in a degeneracy
situation, we ignore that pair. Table 1 highlights the performance of our constrained
interpolation algorithm, showing a breakdown of timing in different steps of the al-
gorithm on various benchmarks. There is very little extra overhead of using our al-
gorithm to compute the motion.

Collision Checking: Though our algorithm guarantees no collisions between the
closest features, we still need to check whether there are collision between other
features of the robot and obstacles. Currently, we use the simplest method by gener-
ating a finite number of discrete samples and performing discrete collision detection
at those samples.
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Notch-g Alpha Puzzle Flange

Compute closest features (ms) 1.315 2.045 18.619
Formulate distance constraints (ms) 0.046 0.137 0.179

Collision checking (ms) 9.418 26.193 69.452

Table 1. This table gives a breakdown of the timing among different steps of a local planner
that uses our constrained interpolation algorithm. This table presents the average timings per
query in milli-seconds on different benchmarks. Most of the time is spent is spent in collision
checking, which is similar to other local planners.

Notch-g Alpha Puzzle Flange
Constrained Motion (timing) 56.4s 1,043.0s 33.4s

Constrained Motion (# samples) 2,659 53,535 80
Linear Interpolation (timing) 272.1s 1,861.4s 46.3s

Linear Interpolation (# samples) 11,762 94,283 117
Slerp Interpolation (timing) 295.9s 2,029.8s 50.6s

Slerp Interpolation (# samples) 12,568 113,298 113

Table 2. Benefit of our constrained motion interpolation algorithm: We compare our local
planner based on constrained motion interpolation with other interpolation schemes. All
these local interpolation algorithms were integrated with a retraction-based RRT planner
and applied to different benchmarks. This table presents the average timings on computing
a collision-free path on different benchmarks. In models with complex narrow passages, like
Notch-g and Alpha Puzzle, we observe significant speedups due to our planner. Moreover, the
resulting planner needs to generate fewer samples.

6.2 Integration with Sample-based Planners
Sample-based planners randomly generate samples and connect nearby free-space
samples using local planning algorithms. To improve the overall performance of
planners, many sampling strategies have been proposed to increase the probability
of sampling in narrow passages. Instead, our motion interpolation algorithm is used
to improve the local planning step. In general, our interpolation algorithm is more
useful for sampling strategies which tend to generate more samples near contact
space [2,4,15,16,22]. For samples in open free space, simple interpolation schemes
such linear interpolation can work well. However, when samples are closer to the C-
obstacle boundary or lie in narrow passages, they are more difficult to be connected.
To address this issue, our constrained motion interpolation formulation takes into
account the position of C-obstacle.

In our experiment, we integrate our interpolation algorithm with a variant RRT plan-
ner, namely RRRT [22]. The RRRT planner uses a retraction-based sampling strat-
egy to generate more samples near the contact space and bias the exploration towards
difficult or narrow regions. We use our constrained motion interpolation to connect
samples near contact space. For the other samples (e.g. in the open free space), we
use a simpler interpolation scheme, such as linear interpolation. In our current im-
plementation, we perform discrete collision checking on a finite number of samples
along the interpolated motion.

Table 2 highlights the performance improvement in our new planner on different
benchmarks. The total timing and the number of nodes in the resulting RRT tree are



Constrained Motion Interpolation with Distance Constraints 13

(a) (b)
Fig. 5. Motion Interpolation With Distance Constraints: given two configurations q0 and q1,
our algorithm computes a constrained interpolating motion (two constraints in (a) and three
constraints in (b)). The resulting motion is more likely collision-free.

reported. We observe the overall performance improvement on these benchmarks. In
Fig. 7, we highlight the performance on a more complex benchmark for part disas-
sembly application.

7 Properties and Extensions
In this section, we first highlight some properties of our constrained motion inter-
polation scheme. We further show the extensions to compliant motion planner and
articulated robots.

7.1 Coordinate-Invariance Property
Our formulation of constrained motion interpolation is coordinate-invariant. We out-
line the proof as follows and omit the detailed proof due to the space limitation. First,
the formulation is left-invariant w.r.t the choice of the inertial frame of the robot.
This can be proved in a similar way as [20] by replacing the exponential map with
the transformation matrix for representing rotational components. Secondly, the for-
mulation is also right-invariant w.r.t the choice of the body-fixed frame of the robot.
Consider the simplest (V,F) closest feature case. In this motion equation Eq. (11),
the terms x0, V0 and V1 do not vary w.r.t the change of the body frame. Therefore,
the position xt does not change as well. This guarantees right-invariance. For the
other cases, we can prove this property in a similar manner.

7.2 Visibility Function Formulation
Our interpolation scheme can improve the visibility between samples near contact
space and in narrow passages. In many ways, our constrained motion interpolation
algorithm can be interpreted as defining a new visibility function between nearby
configuration that is more effective for sample-based planners. This is shown by Ta-
ble 3. We generate a set of samples near the contact space of the robot and obstacles.
Then we performs link queries among adjacent samples by using different interpola-
tion schemes in each experiment. We compute the failure ratio of link queries, which
is defined as the number of link queries reporting collisions divided by the total num-
ber of link queries performed between the samples near the contact space. Table. 3
highlights the improved ratios obtained using constrained motion interpolation algo-
rithm.
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q0 q1

F

qt

V

Fig. 6. Articulated Models: our interpolation scheme can be potentially applied to articulated
models.

Notch-g Alpha Puzzle Flange
Constrained Motion 27.62% 13.22% 16.41%
Linear Interpolation 47.02% 27.82% 22.19%
Slerp Interpolation 46.60% 28.63% 26.57%

Table 3. Improved Visibility Formulation near Contact Space: Our constrained motion inter-
polation algorithm is more effective in connecting the samples near the contact space.

7.3 Compliant Motion Generation
Given two contact configurations q0 and q1, our algorithm can be used to interpolate
a motion, which maintains a contact among the closest features pairs at q0 and q1.
In order to generate such a motion, the signed distances d0 and d1 in our distance
constraint formulations are set as zero, since q0 and q1 are contact configurations.
Fig. 5(b) shows the motion that maintains the contact among the given feature pairs
along the trajectory. We still need to check whether any other features of the robot
have penetrated into the obstacle. This formulation can be combined with sample-
based compliant motion planners [11].

7.4 Articulated Models
In Sections 4 and 5, we described our algorithm for rigid robots. In this section, we
present a simple heuristic to extend the approach to articulated models. Fig. 6 illus-
trates a simple scheme for a serial chain robot with movable base. We first compute
the link of the robot that is closest to the obstacles. When the robot is near the ob-
stacle, this link would be a likely candidate for collisions with the obstacle. We treat
this link as a rigid robot and compute a constrained interpolating motion for it be-
tween the two configurations based on the algorithm described in Section 5. Given
the motion of this link, we use inverse kinematics to compute the interpolating path
for the other links. Intuitively speaking, we are imposing the geometric constraint on
the motion of the link which is most likely to result in collisions with the obstacles.

8 Conclusion and Future work
We present a simple and general algorithm for motion interpolation and local plan-
ning. Based on the closest features at the two configurations, we derive closed for-
mulations of the trajectories. The main additional overhead is the computation of
closest features. Our local planning algorithm can be combined with sample-based
planners. The main benefit of our approach arises in computing collision-free paths
in narrow passages, especially when the samples are very close to the boundary of
the contact space. In that case, the paths computed using straight-line linear interpo-
lation, spherical linear interpolation or screw motion may overlap with the obstacles.
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Fig. 7. Disassembly of a Seat outside a Car Body: for this complex benchmark, our plan-
ner using constrained motion takes 181.2s while the same planner using linear motion takes
242.7s.

On the other hand, our formulation adapts to the boundary of the contact space and
can generate collision-free paths more likely. As a result, we observe speedups in the
performance of overall planner.

Limitations: Our approach has a few limitations. The closed-form formulas for mo-
tion interpolation are more complex as compared to other interpolation schemes (e.g.
linear interpolation). As a result, there is some additional overhead of computing
feature pairs. Furthermore, the parameterization of the constrained motion is not
uniform, and we may need to reparameterize in order to compute appropriate dis-
crete samples for collision checking. Most of the prior algorithms for local planning
and exact collision checking [18] work well in relatively open space. Therefore, our
algorithm is applied only for the cases when the robot becomes nearer any obsta-
cle within a user-defined parameter. This introduces a new parameter that has to be
optimized.

Future Work: There are many avenues for future work. We would like to design effi-
cient continuous collision detection algorithm based on motion bound computation.
One difficulty is to compute the bounds for the constrained motion with multiple
constraints. Furthermore, we would like to perform a detailed performance evalua-
tion on articulated robots with serial and parallel joints. Finally, it may be possible to
further improve the performance of the planner by designing appropriate sampling
strategies and nearest neighbor selection algorithms that can take into account some
of the properties of our motion interpolation algorithm.
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