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Abstract— We examine the use of video data to deter-
mine a driver’s drowsiness level. We conduct a user study
to collect video of a user reading, watching a driving
simulation, and playing a video game that simulates
driving. Alongside each video is the user’s sleepiness as
measured by the Stanford Sleepiness Scale, the Epworth
Sleepiness Scale, and eight questions that have been
shown to coincide with unsafe driving. Using this data, we
replicate the results of prior art, showing that on average,
changes in eye movement do correlate with drowsiness.
We find however, that the measurements appear to have
no predictive value for the drowsiness metrics that are
known to coincide with unsafe driving. We determine
that additional research in detecting driver drowsiness is
needed. Our user study data is publicly available.

I. INTRODUCTION

This paper presents an analysis of the use of eye mea-
surements of a driver in order to determine accident-
causing drowsiness levels. In level 3 semi-autonomous
cars, control is switched between the driver and the
vehicle [1]. One challenge for these vehicles is deciding
when the car should be in control and when the user
should be in control. Various aspects of a driver’s
mental state, such as driver attentiveness, drowsiness,
stress, and sobriety are used to determine if the driver
is ready to be given control. In this work, we focus on
monitoring driver drowsiness, as it plays a key role in
driver safety [2], [3].

Many controllers have been developed to monitor
drowsiness. Some systems involve attaching pulse sen-
sors and electrodes to a driver to monitor heart rate,
blink rate, brain signals, and other physical indicators
of drowsiness [4], [5]. However, attaching devices to
the driver is not appealing to the consumer. Therefore,
the most marketable method for monitoring a driver’s
drowsiness is via video camera. The majority of video
based techniques use the driver’s eyes – blink duration,
blink frequency, and percentage eye closure – to mea-
sure drowsiness. The results overall have been positive
[6], [7], [5], [8], [9], [10].
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In this paper, we examine the prior work done in
monitoring a driver’s eye information to determine
drowsiness levels. While some work shows correlations
between eye information and drowsiness, they do not
show that eye information has any predictive value
[7], [9]. Other works have shown success in detecting
drowsiness using different drowsiness metrics, but the
metrics used have not been shown to coincide with
vehicle accidents [6], [8].

We designed and conducted a user study to create a
dataset for testing. We filmed a user reading, watching
a driving simulation, and playing a driving simulation
video game using steering wheel and foot pedal con-
trollers. Along with each video is the user’s sleepiness
as measured by the Stanford Sleepiness Scale [11], the
Epworth Sleepiness Scale [12], and their responses to
eight questions regarding their sleep habits that have
been shown to coincide with safe driving [2], [3].

We later collected the eye landmark information
of each user’s video performance in the driving sim-
ulation. To minimize possibility of error related to
incorrect eye tracking, these landmarks were collected
by hand rather than automatically. In our analysis, we
first replicate the results of prior art, showing that
on average blink duration is shorter, percentage eye
closure (PERCLOS) is higher, and blink rate is lower
for drivers that are more drowsy. However, we then
find that although these measures correlate on average
with drowsiness, there is sufficient variability that these
measures do not provide strong predictive value.

Our dataset is publicly available. To our knowledge,
it is the first publicly available dataset of its kind.
Additionally, the script and the survey used in the user
study are available to encourage comparative work.

II. BACKGROUND

A. Drowsiness Scales

The Epworth Sleepiness Scale (ESS) is designed
to measure a person’s average sleepiness levels while
conducting day to day activities [12]. A user answers
eight questions about their daily sleepiness levels and
provides a score from 0–3 for each question, 0 indi-
cating they would never fall asleep during a particular



activity and 3 indicating there is a high chance they
would fall asleep during the activity. The scores are
totaled for an overall ESS Score of 0–24. A score
of 10 or higher indicates a person has mild to severe
excessive daytime sleepiness.

The Stanford Sleepiness Scale (SSS) is an introspec-
tive measure of a person’s current sleepiness level. The
user provides a score between 1–7 to indicate their
current drowsiness level. A score of 1 means they are
“feeling active, vital, alert, or wide awake” and a score
of 7 means they are “no longer fighting sleep, sleep
onset soon; having dream-like thoughts” [11].

B. Accident-causing Drowsiness Metrics

TABLE I
SUMMARY OF PREVIOUS WORK DETERMINING WHAT

SLEEPINESS METRICS CORRELATE WITH ACCIDENTS

Epworth Stanford Hours Sleep
Connor et al. [2]
Stutts et al. [3] NA

Previous work has shown that driver drowsiness
significantly increases the likelihood of an accident. A
summary of this work is shown in Table I. A check
means the study found the metric to be a good indicator
of likeliness of an accident; an X means it did not.

In 1999, Stutts et al. interviewed 1, 403 drivers [3].
467 of those drivers had been involved in a police-
reported accident in North Carolina who were identified
as “asleep” or “fatigued” by the officer, 529 of those
drivers were in a police-reported accident in North
Carolina but were not reported to be asleep or fatigued,
and 407 of the drivers were not involved in a recent ac-
cident. They used multiple logistic regression models to
produce estimates of the odds ratio for the occurrence
of a sleep-related crash given a particular risk factor,
adjusted for driver age and gender. They found that
the drivers who got in sleep-related crashes were more
than twice as likely to have Epworth Sleepiness Scores
greater than 10. They also found a high percentage of
sleep-related crash drivers had less than six hours of
sleep the night before when compared to the drivers
who were in crashes that were not sleep related.

In 2002, Connor et al. surveyed 571 drivers who
had been involved in a crash in which someone was
admitted to the hospital or killed [2]. They recruited
588 additional drivers to act as their control group.
They found an increased likelihood of an injury-causing
accident with subjects who had a Stanford Sleepiness

Score of 4 or above, who had five or fewer hours of
sleep in the past 24 hours, or were driving between 2
and 5 A.M. They found no increase in likelihood of an
accident with drivers who had an Epworth Sleepiness
Scale measure greater than or equal to 10 compared to
drivers with an Epworth Sleepiness Scale less than 10.

Both studies showed “hours of sleep” is an indicator
of accident-causing drowsiness. Connor et al. found
the Stanford Sleepiness Scale to be an indicator, but
the studies conflicted on whether or not the Epworth
Sleepiness Scale is. We include all three metrics in our
user study to ensure completeness of the resulting data.

C. Using Eye Data to Measure Drowsiness

Table II summarizes previous work using eye data to
measure driver drowsiness. In 2003, Caffier et al. found
that blink duration, eyelid closing time, reopening time,
proportion of long closure duration blinks, and blink
frequency are on average higher when a person is
drowsy [9]. The study used 60 volunteers who filled
out a survey about their sleepiness levels. They then
wore glasses that captured eye data while performing
a driving simulation.

In 2005, Ingre et al. found that on average, blink
duration increases with drowsiness, but blink duration
differs widely between individuals [7]. In the study ten
subjects performed a two-hour driving simulation while
reporting their drowsiness levels on the Karolinska
Sleepiness Scale (KSS) every five minutes. Eye data
was collected using an Electrooculogram (EOG).

In 2009, Shuyan et al. detected drowsiness using
eye data [8]. Study participants performed a driving
simulation while drowsiness was measured using an
Electroencephalogram (EEG), the Karolinska Drowsi-
ness Score (KDS), and KSS. An EOG was used
to collect 11 eyelid related features including upper
threshold, lower threshold, open time, close time, blink
amplitude, and blink duration, which were used to train
and test a support vector machine. They showed a
correct detection rate of 100% when the driver was
very sleepy, 87% when the driver was sleepy, and 83%
when they were awake.

In 2012, Lee et al. found that the percentage of a
person’s eye closure (PERCLOS) and average blink
duration can be used to detect drowsiness with a 55%
false detection rate and an 82% correct detection rate
using a Bayesian neural network [6]. The study used ten
volunteers who filled out a survey about basic drowsi-
ness indicators and performed a driving simulation. Eye
data was collected from video of the driver.
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TABLE II
SUMMARY OF PRIOR WORK ON HOW EYE DATA INDICATES DROWSINESS

Eye Data Collected Sleepiness Metric Prediction of
Sleepiness
Demonstrated

Metric Correlates
with Accident
Likelihood

Caffier et al. [9] Blink Duration, Closing Time, Reopen-
ing Time, Proportion of Long Closure
Duration Blinks, and Blink Frequency

Survey

Lee et al. [6] Percentage Eye Closure and Blink Du-
ration

Survey

Ingre et al. [7] Standard Deviation of the Lateral Po-
sition and Blink Duration

KSS

Shuyan et al. [8] Upper Threshold, Lower Threshold,
Open Time, Close Time, Blink Ampli-
tude, and Blink Duration

EEG, KDS, KSS

III. METHODOLOGY

A. Data Collection

We recruited 23 subjects through our university’s
user study recruitment tool. The subjects ranged in
age from 26–55. Of the 23 participants 52% identified
as female and 48% identified as male; 13 participants
identified as White, 4 identified as Asian, 2 identified
as Indian, 1 identified as African American, 1 identified
as Hispanic, and 2 identified as other.

Each participant filled out a survey to indicate their
current and average drowsiness levels. The questions on
the survey include the participant’s Epworth Sleepiness
Score, Stanford Sleepiness Score, and how much sleep
they had gotten in the past 24 hours. Then the subjects’
faces were filmed while they performed the following
activities: reading a passage [13], watching a video of
a driving simulation [14], and performing a driving
simulation. The survey and filming took less than 30
minutes per participant.

During driving simulation users drove in “freeplay
mode” in Driving Simulator 2013 using the Logitech
Driving Force G29 Racing Wheel for PlayStation 4 and
PlayStation 3. The subjects were given three minutes
to acclimate to the simulator before we began filming.
The video was recorded at 300 frames per second.

The script used to administer the study, the passages
and videos used by the participants, and the surveys are
all included in the dataset, which is freely available to
other researchers.

B. Data Analysis

We analyzed the first 100 frames of the driving
simulation video for each of our 24 subjects. We ex-

Fig. 1. Image of experimental setup

plored algorithmic options including supervised descent
method (SDM) [15] and online eye tracking software.
However, SDM did not provide sufficient accuracy
when drivers’ eyes were partially closed, and online
eye tracking software did not provide the necessary
API access. Therefore, for each 720× 1280 frame, we
manually recorded the coordinate location of the top
of the left eyelid and the bottom of the left eyelid (see
Figure 2).

We then calculated blink duration, percentage eye
closure, blink rate, and percentage eye movement.

• Blink duration is the number of frames it takes for
a user to blink.

• Percentage eye closure (perclos) is the percent-
age the eye is closed given a baseline eye size.



Fig. 2. Left: Example of landmark detection using the Supervised
Descent Method; Right: Example of landmarks collected manually

It is calculated by 1−measured distance
eye size , where mea-

sured distance is the distance between the upper
and lower eyelid, and eye size is the baseline eye
size as determined by the largest distance each
subject had their eyes open in the 100 frames.

• Blink rate is the number of blinks that occurred
per 100 frames.

• Percentage eye movement is the percentage of
frames where the upper and lower eyelid distance
changes by more than 1 pixel.

A blink starts when a person’s perclos is greater than
70% and stops when a person’s perclos is less than or
equal to 70%.

We analyzed the video data against seven definitions
of Awake. (If a participant is not Awake, they are
Drowsy.) The first three come from the Epworth Sleepi-
ness Scale score (ESS), the Stanford Sleepiness Scale
score (SSS), and the hours of sleep the participants had
in the past 24 hours (HS):

• ESS. The driver has an ESS score ≤ 10.
• SSS. The driver has an SSS score < 4.
• HS. The driver received more than 6 hours of sleep

in the past 24 hours.
The last four definitions are combinations of the

above three. For example, under the ESS∧SSS defi-
nition, a participant had to have an Epworth Sleepiness
Scale score of ≤ 10 AND a Stanford Sleepiness Scale
score < 4 to be considered Awake, otherwise they
would be considered Drowsy.

We measured both correlation between eye data and
drowsiness, and the predictive value of the eye data for
determining drowsiness.

To measure predictive value of the eye measure-
ments, we trained a support vector machine (SVM) on a
training set of randomly chosen participants and tested
its accuracy of predicting awakeness or drowsiness in
the remaining participants. For blink duration, perclos,
and percentage movement, the SVM trained on 15
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Correlation of Drowsiness Measures

Fig. 3. Each bar represents represents the absolute value of the
correlation between drowsiness metrics.

Correlation of Eye Information

Fig. 4. Each bar represents the absolute value of the correlation
between the two eye measurements.

images and tested on 8. Since only 12 participants
blinked in the first 100 frames, the training set for blink
rate was 8 and the testing set was 4. To account for the
unbalanced data set we added a penalty to the SVM
for missed detections.

IV. RESULTS

Table III shows the average value of each eye mea-
surement per Awake person and Drowsy person, using
the seven definitions of Awake and Drowsy.

Table IV shows the number of Awake participants
according to each of the seven definitions of awake.
Less than half of participants qualified as Awake under
the ESS ∧ SSS ∧ HS definition.

Figure 3 shows the absolute value of the 2-
dimensional correlation between each subject’s drowsi-
ness metrics. There was not a high correlation between
any of the drowsiness metrics.
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TABLE III
AVERAGE VALUE OF EACH EYE MEASUREMENT FOR DROWSY AND AWAKE DRIVERS. THIS REPLICATES THE WORK OF CAFFIER ET

AL. [9] AND INGRE ET AL. [7]

Blink Duration Percentage Eye Closure Blink Rate Percentage Movement
Sleepiness Metric Awake Drowsy Awake Drowsy Awake Drowsy Awake Drowsy
ESS 2.8889 2.3333 11.35% 11.73% .5882 .6667 7.62% 9.42%
SSS 2.75 NA 11.53% 10.53% .6667 0 8.7% 1.68%
HS 2.8889 2.3333 10.96% 13.19% .5556 .8 7.47% 1.03%
ESS ∧ HS 3.1429 2.2 11.16% 11.82% .6154 .6 6.7% 9.9%
SSS ∧ HS 2.8889 2.3333 11.02% 12.43% .625 .5714 8.2% 7.84%
ESS ∧ SSS 2.8889 2.3333 11.46% 11.43% .6667 .5 8.41% 7.49%
ESS ∧ SSS ∧ HS 3.1429 2.2 11.27% 11.61% .7273 .5 7.61% 8.53%

TABLE IV
NUMBER OF AWAKE DRIVERS PER DEFINITION

Definition of Awake Number of Users
ESS 17
SSS 21
HS 18
ESS ∧ HS 16
SSS ∧ HS 16
ESS ∧ SSS 15
ESS ∧ SSS ∧ HS 11

Figure 4 shows the correlation between two different
eye measurements for each user. Perclos and Blink Rate
have a strong correlation, and Perclos and Percentage
Eye Movement have a strong correlation. Therefore we
expect that the accuracy of drowsiness predicted using
Perclos will be similar to the accuracy predicted using
Blink Rate and Percentage Eye Movement.

Figure 5 shows the histogram values of users’ per-
centage eye movement. They were classified as awake
or drowsy based on their ESS score. We include this
as an example of the high overlap of eye metric values
in sleepy and awake users.

Figure 6 shows the percentages of detection accu-
racy, false positives, and missed detections for de-
termining ESS-based drowsiness using every com-
bination of eye metrics. Similarly, Figure 7 shows
the percentages of detection accuracy, false positives,
and missed detections for determining Hours-of-Sleep-
based drowsiness using every combination of eye met-
rics. Accuracy is the number of correct drowsy and
awake classifications divided by the total number of
users. False positive is the number of awake users
marked as drowsy divided by the number of awake
users. Missed detection is the number of drowsy users
marked as awake divided by the number of drowsy

Histogram of Percentage Eye Movement Results

Fig. 5. Each line represents the histogram data of different users’
percentage eye movement values for users that were classified as
either awake or drowsy using ESS.

users.

V. DISCUSSION

As is shown in Table III, blink duration was always
decreased when the driver was drowsy and percentage
eye closure was higher when the driver is drowsy
except for when considering just SSS or ESS∧SSS. It
can also be seen that the blink rate decreases when the
driver is drowsy, except for when considering ESS or
HS. We found no correlation between drowsiness and
percentage eye movement.

As seen in Figure 3, the drowsiness metrics are not
highly correlated, so it is important to consider all three
measurements.

As seen in Figure 4, Perclos and Blink Rate are
strongly correlated, and Perclos and Movement are
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Balanced SVM Drowsiness Detection Accuracies -

ESS

Fig. 6. Each bar represents the percentage of each success measure
of the SVM using a combination of eye metrics for training. The
color of the bar denotes what success measure was used.

Balanced SVM Drowsiness Detection Accuracies -
Hours of Sleep

Fig. 7. Each bar represents the percentage of each success measure
of the SVM using a combination of eye metrics for training. The
color of the bar denotes what success measure was used.

moderately correlated. This leads us to believe that
just looking at one of these measurements instead of
all three could be sufficient in predicting a driver’s
drowsiness.

Figure 5 demonstrates an argument against the pre-
dictive value of the eye metrics. The histogram for per-
centage eye movement in drowsy users highly overlaps
the histogram for percentage eye movement in awake
users. This suggests that classification of a user as
awake or drowsy would be extremely difficult if not
impossible using these metrics.

As seen in figures 6 and 7, overall accuracy ranged
from around 40–60%. The cases where accuracy was
greater than 60% only occurred when there was a
missed detection rate of 100%, This result demonstrates
that these eye metrics don’t have any predictive value

for determining accident-causing drowsiness levels.

VI. CONCLUSION

We extended prior work in showing that eye mea-
surements correlate with driver drowsiness when using
drowsiness measures that have been shown to indicate
increased risk of accidents. We then showed that these
measurements appear to have little to no predictive
value for the studied drowsiness measures. We con-
clude that more research is needed before drowsiness
detection from eye data can be reliably used. We make
our data set freely available to other researchers to
encourage this research.
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