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Abstract—To certify the schedulability of a system, valid per-
task worst-case execution-time (WCET) estimates are almost
always required. Unfortunately, on multicore machines, deriving
WCET estimates through static analysis that is not highly
pessimistic may never be a practical reality. The alternative is
to determine WCETs via a measurement process, but such a
process cannot correctly produce accurate WCET estimates with
certainty. This lack of certainty necessitates the use of overrun-
handling mechanisms, such as budget-enforcement techniques,
to preserve temporal correctness at runtime. In many systems
of interest today, tasks are interconnected to form processing
graphs, which can be quite large. The simplest (and perhaps
most common) approach to budget enforcement in this case is
to abort an entire graph invocation whenever any node (task)
overruns its budget. However, such an approach can result in a
high abort rate at the graph level even when the per-node abort
rate is low. To remedy this situation, this paper presents a holistic
budget-management strategy for directed acyclic graphs (DAGs)
that involves reallocating per-node budgets to overrunning nodes
to avoid DAG-level aborts. To enable the effects of aborts to be
studied analytically, a probabilistic analysis is presented to derive
a DAG’s abort rate under the proposed budget-management
strategy. Experimental results are also presented to demonstrate
the utility of budgeting graphs holistically.

I. INTRODUCTION

Today, artificial-intelligence (AI) techniques are fueling the
realization of ever more sophisticated embedded systems, with
autonomous vehicles being a prime example. These techniques
typically involve executing tasks with dataflow dependencies
as expressed in the form of a processing graph. These graphs
can be large and computationally demanding, necessitating the
use of a multicore machine. In a safety-critical context such
as an autonomous vehicle, these graph-based workloads must
pass real-time safety certification, which entails performing
both timing analysis and schedulability analysis. The goal
of timing analysis is to produce worst-case execution times
(WCETs) of executable code; schedulability analysis in turn
validates timing constraints, assuming WCETs are provided.

Multicore timing-analysis dilemma. Unfortunately, in the
context of multicore machines, the coupling of timing analysis
and schedulability analysis creates a dilemma [38]. Due to
the highly complex nature of multicore machines, there is
consensus today that static timing analysis, which computes
the WCET of a program by analyzing its code structure, may
never be a practical solution for such machines [42]. The
alternative is measurement-based timing analysis, which may
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Fig. 1: (a) A DAG task, and (b) executing an overrunning job using
successor node’s budget.

not capture the true WCET of a program. Thus, the WCET
values that schedulability analysis relies upon can never be
assumed to be correct with certainty.

Mitigating this dilemma by budget enforcement. A system’s
timing correctness may be violated at runtime if the WCETs
assumed in schedulability analysis are overrun. A common
approach to addressing this problem is by enforcing per-task
execution budgets: each task is assigned a budget based on its
WCET, and if an invocation of that task (i.e., one of its jobs)
overruns said budget, it is aborted.

The need to budget graphs holistically. When tasks are
embedded as nodes in a processing graph, an entire graph
invocation typically becomes logically incorrect when one of
its node invocations is aborted, so the entire graph invocation
should be aborted in such a case. However, such an approach
can cause the effects of node WCET overruns to be greatly
magnified. For example, a node failure rate of only 0.1% can
be magnified to a graph failure rate of 36.8% (assuming IID
probabilities) for a graph with 1,000 nodes [2]—in AI-based
use cases, graphs of this size are a definite possibility.

These observations motivate the need for more holistic ways
of budgeting graphs that are more flexible, particularly in
these new use cases. This need has been highlighted by other
researchers in the context of ROS-based robotic systems [8]
and component-based accelerator-using systems [2]. In this
paper, we consider this need in the context of budgeting
computations expressed as directed acyclic graphs (DAGs).

Avoiding node-invocation aborts. The frequency of DAG-
level aborts can be reduced by adopting a holistic budget-
management strategy that allows budget-reallocation within a
DAG. Using such a strategy, an overrunning node invocation
can be executed longer by consuming budgets of one or more
invocations of “downstream” nodes. However, this approach
is subject to nuances due to data dependencies. For example,
consider the DAG shown in Fig. 1(a) and a schedule of the
DAG in Fig. 1(b). Task τ1’s invocation in Fig. 1(b) overruns
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its budget at time 2. It is allowed to execute during the time
interval [2, 3) using the budget of task τ2’s invocation, which
causes an additional delay in task τ3’s invocation too. Thus,
reallocating budgets within a DAG requires carefully sifting
through the various reallocation possibilities that exist and
their concomitant data-dependency side effects.

Contributions. In this paper, we provide a foundation for
graph-level budgeting through three contributions.

First, we propose a holistic budget-management policy
for DAG tasks that includes budget- and slack-reallocation
within a DAG. Our budget-reallocation technique allows an
overrunning node invocation to execute on invocations of
“downstream” nodes. Moreover, our slack-reallocation method
reduces the likelihood of overruns by allowing the slack
produced by an underrunning node invocation to be consumed
by other node invocations. We also detail the case when
aborting an entire DAG invocation is inevitable to prevent
runtime violations of timing guarantees. Our proposed budget-
management policy is agnostic to the DAG scheduling strategy.

Second, we provide an analysis to upper bound the proba-
bility of DAG aborts when our budget-management policy is
used. Our analysis probabilistically quantifies an overrunning
node invocation’s impact on other nodes. Moreover, our anal-
ysis handles complicated dependencies that may arise from
precedence constraints in the presence of budget overruns.

Third, we present results from experimental evaluations that
demonstrate the improvement of the DAG abort rate compared
to the naı̈ve approach of aborting an entire DAG invocation
when a node overrun occurs. Our experiments show that a
DAG’s abort rate can be improved significantly by adopting
our proposed budget-management strategy.

Organization. In the rest of this paper, we provide nec-
essary background information (Sec. II), present budgeting
mechanisms for DAGs and corresponding drop-rate analysis
(Secs. III and IV), present our experimental results (Sec. V),
review related work (Sec. VI), and conclude (Sec. VII).

II. BACKGROUND

We consider a task system Γ consisting of N DAG tasks
scheduled on m identical processors.

Each DAG task G ∈ Γ is characterized by (V,E), where V
is a set of n nodes representing n tasks τ1, τ2, . . . , τn, and E
is a set of directed edges. (We use the terms “task” and “node”
interchangeably.) An edge from τi to τk specifies a precedence
constraint between the predecessor task τi and successor task
τk. The set of predecessors (resp., successors) of τi is denoted
by pred(τi) (resp., succ(τi)). If a path exists from τi to τk,
then τi (resp., τk) is called an ancestor (resp., descendant) of
τk (resp., τi). The set of ancestors of τi is denoted as anc(τi).
We assume that τ1 (resp., τn) is a unique source (resp., sink)
task for the DAG G with no incoming (resp., outgoing) edges.
Multiple sources/sinks can be supported by adding “virtual”
sources/sinks with a WCET of zero.

Each task τi releases a sequence of jobs Ji,1, Ji,2, . . .. The
source task τ1 releases jobs sporadically, i.e., its releases have

TABLE I: Task-model notation summary.

Symbol Meaning Symbol Meaning
N No. of DAG tasks Ci Execution budget of τi
m No. of processors ei pWCET of τi
Γ Task system ri,j Release time of Ji,j
G A DAG task fi,j Finish time of Ji,j
n No. of nodes in G Si Reservation server of τi
V Set of nodes in G Si,j jth job of S�

i
E Set of edges in G pred(τi) Set of predecessors of τi
τi ith task of G succ(τi) Set of successors of τi
Ji,j jth job of τi anc(τi) Set of ancestor of τi
T Period of G dep(Ji,i) Set of jobs on which Ji,j
Di Rel. deadline of τi depends
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Fig. 2: Illustration of intra-task parallelism for τ2.

a minimum separation given by G’s period, denoted by T .
The jth job of a non-source task τi is released once the jth

jobs of all of its predecessors have completed execution. The
release time (resp. finish time) of Ji,j is denoted by ri,j (resp.,
fi,j). The response time of G is maxj{fn,j − r1,j}.

Task τi has an execution budget of Ci, which equals its
estimated WCET, and a probabilistic WCET (pWCET) [9]
ei, which is a discrete random variable (RV) representing the
actual execution times of its jobs. Each task τi is also given a
relative deadline Di. We do not require deadlines to be hard,
i.e., deadline misses are acceptable. We assume time to be
discrete and a unit of time to be 1.0. Tbl. I summarizes our
notation.

Intra-task parallelism. We allow consecutive jobs of the same
task to execute in parallel. Allowing such intra-task parallelism
may decrease analytically derived response-time bounds [15].
Moreover, intra-task parallelism enables task utilizations, i.e.,
Ci/T , to exceed 1.0. Thus, since a job of a task does not
depend on prior jobs of the same task, dependencies among
jobs of different tasks can be defined as follows.

Def. 1. A job Ji,j depends on job Jk,j if τk ∈ anc(τi) holds.
We let dep(Ji,j) denote the set of jobs on which Ji,j depends.

Ex. 1. Assume that G in Fig. 1(a) is scheduled on m = 3 pro-
cessors. Fig. 2 depicts a possible schedule of jobs J2,10, J2,11,
and J2,12, which come from three successive invocations of G.
None of the three jobs executes before time 42. Assume that all
jobs with higher priority than these three jobs complete exe-
cution before time 42. Since intra-task parallelism is allowed,
all three jobs are scheduled at time 42. Note that intra-task
parallelism is common in AI applications. For example, G here
might be a computer-vision objection-detection application
that can process successive video frames simultaneously.

Working with probabilities. A discrete RV X can take
on an integer value x with probability P (X = x). X is
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characterized by a probability distribution function (PDF),
fX , where fX(x) = P (X = x). The cumulative distri-
bution function (CDF) of X , denoted as FX , is defined as
FX(x) =

∑x
i=−∞ fX(i) and is equal to P (X ≤ x). The

CDF’s compliment, the complementary CDF (CCDF) of X ,
denoted as FX , is defined as FX(x) = 1 − FX(x) and is
equal to P (X > x).

Given two RVs X1 and X2, P (X1 > x1, X2 > x2) denotes
the probability of X1 > x1 and X2 > x2 and the joint PDF of
X1 and X2 is given by fX1,X2

(x1, x2) = P (X1 = x1, X2 =

x2) for any values x1 and x2. Also, P (X1 > x1 | X2 = x2)

denotes the probability of X1 > x1 given X2 = x2.

Comparison between RVs. There exist multiple ways in
which RVs can be ordered. For RVs X and Y , X is state-
wise at least Y , denoted as X ≥0 Y , when the observed
value of X is at least the observed value of Y . Alternatively,
X is first-degree at least Y , denoted as X ≥1 Y , when
P (X > x) ≥ P (Y > x) for all values of x. It is known
that the former implies the latter [37].

III. BUDGETING DAG-BASED TASK SYSTEM

In this section, we propose several budget-management poli-
cies for DAG tasks. We begin by defining per-node reservation
servers that act as containers within which jobs execute.

A. Reservation of a Task

Consider a DAG task G ∈ Γ. For each node τi, we define a
reservation server Si with budget Ci and relative deadline Di.
Each server releases server jobs. We denote the jth server job
of Si by Si,j , which corresponds to job Ji,j . We call the server
job Si,j the reservation of job Ji,j . The release of server job
Si,j is governed by the following rule.

Release Rule. S1,j is released when J1,j is released.
For i �= 1, Si,j is released after every Sk,j completes
where τk ∈ pred(τi).

The exact release time of a server job Si,j corresponding to
a non-source node τi depends on the corresponding server
scheduling policy. However, Ji,j is released as soon as the
jth jobs of all predecessor nodes of τi complete. This allows
us to (potentially) execute Ji,j on the slack (if any) produced
by the jobs of predecessor nodes (as discussed in Sec. IV-A).

Def. 2. A server job Si,j depends on server job Sk,j if τk ∈
anc(τi) holds.

We do not require any particular scheduling policy to be
used to schedule the per-node reservations, only that the
scheduler gives bounded response times and allows for the
preemption of DAG nodes. However, for the sake of illustra-
tion, we henceforth assume server jobs are scheduled by a
global-earliest-deadline-first (G-EDF) scheduler. The budget
of a server job is managed by the following rules.

Replenishment Rule. The budget of Si,j is replen-
ished to Ci when it is released.
Consumption Rule. Si,j consumes one unit of
budget per unit of time when it is scheduled.
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Fig. 3: Illustration of a schedule with reservations.

A server job completes when its budget is exhausted.
A job Ji,j executes on its reservation Si,j . If Ji,j completes

execution before Si,j’s budget is exhausted, then Ji,j under-
runs its budget. In contrast, Ji,j overruns its budget if it does
not complete execution at or before Si,j’s budget is exhausted.

Ex. 1 (Cont’d). Fig. 3 shows a schedule of τ1 and τ2 from
the DAG G in Fig. 1(a). At time 0, J1,1 is released. Assume
that C1 = 3. Then, at time 0, the server S1,1 is also released
and its budget is replenished at 3.0 units. S1,1 is scheduled
at time 1 and consumes budget until time 4 when its budget
is exhausted. J1,1 starts execution at time 1 when S1,1 begins
and completes at time 3. Thus, J1,1 underruns its budget. Since
τ2’s only predecessor is τ1, J2,1 is released at time 3. S2,1 is
released at time 4 when S1,1 completes. Job J1,2 overruns as
it does not complete by time 10 when S1,2 exhausts its budget.

B. Dealing with Budget Overruns

A job Ji,j can no longer execute on its reservation after it
overruns. Thus, any job Jk,� that depends on Ji,j is prevented
from executing even though its reservation is scheduled. To
allow Ji,j to execute on Jk,�’s reservation, we give rules below
to allocate jobs to servers.

Def. 3. Job Ji,j is complete (resp., incomplete) at time t if it
has (resp., has not) completed execution at or before t. Job
J1,j of source task τ1 is ready (resp., not ready) at time t if
it is incomplete and J1,j is released at or before (resp., after)
time t. Job Ji,j of a non-source task τi is ready (resp., not
ready) at time t if it is incomplete and each job (resp., at
least one job) Jk,� on which Ji,j depends is complete (resp.,
incomplete) at time t.

Job allocation rules. Let Si,j be a server job scheduled at
time t and J (t) be the set of overrunning ready jobs at time t.
Jobs are executed on Si,j via the following rules.

B1 If Ji,j is ready at time t, then Ji,j is scheduled on Si,j .
B2 If Ji,j is not ready at t, then, by Def. 3, there is at least

one incomplete job Jk,� ∈ dep(Ji,j) at t. Let Ji,j(t) be
the set of ready jobs Jk,� in dep(Ji,j) at t.

B2.1 If an unscheduled job in Ji,j(t) exists at time t, then
select such a job Jk,� ∈ Ji,j(t) to execute on Si,j .

B2.2 Else, if an unscheduled job in J (t) exists at time t,
then select such a job Jk,� ∈ J (t) to execute on Si,j .
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Fig. 4: (a) A DAG G, (b) a schedule of G with node overruns, and
(c) a schedule of G with slack reallocation.

Concurrency. Rules B2.1 and B2.2 can be applied simulta-
neously at time t when multiple server jobs are scheduled
concurrently. If the rules are not applied atomically, then
different server jobs may select the same job to schedule.
This can occur when a server job selects some job Jk,�
using Rule B2.1, and before Jk,� is scheduled, another server
job also selects Jk,�. We can prevent this race condition by
marking a job as scheduled as soon as it is selected by Rules
B2.1 and B2.2 with a single atomic operation. In a practical
implementation, this can be done through a mutual exclusion
lock, or through an operation such as test-and-set.

Ex. 2. Fig. 4(a) shows a DAG G and Fig. 4(b) shows a
schedule of tasks τ2, τ3, τ4, and τ5 of G. Assume that J1,1
completes execution at or before time 5. At time 5, server jobs
S2,1 and S3,1 are scheduled. By Rule B1, J2,1 and J3,1 are
scheduled on S2,1 and S3,1, respectively, at time 5. Jobs J2,1
and J3,1 overrun their budgets at times 8 and 9, respectively.
At time 9, S4,1 and S5,1 are released, and they are scheduled at
time 11. Both J4,1 and J5,1 are not ready at time 11. J2,1 and
J3,1 form J5,1(11) and only J2,1 form J4,1(11) at time 11.
Assume that J2,1 is first selected to execute on S5,1 at time 11
by Rule B2.1. Because J2,1 is marked as scheduled as soon as
it is selected by S5,1, there are no remaining unscheduled jobs
in J4,1(11). S4,1 then executes the remaining overrunning job
J3,1 by Rule B2.2.

Based on Rules B1–B2.2, we have the following lemmas,
which we use in Sec. IV.

Lemma 1. If Si,j is scheduled at time t, but Ji,j is not ready
at time t, then a job Jk,j ∈ dep(Ji,j) is ready at time t.

Proof. We first show that i �= 1. Assume i = 1. By the Release
Rule, S1,j is not scheduled before J1,j’s release. By Def. 3,
J1,j is ready at or after its release until its completion. Thus,
J1,j is either ready or complete at time t, implying i �= 1.

Now, since Ji,j is not ready at time t and i �= 1, by Def. 3,
a job in dep(Ji,j) is incomplete at time t. Let Jk,j ∈ dep(Ji,j)
be an incomplete job with the maximum number of nodes in
the path from τk to τi. If k = 1 holds, then by the Release
Rule, both Sk,j and Jk,j are released before time t. Thus, by
Def. 3, Jk,j is ready at time t. Otherwise, if k > 1, then since
the number of nodes in the path from τk to τi is maximal,
any job J�,j with τ� ∈ anc(τk) is complete at time t. Thus,

by Def. 3, Jk,j is ready at time t.

Lemma 2. If Si,j is scheduled at time t, but Ji,j is not ready
at time t, then a job Jk,j ∈ dep(Ji,j) is scheduled at time t.

Proof. By Lem. 1, there is a job Jk,j ∈ dep(Ji,j) that is
ready at time t. By Rules B2.1 and B2.2, some such job Jk,j
is scheduled on either Si,j or some other server job.

Progress and job selection policies. Using Rule B2.1, jobs
in Ji,j(t) (upon which Ji,j depends) are deliberately given
priority to execute on Si,j over jobs in J (t) \ Ji,j(t). This
ensures that a job Ji,j waiting on jobs in dep(Ji,j) is making
progress towards its completion. Also, as discussed later in
Sec. IV, to analytically account for the worst-case scenario,
Ji,j must pessimistically assume that only its reservation Si,j

can allow Ji,j to make progress. As a result, the method to
select incomplete jobs from Ji,j(t) and J (t) in Rules B2.1
and B2.2, respectively, only affects average-case performance
and does not impact analytical DAG failure-rate bounds.

C. Slack Reallocation

By the job allocation rules above, a server job Si,j does not
execute any job after Ji,j completes execution, i.e., the slack
produced by an underrunning job is not used. Reclaiming such
slack helps to avoid overruns by other jobs. We now propose
slack-reallocation policies to utilize unused slack.

To take advantage of slack reallocation in our drop-rate
analysis, we prioritize jobs of successor nodes when an
underruning job’s slack is reallocated. For each node τi, we
select a node τk ∈ succ(τi) as a preferred successor, denoted
as pref (τi). pref (τi) is determined offline, as discussed later.
We define a preferred successor chain of τi as follows.

Def. 4. (Preferred Successor Chain.) The preferred successor
chain pchain(τi) of τi is a sequence of tasks (v1, v2, · · · , vk)
such that v1 = τi and for any 1 ≤ j < k, vj+1 = pref (vj).

Slack reallocation rules. Let Si,j be a server job scheduled at
time t and suppose Ji,j is complete at time t. Let J (t) denote
the set of overrunning jobs that are not complete at time t and
Jr(t) be the set of ready jobs at time t. Jobs are executed on
Si,j according to the following rules.
H1 If there is a ready but not scheduled job Jk,� such that

τk ∈ pchain(τi), then execute Jk,� in Si,j .
H2 Otherwise, select a job (if any) via the following rules.

H2.1 If an unscheduled job in J (t) exists at time t, then
select such a job Jk,� ∈ J (t) to execute on Si,j .

H2.2 Else, if an unscheduled job in Jr(t) exists at time t,
then select such a job Jk,� ∈ Jr(t) to execute on Si,j .

Similar to Rules B2.1 and B2.2, when a job is selected by
rules H2.1 and H2.2, it is immediately marked as scheduled
to prevent a possible race condition.

Ex. 2 (Cont’d). Fig. 4(c) shows a schedule of τ2, τ3, and τ5
of G in Fig. 4(a). At time 7, J3,1 completes execution and
produces 2.0 units of slack. Since both J2,1 and J3,1 are
complete at time 7, J4,1 and J5,1 are released at time 7.
Assume that τ5 and τ6 are preferred successors of τ3 and

30



Algorithm 1 Procedure for assigning preferred successors.
Variables:

O : An indexing policy
1: procedure PREFSUCC(G, O)
2: Index nodes of G according to policy O
3: for i ∈ {1, 2, · · · , n} do
4: for τj ∈ pred(τi) do
5: if pref (τj ) = NULL then
6: pref(τj) := τi

τ5, respectively. Therefore, pchain(τ3) = (τ5, τ6). Since J5,1
is ready at time 7, it is executed on S3,1 at time 7 by Rule H1.

Determining preferred successors. Unlike the job selection
policy of Rules B2.1 and B2.2, the method of determining a
node’s preferred successor allows us to guarantee the progress
of certain jobs in the system, thereby improving a DAG’s
analytical drop rate. To set each node’s preferred successor,
we use the method PREFSUCC in Alg. 1. PREFSUCC first
indexes the nodes according to a specified policy (line 2).
We consider three node-indexing policies: (i) random, (ii)

minimum indegree first, and (iii) maximum outdegree first.
Intuitively, minimum degree first attempts to minimize the
number of nodes sharing a preferred successor, better balanc-
ing the distribution of slack. In contrast, maximum outdegree
first prioritizes nodes in the congested parts of a DAG. After
indexing, PREFSUCC iteratively considers a task τi and assigns
τi as the preferred successor of all its predecessor nodes that
do not have any preferred successor yet (lines 3–6).

D. Aborting a DAG Invocation

Even with budget- and slack-reallocation, DAG invocations
may need to be aborted to maintain schedulability. We abort
a DAG invocation if its sink node’s reservation budget is
exhausted but the DAG invocation has incomplete jobs.

Let R be a response-time bound of G under any scheduling
algorithm A. By the Release Rule, when scheduled by A,
the difference between Sn,j’s completion and S1,j’s release
is at most R time units. Thus, response times of non-aborted
invocations of G are entirely dependent on the response-time
bound of the reservation scheduler.

IV. DROP-RATE ANALYSIS

In this section, we analyze the probability that any invoca-
tion of a DAG of interest G is dropped. Note that Rules B1–
B2.2 and H1–H2.2 only pertain to a single DAG, and by
assumption, the employed scheduler ensures bounded DAG
response times at the server level. Thus, a given DAG’s drop
rate does not depend on the scheduling, budgeting, or drop rate
of any other DAG. In our analysis, we assume the following.

A1. The per-node pWCETs ek in G are mutually independent.

DAG abort condition. As stated previously, when some
job Jn,j of the sink node τn overruns its budget, the jth

DAG invocation is aborted. Unfortunately, the exact conditions
under which Jn,j overruns are complicated by the fact that
overrunning jobs can delay the execution of other jobs.

τ3

τ4

S2

5 10 15

τ1

τ2 τ3

τ4

(a) (b)

Time

S4

τ2

S3

� ��

J4,1

S4,1

J3,1

S3,1

J2,1

S2,1 Release

Deadline

Completion

Overrun

Server execution

Node execution

Fig. 5: (a) A DAG G and (b) a schedule of G.

Ex. 3. Consider the DAG G in Fig. 5, which executes on
m = 2 processors. At times 9 and 10, J2,1 and J3,1 overrun
the budget of S2,1 and S3,1 by 1.0 time unit, respectively. Due
to Rule B2.1, S4,1 schedules J2,1 at time 10 and executes it to
completion. Then S4,1 schedules J3,1 at time 11, which also
executes to completion before J4,1 becomes ready and begins
execution in S4,1 at time 12.

In Ex. 3, despite the execution time of J4,1, e4 = 3, being
smaller than the server budget, C4 = 4, J4,1 cannot complete
by time 14 when S4,1 exhausts its budget, triggering a DAG
abort. This is because when S4,1 is first scheduled, J4,1 and
two jobs on which J4,1 depends, J2,1 and J3,1, have a total
remaining execution time of 5.0 units. This value, which we
call the demand of τ4, exceeds C4, so J4,1 overruns its budget.

Def. 5. (Demand.) The demand of a node τk is represented by
the nonnegative RV βk. On DAG G’s jth invocation, βk equals
the total remaining execution time of all jobs in dep(Jk,j) ∪
{Jk,j} when Sk,j is first scheduled.

As seen in Ex. 3, when βn > Cn holds for the sink node τn,
Sn,j does not have sufficient budget to complete all jobs in
dep(Jn,j) ∪ {Jn,j}. Thus, Jn,j overruns only when βn > Cn

holds, making P (βn > Cn) an upper bound on the probability
of aborting an invocation of G.

Upper-bounding demand. Unfortunately, it may be difficult
to obtain the exact demand of a node. Thus, for each node τk,
we want to find a RV β+

k such that β+
k ≥0 βk. Recall that

β+
k ≥0 βk implies β+

k ≥1 βk, thus computing P (β+
n > Cn)

will allow us to upper-bound P (βn > Cn), or the probability
of aborting G.

Base case. We begin finding the PDF of β+
n by analyzing the

PDF of β+
1 for the source node τ1. Unlike other nodes in G,

the source node has no predecessors. Therefore dep(J1,j) ∪
{J1,j} = {J1,j}. By Def. 5, we obtain β1 = e1. This leads to

Observation 1. For the source node τ1, β+
1 = e1 satisfies

β+
1 ≥0 β1.

Using Obs. 1 as the base case, we proceed to compute β+
k

for each node τk by structurally inducting through the graph.
First, in Sec. IV-A, we consider the effect of slack reallocation
on β+

k . Second, in Sec. IV-B, we consider the effect of overrun
management on β+

k . Third, in Sec. IV-C, we combine the
effect of slack reallocation and overrun management and give
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a method to compute an upper bound on the DAG drop rate.
Finally, in Sec. IV-D, we give a more practical alternative
method for computing such an upper bound.

A. Accounting for Slack Reallocation

In this subsection, we examine how slack reallocation
affects the relation between the demand of a node τk and the
demand of its predecessor nodes. To quantify this relationship,
we first define the “slack” of a node.

Def. 6. (Slack.) Node τi’s slack is given by the nonnegative RV
qi. On any jth invocation of DAG G, the observed value of qi
is equal to the remaining budget of Si,j when Ji,j completes.

Intuitively, the slack of a node τi indicates “how much” jobs
of τi underrun its budget. Thus, computing a lower bound of
qi allows us to upper-bound how much slack reallocation can
lower the demand of successor nodes of τi. In the following
lemma, we lower-bound qi by a function of τi’s demand β+

i .

Lemma 3. For each node τi, qi ≥0 max(0, Ci − β+
i ).

Proof. Let t0 be the time when a server job Si,j is first
scheduled, and let t1 be the later of t0 and the time when
Ji,j completes. According to Def. 6, this lemma states that at
t1, the remaining budget of Si,j is at least max(0, Ci − β+

i ).
Assume to the contrary that (A) this remaining budget is less
than max(0, Ci − β+

i ) at t1. We consider two cases.

Case 1. β+
i > Ci. Asm. (A) implies that at t1, Si,j’s remaining

budget is less than max(0, Ci − β+
i ) = 0. However, budgets

are always non-negative. Contradiction.

Case 2. β+
i ≤ Ci. By Asm. (A), at t1, Si,j’s remaining budget

is less than Ci − β+
i ≥ 0. According to the Replenishment

Rule, the remaining budget of Si,j is Ci at t0. Thus, by the
Consumption Rule, Si,j is scheduled for more than β+

i time
units between t0 and t1. By Def. 5, the total remaining execu-
tion time of jobs in dep(Ji,j)∪{Ji,j} at t0 is βi, which is state-
wise at most β+

i . Thus, there must exist some time t ∈ [t0, t1)
when Si,j is scheduled, but a job in dep(Ji,j)∪ {Ji,j} is not.
However, if Ji,j is not ready at t, some job in dep(Ji,j) must
be scheduled due to Lem. 2, and if Ji,j is ready at t, then Ji,j
must be scheduled due to Rule B1. Contradiction.

When a node τi has positive slack, some of this slack can
be used to schedule jobs of its preferred successor node τk via
Rule H1. Consider the example below, illustrated by Fig. 6.

Ex. 4. Nodes of a DAG G are scheduled on two processors.
In G, τ5 is assigned as the preferred successor of both τ2 and
τ3 by PREFSUCC. J2,1 (resp., J3,1) has 2.0 (resp., 1.0) units
of slack. At time 10, both J2,1 and J3,1 are complete. Thus,
J5,1 is ready at time 10. Since τ5 = pref (τ2) = pref (τ3), S3,1

uses Rule H1 to schedule J5,1 from time 10 to time 11.

In Ex. 4, we see that despite q2 = 2, due to the later
completion time of J3,1, J5,1 is only able to be scheduled by
Rule H1 for the minimum of the two slacks q2 and q3. Thus,
β5 = e5 − q3 = 3− 1 = 2. In contrast, J4,1, whose node τ4 is
not the preferred successor of τ2 and τ3, cannot be scheduled
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Fig. 6: (a) A DAG G (dashed edges indicate preferred succes-
sors) and (b) a schedule of G.

by Rule H2.1 due to the presence of J5,1. From this example,
we see that only the preferred successor is guaranteed to be
scheduled during the slack of a node. Furthermore, because our
method is scheduler agnostic, we must account for the worst
case where only the smallest slack of the predecessor nodes of
a preferred successor node τk may be usable in decreasing its
demand. This discussion leads us to the following definition.

Def. 7. (Usable Slack.) RV Ψk denotes the usable slack of τk.
If τk is the preferred successor of each τi ∈ pred(τk), then
Ψk=min({max(0, Ci−β+

i )|τi∈pred(τk)}). Otherwise, Ψk=0.

Using Def. 7, we proceed to upper-bound βk using a
function of β+

i of each predecessor node τi of τk.

Lemma 4. If Ψk > 0, then βk ≤0 ek−min(ek,Ψk).

Proof. Suppose job J�,j completed the latest among
pred(Jk,j). Let t0 be the time J�,j completes, and let t1 be
the time S�,j completes. Since J�,j completes at t0, by Def. 1,
all jobs in dep(Jk,j) complete by time t0.

Claim 1. S�,j has at least Ψk > 0 time units of remaining
budget at t0.

Proof. By Def. 7, Ψk is state-wise at most max(0, C� − β+
� ).

Thus, given Ψk > 0, we have max(0, C�−β+
� ) ≥0 Ψk > 0, so

by Lem. 3, q� ≥0 Ψk. Hence, the claim is true by Def. 6.

By Clm. 1, S�,j has positive budget remaining at t0. Thus,
by the definition of t1, t1 ≥ t0.

Claim 2. Jk,j is scheduled for at least min(ek,Ψk) time units
in [t0, t1).

Proof. All jobs in dep(Jk,j) are complete at t0, so Jk,j is
ready during [t0, t1) unless it completes. By Clm. 1 and the
Consumption Rule, S�,j must be scheduled for at least Ψk

time units during [t0, t1) to exhaust its budget at t1, so by
Rule H1, Jk,j is scheduled for at least min(ek,Ψk) time units
during [t0, t1).

Using the above two claims, all jobs in dep(Jk,j) are com-
plete, and Jk,j has already executed for at least min(ek,Ψk)

time units by t1. Because of the Release Rule, Sk,j can
only be scheduled after t1, resulting in the total remaining
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execution time of jobs in dep(Jk,j) ∪ {Jk,j} being at most
ek −min(ek,Ψk). By Def. 5, βk ≤0 ek −min(ek,Ψk)

By Lem. 4, β+
k = ek −min(ek,Ψk) is a valid assignment

for β+
k that satisfies β+

k ≥0 βk. This assignment establishes a
relation between β+

k and β+
i for τi ∈ pred(τk) that accounts

for slack reallocation.

B. Accounting for Overruns

In this subsection, we examine how job overruns affect the
relation between the demand of a node τk and the demand of
the predecessor nodes of τk. To quantify this relationship, we
first define the overrun of a node.

Def. 8. (Overrun.) The overrun of a node τi is represented by
the nonnegative RV oi. On any jth invocation of DAG G, the
observed value of oi equals the total remaining execution time
of all jobs in dep(Ji,j)∪{Ji,j} when Si,j exhausts its budget.

State-wise upper-bounding the overrun of τi allows us to
place an upper bound on the demand of successor nodes of
τi. The next lemma upper-bounds oi by a function of β+

i .

Lemma 5. For each node τi, oi ≤0 max(0, β+
i − Ci).

Proof. Suppose Si,j is first scheduled at t0 and exhausts its
budget at t1. According to Def. 8, the lemma states that the
total remaining execution time of all jobs in dep(Ji,j)∪{Ji,j}
at t1 is at most max(0, β+

i − Ci). Assume to the contrary
that (B) their total remaining execution time is more than
max(0, β+

i − Ci) at t1. We first prove the following.

Claim 3. If a job in dep(Ji,j)∪{Ji,j} is incomplete at time t1,
then the jobs in dep(Ji,j) ∪ {Ji,j} are scheduled for at least
Ci time units during [t0, t1) by the system.

Proof. By Def. 3, Ji,j is ready only after all jobs in dep(Ji,j)
are complete (note that dep(Ji,j) = ∅ if i = 1). Hence, by
Lem. 2 and Rule B1, jobs in dep(Ji,j)∪ {Ji,j} are scheduled
whenever Si,j is scheduled. Thus, these jobs execute for at
least Ci time units during [t0, t1).

We now prove the lemma. By Asm. (B), there are incom-
plete jobs in dep(Ji,j) ∪ {Ji,j} at time t1. By Clm. 3, jobs
in dep(Ji,j)∪ {Ji,j} execute for at least Ci time units during
[t0, t1). Thus, by Def. 5, their total remaining execution time
at time t1 is at most βi − Ci, which is state-wise at most
max(0, β+

i − Ci) at time t1, contradicting Asm. (B).

In Ex. 3, we see that β4 = o2 + o3 + e4. Generalizing
from this example, in the worst case, the total overrun of all
predecessor nodes of τk increases the demand of τk.

Def. 9. (Total Overrun). The total overrun of all predecessor
nodes of τk, denoted by the nonnegative RV Φk, is given by
Φk =

∑
τi∈pred(τk)

max(0, β+
i − Ci).

Using the notion of total overrun, we now upper-bound βk

as a function of β+
i for each predecessor node τi of τk.

Lemma 6. For each node τk, βk ≤0 ek +Φk.

Proof. By Def. 8, for each job Ji,j ∈ dep(Jk,j), the remaining
execution time of Ji,j and the jobs on which Ji,j depends
when Ji,j’s server job Si,j exhausts its budget is oi. Since the
Release Rule states that Sk,j can begin execution when each
such Si,j exhausts its budget, the total remaining execution
of jobs in dep(Jk,j) when Sk,j is first scheduled is at most∑

τi∈pred(τk)
oi. By Lem. 5, each oi term is state-wise at most

max(0, β+
i −Ci), so this total remaining execution is at most

Φk by Def. 9. Because ek is the execution time of Jk,j , when
Sk,j is first scheduled, by Def. 5, we have βk ≤0 ek+Φk.

With Lem. 6, when jobs overrun their budget, β+
k = ek+Φk

becomes a valid assignment for β+
k that satisfies β+

k ≥0 βk.
This assignment establishes a relation between β+

k and β+
i for

τi ∈ pred(τk) that accounts for budget overruns.

C. Computing the Drop Rate

In the previous two subsections, we established a relation
between β+

k and β+
i for each τi ∈ pred(τk) that accounts for

slack reallocation and overruns, respectively. In this subsec-
tion, we unify the results from the previous subsections and
compute an upper bound on the drop rate of DAG G. To aid
in this, we first define the RV Δk for each node τk as follows.

Δk =

{
−Ψk if Ψk > 0

Φk otherwise
(1)

We then use Δk to state-wise bound the value of βk.

Theorem 1. For each node τk, βk ≤0 max(0,Δk + ek).

Proof. We examine the two cases of (1).

Case 1. Ψk > 0. By Lem. 4, βk ≤0 ek − min(Ψk, ek) =

max(ek−ek, ek−Ψk) = max(0,−Ψk+ek) = max(0,Δk+ek).

Case 2. Ψk ≤ 0. By Lem. 6, we have βk ≤0 ek + Φk ≤0

max(0, ek +Φk) = max(0,Δk + ek).

Drop rate computation. Thm. 1 gives us a state-wise upper
bound on βk for each node τk. Therefore, max(0,Δk + ek)
is a valid assignment of β+

k for each node τk that satisfies
β+
k ≥0 βk. Using this assignment, each β+

k can be expanded
into an expression of ek and Δk. Additionally, using (1) and
Defs. 7 and 9, Δk can be written as an expression of β+

i for
each τi ∈ pred(τk). Thus, by expanding out the expressions
of β+

i for each τi ∈ anc(τk) in a similar fashion, we have the
following observation.
Observation 2. Let Ek = {ei | τi ∈ anc(τk)} ∪ ek. β+

k for
each τk can be expressed as a function of Ek. We denote that
function as β+

k = Fk(Ek).

To compute an upper bound on the drop rate of G,
P (β+

n > Cn), we can then substitute β+
n with Fn(En).

To avoid the difficult process of computing the PDF of a
function of multiple RVs, we observe that Fn(En) is equal
to Fn({x1, x2, ..., xn}) when ei = xi for each ei ∈ En. In
other words, by conditioning P (β+

n > Cn) on ei for each
node τi, we have the following.
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Observation 3.

P (β+
n > Cn | ∀i : ei = xi) = P (Fn({x1, x2, ...}) > Cn)

(2)
Now, applying to Obs. 3 the law of total probability, which

states that P (A) =
∑∞

i=−∞ P (A | X = i)P (X = i) for some
event A and a RV X , and Asm. A1, we have the following.

Theorem 2. Let Ii be the set containing all values of ei where
P (ei = xi) �= 0. The drop rate of G, P (β+

n > Cn), is

∑
x1∈I1,x2∈I2,...

[
P (Fn({x1, x2, ...}) > Cn)

n∏
i=1

P (ei = xi)

]
.

(3)

Runtime issues. Unfortunately, computing P (β+
n > Cn)

using (3) is computationally expensive. This is because there
are

∏n
i=1 |Ii| terms in the summation, and each term requires

the multiplication of n more terms. This results in a time
complexity of O(max(|Ii| : i = 1...n)n+1

) where n is the
number of nodes in G. We therefore explore an alternative
method to compute P (β+

n > Cn).

D. Alternate Drop Rate Computation
In this subsection, we present an alternative drop rate

computation method. Fn is obtained by iteratively expanding
β+
k for each τk into max(0,Δk + ek), and then using (1)

and Defs. 7 and 9 to expand each Δk. This process to obtain
Fn requires applying the following primitive operations: (i)

adding a constant to a RV; (ii) negating a RV; (iii) adding two
RVs; (iv) determining the maximum between 0 and a RV; (v)

determining the minimum of multiple RVs; and (vi) computing
Δk from Φk and Ψk. In the following Props. 1 to 5, we show
how the above operations transform the PDFs of their input
RVs into the PDFs of their output RVs. After applying the
transforms accordingly, we can obtain the PDF of β+

n .
Props. 1 and 2 are self-evident, Props. 3 is a well-known

convolution property, and we give proofs for Props. 4 and 5

Property 1. For a RV X and a constant k, the PDF of X+k
is given by fX+k(x) = fX(x− k).

Property 2. For a RV X , the PDF of −X is given by
f−X(x) = fX(−x).

Property 3. For two independent RVs X and Y , the PDF
of X + Y is given by the convolution of fX and fY , where
fX+Y (x) =

∑∞
i=−∞ fX(i− x)fY (i).

Property 4. For a RV X , the PDF of max(0, X) is given by

fmax(0,X)(x) =

⎧⎪⎨
⎪⎩
0 x < 0

FX(0) x = 0

fX(x) x > 0.

Proof. We examine the three possible cases of fmax(0,X)(x).

Case 1. x < 0. max(0, X) cannot be negative. Therefore,
P (max(0, X) = x) = 0.

Case 2. x = 0. This occurs when X ≤ 0. Thus,
P (max(0, X) = 0) = P (X ≤ 0).

Case 3. x > 0. Here, max(0, X) = X , so P (max(0, X) =

x) = P (X = x).

Claim 4. For a set of mutually independent RVs X =

{X1, X2, ..., Xn}, the PDF of min(X) is given by
fmin(X)(x) = Fmin(X)(x− 1)− Fmin(X)(x), where

Fmin(X)(x) =
∏

Xi∈X

FXi(x). (4)

Proof. Consider the event where min(X) > x for some
value of x. This occurs when each Xi ∈ X is greater than
x. Thus, we have P (min(X) > x) = P

(∧
Xi∈X Xi > x

)
.

Because the RVs in X are independent, P
(∧

Xi∈X Xi > x
)
=∏

Xi∈X P (Xi > x) =
∏

Xi∈X FXi
(x).

To derive how (1) transforms the PDFs of Ψk and Φk to
Δk, we first prove the following.

Lemma 7. For each node τk, the events Ψk > 0 and Φk > 0

are mutually exclusive.

Proof. If Φk > 0, then by Def. 9, β+
i −Ci > 0 holds for some

τi ∈ pred(τk). Hence, Ci − β+
i < 0 holds, and by Def. 7,

Ψk = 0. On the other hand, if Ψk > 0, then by Def. 7, for all
τi ∈ pred(τk), Ci−β+

i > 0 holds, which implies β+
i −Ci < 0

holds. Thus, by Def. 9, Φk = 0.

Property 5. The PDF of Δk for each node τk is given by

fΔk
(x) =

⎧⎪⎨
⎪⎩
fΨk

(−x) x < 0

1− FΨk
(0)− FΦk

(0) x = 0

fΦk
(x) x > 0.

(5)

Proof. We consider the three cases in (5) separately.

Case 1. x < 0. Note that, by Def. 9, Φk ≥ 0. Also, from (1),
either Δk = Φk or Δk = −Ψk. Because Φk ≥ 0, Case 1 can
only occur when Δk = −Ψk. Therefore, (5) holds by Clm. 2.

Case 2. x = 0. By Defs. 7 and 9, both Φk and Ψk are non-
negative. By (1), x = 0 only occurs when Φk = 0 and Ψk = 0.
Therefore, fΔk

(0) = P (Φk = 0,Ψk = 0) = 1 − P (Ψk >
0 or Φk > 0). By Lem. 7, events Ψk > 0 and Φk > 0 are
mutually exclusive. Thus, we have P (Ψk > 0 or Φk > 0) =

P (Ψk > 0) + P (Φk > 0) = FΨk
(0) + FΦk

(0). Therefore,
P (Φk = 0,Ψk = 0) = 1− (FΨk

(0) + FΦk
(0)).

Case 3. x > 0. According to (1), this case occurs when Δk =

Φk. Thus fΔk
(x) = fΦk

(x).

Starting with β+
1 = e1 and using Props. 1–5 to apply the

PDF transformation due to each primitive operation in Fn, we
can obtain the PDF of β+

n . Using this PDF will allow us to
upper-bound the drop rate of G.

Undesired independence assumption. Unfortunately, the in-
dependence requirements of Props. 3 and 4 present an issue.
Computing Φk (resp., Ψk) as per Def. 9 (resp., Def. 7)
requires applying Prop. 3 (resp., Prop. 4) to compute the RV
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addition (resp., the min function). This requires β+
i for each

τi ∈ pred(τk) to be mutually independent. However, for any
τi and τj in pred(τk), β+

i and β+
j may not be independent.

This is a direct consequence of Obs. 2—τi and τj can have
a common ancestor τ�, in which case both β+

i and β+
j are

functions of e�. Using Props. 3 and 4 to compute the PDFs
of Φk and Ψk for each node τk may not result in the true
PDFs of Φk and Ψk, which are needed to compute the correct
PDF of β+

n . Hence, we proceed to bound the PDFs of Ψk and
Φk and show that such bounds can be used to upper-bound
P (β+

n > Cn).

Drop rate computation—upper bound. To facilitate upper-
bounding P (β+

n > Cn), we introduce a new RV γk for each
node τk. We let γ1 = e1 for the source node, and proceed to
iteratively define the PDF of γk for each node τk as a function
of the PDFs of γi for τi ∈ pred(τk) using bounds on the PDFs
of Ψk and Φk. If we show that γk ≥1 β+

k , then P (γn > Cn)

upper-bounds P (β+
n > Cn).

We prove γk ≥1 β+
k through induction. For the base case,

γ1 ≥1 β+
1 is trivially true since γ1 = β+

1 = e1. For the
induction step, we assume the following induction hypothesis.
IH For non-source node τk, γi ≥1 β+

i holds for each node
τi ∈ pred(τk).

For the rest of this section, we give the iterative definition
of γk, and show that given IH, γk ≥1 β+

k holds. This then
completes our proof of the induction step. To aid in our proof,
we first give properties regarding several operations used to
iteratively define γk. These properties follow directly from
the closure properties of first-degree stochastic ordering under
non-decreasing and non-increasing functions [37].

Property 6. For RVs X , Y and a constant k, if X ≥1 Y ,
then X + k ≥1 Y + k.

Property 7. For RVs X and Y , if X ≥1 Y , then
max(0, X) ≥1 max(0, Y ).

Property 8. For RVs X and Y , if X ≥1 Y , then −X ≤1 −Y .

Lower-bounding Ψk. To iteratively define γk, we must first
lower-bound Ψk. Let the RV Ψ

−
k first-degree lower bound Ψk

for each node τk. The PDF of Ψ
−
k is characterized by the

following. If τk is not the preferred successor of each τi ∈
pred(τk), then Ψ

−
k is a RV with PDF

fΨ−
k
(x) =

{
1 x = 0

0 otherwise.
(6)

If τk is the preferred successor of each τi ∈ pred(τk), then
Ψ

−
k is a RV with PDF fΨ−

k
(x) = FΨ−

k
(x − 1) − FΨ−

k
(x),

where

FΨ−
k
(x) =

∏
τi∈pred(τk)

Fmax(0,Ci−γi)(x). (7)

The next two lemmas prove that Ψ−
k ≤1 Ψk.

Lemma 8. If τk is not the preferred successor of each τi ∈
pred(τk), then Ψ

−
k ≤1 Ψk.

Proof. Since τk is not the preferred successor, Ψk = 0 holds
by Def. 7. Therefore, P (Ψk = 0) = 1. By (6), P (Ψ

−
k = 0) =

1 holds as well. The lemma follows.

To prove that Ψ−
k ≤1 Ψk when τk is the preferred successor,

we require that P (max(0, Ci−β+
i ) > x) and P (max(0, Cj−

β+
j ) > x) are not negatively correlated. In other words:

Lemma 9. For τi and τj , both in pred(τk), P (max(0, Ci −
β+
i ) > x)P (max(0, Cj − β+

j ) > x) ≤ P (max(0, Ci − β+
i ) >

x,max(0, Cj − β+
j ) > x).

The proof is included in an online appendix [39]. A loose
justification is that, as functions of β+

i (resp. β+
j ), max(0, Ci−

β+
i ) (resp., max(0, Cj − β+

j )) can be expressed as functions
of the pWCETs of their common ancestors. Due to Asm. A1,
these pWCETs are independent, so the FKG Inequality [18]
can be applied to get Lem. 9.

Lemma 10. If τk is the preferred successor of each τi ∈
pred(τk), then Ψ

−
k ≤1 Ψk.

Proof. By Def. 7, Ψk = min({max(0, Ci − β+
i ) | τi ∈

pred(τk)}), so Ψk > x holds only if max(0, Ci − β+
i ) > x

holds for each τi ∈ pred(τk). Thus, P (Ψk > x) =

P
(∧

τi∈pred(τk)
max(0, Ci − β+

i ) > x
)

.
By Lem. 9, we have∏
τi∈pred(τk)

Fmax(0,Ci−β+
i )(x) ≤

P

⎛
⎝ ∧

τi∈pred(τk)

max(0, Ci − β+
i ) > x

⎞
⎠ . (8)

We now prove the lemma by establishing a relation between
each term in the rhs of (7) and a corresponding term in the
lhs of (8). By IH, we have γi ≥1 β+

i . By Prop. 8, we have
−γi ≤1 −β+

i . Applying Prop. 6, we get Ci − γi ≤1 Ci − β+
i .

Finally, by Prop. 7, we have max(0, Ci−γi) ≤1 max(0, Ci−
β+
i ). Therefore, each term in the rhs of (7) is at most the

corresponding term in the lhs of (8). Thus, the lhs of (7),
P (Ψ

−
k > x), is at most the rhs of (8). Since the rhs of (8) is

equal to P (Ψk > x), we have Ψ
−
k ≤1 Ψk.

Upper-bounding Φk. Here, we give an upper bound Φk by
introducing a RV Φ

+
k for each node τk. We will later use Φk

to define γk. Letting μX denote the mean of RV X , the PDF
of Φ+

k is as follows.

fΦ+
k
(x) = FΦ+

k
(x− 1)− FΦ+

k
(x), (9)

where

FΦ+
k
(x) =⎧⎪⎪⎨

⎪⎪⎩
min

⎛
⎝FΨ−

k
(0),

1

x+ 1
·

∑
τi∈pred(τk)

μmax(0,γi−Ci)

⎞
⎠ x ≥ 0

1 x < 0.

(10)
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The following lemma proves that Φ+
k ≥1 Φk.

Lemma 11. For each node τk, Φ+
k ≥1 Φk.

Proof. We consider three cases based on the structure of
FΦ+

k
(x) in (10).

Case 1. x ≥ 0, and FΨ−
k
(0) is the smaller term in the min

function. Here, P (Φ
+
k > x) = P (Ψ

−
k ≤ 0) follows from (10)

(and the definitions of FΦ+
k
(x) and FΨ−

k
(0)). As the events

Φk > 0 and Ψk > 0 are mutually exclusive by Lem. 7, we
have Φk > 0 ⇒ Ψk ≤ 0. Therefore, P (Φk > 0) ≤ P (Ψk ≤
0). Thus, since x ≥ 0, we have P (Ψk ≤ 0) ≥ P (Φk >
0) ≥ P (Φk > x). Hence, because Lems. 8 and 10 imply
P (Ψ

−
k ≤ 0) ≥ P (Ψk ≤ 0), we have P (Φ

+
k > x) = P (Ψ

−
k ≤

0) ≥ P (Ψk ≤ 0) ≥ P (Φk > x). Thus, Φ+
k ≥1 Φk.

Case 2. x ≥ 0 and FΨ−
k
(0) is the larger term in the min func-

tion. Assume for a contradiction that for some x ≥ 0, P (Φ
+
k >

x) < P (Φk > x) holds. In this case, by the definition of
FΦ+

k
(x) in (10), we have 1

x+1 ·
∑

τi∈pred(τk)
μmax(0,γi−Ci) <

P (Φk > x). By IH, γi ≥1 β+
i holds for each τi ∈ pred(τk).

Then, by Props. 6 and 7, max(0, γi−Ci) ≥1 max(0, β+
i −Ci).

Hence, μmax(0,γi−Ci) ≥ μmax(0,β+
i −Ci)

. Therefore, 1
x+1 ·∑

τi∈pred(τk)
μmax(0,β+

i −Ci)
< P (Φk > x). Using Def. 9

and algebraic properties of the mean, we can rewrite this
inequality as μΦk

x+1 < P (Φk > x) = P (Φk ≥ x + 1),
which contradicts Markov’s inequality [20], which states that
μΦk

/(x+ 1) ≥ P (Φk ≥ x+ 1) for all values of x ≥ 0.

Case 3. x < 0. P (Φk > x) ≤ 1 is trivially true.

Iteratively defining γk and completing the induction step.

Here, we use Lems. 10 and 11 to compute the PDF of γk
and prove the validity of the induction step. To do so, we first
define a RV Δ

+
k with PDF

fΔ+
k
(x) =

⎧⎪⎪⎨
⎪⎪⎩
fΨ−

k
(−x) x < 0

1− FΨ−
k
(0)− FΦ+

k
(0) x = 0

fΦ+
k
(x) x > 0.

(11)

Lemma 12. For each node τk, Δ+
k ≥1 Δk.

Proof. Case 1. x > 0. In this case, by (11), P (Δ
+
k > x) =

P (Φ
+
k > x). However, by (5), P (Δk > x) = P (Φk > x).

Since Lem. 11 states that Φ+
k ≥1 Φk, we have Δ

+
k ≥1 Δk.

Case 2. x ≤ 0. In this case, Δ
+
k > x gives rise to three

possibilities: x < Δ
+
k < 0, or Δ

+
k = 0, or Δ

+
k > 0. By (11),

the probability of these three events are P (0 < Ψ
−
k < −x),

1− P (Ψ
−
k > 0)− P (Φ

+
k > 0), and P (Φ

+
k ≥ 1) respectively.

Thus, P (Δ
+
k > x) = P (0 < Ψ

−
k < −x) + 1 − P (Ψ

−
k >

0)−P (Φ
+
k > 0)+P (Φ

+
k ≥ 1). The first term on the rhs can be

rewritten as P (Ψ
−
k < −x)−P (Ψ

−
k ≤ 0), and P (Ψ

−
k ≤ 0) can

be rewritten as 1− P (Ψ
−
k > 0). Cancelling like terms yields

P (Δ
+
k > x) = P (Ψ

−
k < −x). Through similar reasoning,

P (Δk > x) = P (Ψk < −x) can be obtained from (5). It
follows from Lems. 8 and 10 that P (Ψ

−
k ≤ −x) ≥ P (Ψk ≤

−x) holds. Thus, Δ+
k ≥1 Δk.

Using Δ
+
k , we can finally give the definition of γk.

Def. 10. For each non-source node τk, γk = max(0,Δ+
k +ek).

The following property, exploited in the theorem below, is
a well-known closure property of stochastic orderings [37].

Property 9. Let X1 and X2 be independent RVs and Y1, Y2 be
another pair of independent RVs. If Y1 ≥1 X1 and Y2 ≥1 X2,
then Y1 + Y2 ≥ X1 +X2

Theorem 3. For each node τk, γk ≥1 β+
k .

Proof. By expanding out the expression of Δk using (1) and
Defs. 7 and 9, we see that Δk is expressed solely as a function
of ei for τi ∈ anc(τk). Hence, by Asm. A1, Δk and ek
are independent. Δ

+
k and ek can similarly be shown to be

independent by expanding Δ
+
k using (6), (7), (9), and (11).

Since Δ
+
k ≥1 Δk due to Lem. 12, and ek ≥1 ek is trivially

true, Δ+
k + ek ≥1 Δk + ek follows from Prop. 9. Thus, by

Prop. 7, max(0,Δ+
k +ek) ≥1 max(0,Δk+ek), which implies

γk ≥1 β+
k , by Def. 10 and the choice for β+

k (see Thm. 1).

Thm. 3 implies that P (γn > Cn) does indeed upper-bound
the DAG drop rate. We can compute this probability by starting
with the base case of γ1 = e1, and then inductively computing
the PDF of γi = max(0,Δ+

i + ei) for each non-source task
τi in the DAG. This can be done by using the PDF of γi for
each τi ∈ pred(τk) to first compute the PDFs of Ψ

−
k (resp.

Φ
+
k ) using (6) and (7) (resp. (9)). Ψ−

k and Φ
+
k can then be

used to compute the PDF of Δ
+
k using (11). Finally, γk can

be computed by taking the PDFs of Δ+
k and ek and applying

Props. 3 and 4 to obtain the PDF of γk = max(0,Δ+
k + ek).

V. EXPERIMENTAL EVALUATION

In this section, we experimentally compare the theoretical
and experimental DAG drop rates of our proposed budgeting
approach with the naı̈ve strategy of aborting a DAG when
just one of its nodes overruns its budget (as in [2]). These
comparisons were performed by examining randomly gener-
ated DAGs, with the experimental drop rate obtained from
a simulated four-core system using a G-EDF scheduler. In
these experiments, we sought to (i) assess how our approach
improves upon the naı̈ve method analytically, (ii) demonstrate
that our analytical bounds are correct, and (iii) determine the
best method for selecting preferred predecessors.

Random DAG generation. In order to generate an n-node
DAG G with a single source and sink, we first generated a
random DAG G′ with n − 2 nodes using the Erdős-Rényi
method [13]. Under this method, an edge is generated between
each τi and τj with a specified probability p, with the edge
directed from the lower-indexed task to the higher-indexed
one. Using G′, we then generated G by connecting a source
node to all nodes in G′ with indegree 0 and connecting all
nodes in G′ with outdegree 0 to a sink node.

Node parameter generation. For each DAG, we randomly
generated the parameters of each node τi. To determine the
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pWCET PDF for each τi, we assumed a type-1 Gumbel distri-
bution with a mean of 5.0ms and a standard deviation of 2.0.1

The reservation budget Ci was then set as the 99.9th percentile
value of the generated pWCET ei. Finally, the period T and
relative deadlines Di were set to a large value of (50n)ms

so that the DAG was trivially schedulable (our focus here is
dealing with node overruns, not ensuring schedulability).

Theoretical drop-rate evaluation. We evaluated the theo-
retical drop rate of each generated DAG using the analysis
presented in Sec. IV. Additionally, unless otherwise specified,
the drop rate was calculated from the upper-bounding method
discussed in Sec. IV-C to avoid unnecessary independence
assumptions and infeasible runtimes. This was then compared
to the theoretical drop rate of the same generated DAG using
the naı̈ve budget-management strategy. In the naı̈ve strategy,
a DAG invocation completes (is not aborted) only when no
node invocation overruns its budget. Therefore, since we set
Ci as the 99.9th percentile value of the generated pWCET, a
DAG invocation is dropped with probability 1− 0.999n.

Experimental drop-rate evaluation. We evaluated the exper-
imental drop rate of each generated DAG by simulating the
execution of each DAG over 10,000 invocations. We chose
to select the available job with the maximum number of out
edges as our job selection policy for Rules. B2.2, H2.1, and
H2.2. We did this to avoid scenarios where an overrunning
node blocks the execution of multiple subsequent jobs. For
schedules of both our proposed budget-management strategy
and the naı̈ve one, we calculated the experimental drop rate
from the percentage of dropped DAG invocations over the
10,000 simulated DAG invocations.

Experiment 1. In the first experiment, we generated 1,000
DAGs with n ranging from 50 to 500 and p = 0.05. Intuitively,
a low value of p indicates a low-density DAG, which better
represents real-world applications [17]. The results of this
experiment are plotted in Fig. 7(a). These results support the
following observation.

Observation 4. With p = 0.05, our approach resulted in
significantly lower drop rates both analytically and experi-
mentally compared to the naı̈ve approach at all DAG sizes.

Experiment 2. In this experiment, we generated 1,000 250-
node DAGs with p varying from 0.05 to 0.14. This was done
to explore the effectiveness of our techniques on denser DAGs.
The results of this experiment are plotted in Fig. 7(b). These
results support the following observations.

Observation 5. Our approach resulted in much lower exper-
imental drop rates than the naı̈ve approach for all p values.

The discrepancy between the analytical and experimental
drop rates was likely due to various sources of pessimism in
our drop-rate analysis. First, in Def. 9, we assumed that no
other reservations can help a job Jk complete jobs in dep(Jk).

1The Gumbel distribution is often used to represent measurement-based
probabilistic WCETs [14].

(a) Plot of drop rates vs. DAG size.

(b) Plot of drop rates vs. p.

Fig. 7: Plots for Exps. 1 and 2. Min, Random, and Max are the
three policies for assigning preferred successors (see Sec. III).
The suffix “T” (resp., “E”) indicates theoretical (resp., exper-
imental) drop rates. Both plots share the same legend.

Second, in Def. 7, we assumed that only a small amount of
slack can benefit the analysis. Third, we used the pessimistic
Markov Inequality to upper-bound the PDF of Φi.

Observation 6. Analytically, our approach resulted in signifi-
cantly lower drop rates for smaller values of p, but was worse
than the naı̈ve approach for larger p values.

This was likely because larger p values increase the like-
lihood of certain DAG ”features” (e.g., a node with multiple
predecessors) that present analysis difficulties. Such features
exacerbate the pessimism of Def. 9 and the Markov Inequality.

Observation 7. Using min degree to select preferred prede-
cessors yielded extremely poor theoretical drop rates.

This was likely because min degree discourages nodes
with many predecessors—nodes most affected by analysis
pessimism—from being able to benefit from slack reallocation.

Experiment 3. We ran an additional experiment to help
elucidate the value, and the price, of eliminating the pessimism
in using the Markov Inequality in Lem. 11. To this end, we
generated five DAGs with n = 7 and p = 0.1. The maxi-
mum observed drop rate for these graphs was 0.00552, and
the corresponding analytical drop-rate bound computed using
Thm. 2 (resp., the method in Sec. IV-D) was 0.00613 (resp.,
0.00698). However, using Thm. 2, computing these bounds
for all graphs took three days on an eight-core machine, while
using the method in Sec. IV-D, it took less than 1 second.
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VI. RELATED WORK

Prior DAG-related work has mostly focused on deriving
response-time bounds and schedulability tests assuming known
WCETs [1], [3], [4], [17], [23], [24], [27], [29], [33], [35],
[36], [41], [43]. Reservation-based DAG scheduling has been
considered in the context of federated scheduling where a
reservation is provided for an entire DAG invocation to meet
its deadline [5], [6], [26], [40]. However, this work assumes
that true WCETs are known. Prior work on overrun manage-
ment for real-time systems has focused on independent tasks
on uniprocessors [11], [19], [28] or multiprocessors [31], [34]
and mode switching in mixed-criticality systems [10], [12],
[25], [30]. Slack reallocation has also been considered for in-
dependent tasks in the context of mixed-criticality systems [7],
[16], [22], [32]. Recent work on time partitioning for graph-
based tasks that require accelerator access has considered
budget overruns of node invocations by aborting entire DAG
invocations [2].

VII. CONCLUSION

We have presented the first ever holistic budget-management
strategy for DAG-based task system. This strategy enables low
DAG drop rates in the presence of node-budget overruns, and
can reallocate budgets and slack within a DAG. We have also
given a probabilistic drop-rate analysis to analytically evaluate
our proposed approach. In experiments presented herein, our
work yielded significantly smaller theoretical drop rates for
less complex DAGs, and smaller experimental drop rates for
all DAGs, compared to the naı̈ve DAG budgeting approach.

In future work, we hope to reduce the analytical pessimism
for complex DAGs. We also plan to investigate the application-
level implications of occasionally needing to drop work. Addi-
tionally, we plan to devise budgeting techniques for DAGs that
share resources such as hardware accelerators, as commonly
used in the AI applications that motivate this work. Finally,
our task model allows successive invocations of the same
DAG to overlap in time arbitrarily. It would be interesting
to consider refinements of this model, such as the restricted
parallelism (rp) model [3], which allows a specifiable extent
of overlap. Our drop-rate analysis can be extended to apply to
the rp model via fairly mechanical adjustments, but some of
our probabilistic upper bounds are somewhat pessimistic under
that model, so further work is warranted. Note that for DAGs
subject to hard real-time schedulability tests that preclude the
overlap of successive DAG invocations, the issue of overlap
becomes irrelevant and our analysis is entirely applicable.
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