
Reducing Response-Time Bounds via Global Fixed
Preemption Point EDF-like Scheduling

Joseph Goh
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, USA
jgoh@cs.unc.edu

James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, USA

anderson@cs.unc.edu

Abstract—The fixed preemption point (FPP) model has been
studied as an alternative to fully preemptive and non-preemptive
models, as restricting preemptions to specific, predictable loca-
tions within a task’s execution can simplify overhead analysis
without disallowing preemptions entirely. Prior work has pro-
duced response-time analyses for global Earliest Deadline First
(G-EDF) scheduling under the FPP model. However, scheduling
decisions based solely on task deadlines may be too coarse-
grained and may not lead to the lowest response times. In this
paper, we propose global FPP EDF-like (G-FPP-EL) scheduling,
which assigns a priority point in time for each non-preemptive
region of a task. We adapt compliant-vector analysis (CVA) to
our model and present general response-time bounds for G-FPP-
EL schedulers. We then demonstrate that it is possible to design
G-FPP-EL schedulers acheiving response-time bounds optimal
under CVA and argue that such schedulers should replace global
FPP EDF.

Index Terms—Limited preemption models, fixed preemption
points, G-EDF-like scheduling, soft real-time, real-time systems

I. INTRODUCTION

Soft real-time (SRT) multiprocessor schedulers, which can
guarantee bounded deadline tardiness, have been demonstrated
to be useful for systems that do not require strict, hard real-
time (HRT) completion of tasks [1]. Prior work has pro-
vided tardiness bounds for specific SRT schedulers including
the global earliest deadline first (G-EDF) scheduler [2]. In
[3], Erickson et al. proposed a linear-programming technique
for designing G-EDF-like (GEL) schedulers such that the
scheduler’s parameters are optimized for reduced tardiness
bounds. Using their technique, one may determine the optimal
placement of priority points (PPs), which take the place of
deadlines in scheduling decisions.

However, fully preemptive schedulers, including GEL
schedulers, allow for frequent preemption of running tasks,
introducing additional overheads that must be accounted for.
These overheads can complicate timing analysis, resulting in
worst-case execution time (WCET) estimates that are overly
pessimistic. Non-preemptive schedulers, on the other hand,
incur no such overheads but allow for long periods of priority
inversions resulting in increased tardiness bounds.

Work was supported by NSF grants CPS 1837337, CPS 2038855, and
CPS 2038960, ARO grant W911NF-20-1-0237, and ONR grant N00014-20-
1-2698.

To address these concerns, limited preemptive scheduling
techniques have been proposed as a method to balance the ben-
efits and drawbacks of fully preemptive and non-preemptive
scheduling [4], [5]. One such approach is the fixed preemption
point model, wherein preemptions are limited to specific points
in each task’s execution. While G-EDF scheduling under this
model has been previously explored [6], [7], scheduling based
solely on deadlines may not acheive the lowest response-
time bounds, and further optimization may be possible by
prioritizing each non-preemptive section of a task individually.

In this paper, we propose global fixed preemption point
EDF-like (G-FPP-EL) scheduling, which utilizes the fixed
preemption-point model while updating PPs of executing tasks
at their preemption points. We present general response-
time analysis of G-FPP-EL schedulers, which can also model
global fixed preemption point EDF (G-FPP-EDF) and global
non-preemptive EDF (G-NP-EDF). By adapting the linear-
programming technique of [3], we demonstrate it is possible
to assign PPs such that we obtain lower response-time bounds
than G-FPP-EDF. We argue that such G-FPP-EL schedulers
designed in such a way should replace G-FPP-EDF.

A. Related Work

Leontyev and Anderson provide general analysis for SRT
scheduling on multiprocessors in [2]. They observe that
scheduling priorities for many algorithms, including G-EDF,
can be modeled by assigning a priority point (PP) in time, with
the scheduler choosing to schedule work with the earliest PP.
For instance, G-EDF may be modeled by setting each job’s
PP equal to its deadline.

Using the technique of compliant-vector analysis (CVA),
first proposed in [8], Erickson et al. analyze lateness, defined
as the difference between a job’s deadline and completion
time, of arbitrary GEL schedulers. They then present the global
Fair Lateness (G-FL) scheduler, which provides the smallest
lateness bounds of any GEL scheduler under CVA [3].

Erickson et al. further observe that the parameters that define
a given GEL scheduler may be used to formulate a linear
program which not only calculates response-time bounds but
can also select PPs acheiving optimal bounds under CVA.
They observe that various properties, such as average lateness

and proportional lateness bounds, may also be minimized by
selecting scheduler parameters using this technique.

The limited preemptive model was first proposed by Baruah
[4], and studies have since designed HRT feasibility and
schedulability tests for various limited preemptive models and
schedulers [4], [5], [7], [9], [10]. The placement of fixed
preemption points within a task’s execution has been studied
in the context of minimizing overheads while maintaining
schedulability on uniprocessors [11], [12].

The splitting of tasks into mutliple, individually prioritized
non-preemptive subregions is similar to the concept of job
splitting. For instance, in [13], Erickson and Anderson provide
overhead-aware analysis of GEL schedulers that evenly split
job budgets into equally sized subjobs.

B. Contributions and Outline

In this paper, we present global limited preemptive EDF-
like scheduling under a fixed preemption-point model, wherein
tasks are modeled as a sequence of subtasks with varying
costs and PPs. We provide response-time bounds for such
schedulers by adapting CVA for our model, which allows the
linear-programming technique of [3] to be used in designing
G-FPP-EL schedulers with response times optimal under CVA.
Finally, we demonstrate that G-FPP-EL schedulers can have
lower response-time bounds under CVA when compared to
global non-preemptive EDF.

The paper is organized as follows. Sec. II gives an overview
of our fixed preemption-point task model. In Sec. III, we
derive response-time bounds by adapting CVA for G-FPP-
EL schedulers under the proposed task model. Sec. IV shows
via experiments that G-FPP-EL schedulers chosen by applying
[3]’s linear-programming technique can reduce maximum and
mean response-time bounds under CVA when compared with
G-FPP-EDF. Finally, in Sec. V, we discuss our results and how
future work could improve or take advantage of our work.

II. BACKGROUND

A. Task Model

We consider a system τ = {τ1, τ2, . . . , τn} of n arbitrary-
deadline sporadic tasks running on m ≥ 2 identical processors
{π1, π2, . . . , πm}. Each task τi is defined by the parameters,
(Ti, Ci, Di). Ti > 0, the period of τi, denotes the minimum
separation time between subsequent releases of jobs of τi.
Ci ≤ Ti denotes the worst-case execution time (WCET) of
τi. Di is the relative deadline of each job of τi.

Each task τi consists of a sequence of fi subtasks
{τi,1, τi,2, . . . , τi,fi} corresponding to non-preemptive regions
of τi. τi’s preemption points define the beginning and end
of each subtask, and subtasks are indexed in order of logical
execution. Subtask τi,j corresponds to the jth non-preemptive
region of τi, and τi,fi denotes the final subtask of τi. Each
subtask τi,j has a WCET Ci,j . τi,j’s corresponding region of
execution within a job Ji of τi is referred to as subjob Ji,j .
Subjob Ji,j is considered to be released if and only if Ji is
released, but each Ji,j , excluding Ji,1, is eligible to execute
only if its preceding subjob Ji,j−1 has finished.

We define the utilization of a given task τi as

Ui =
Ci

Ti
. (1)

Note that, because Ci ≤ Ti, we have

Ui ≤ 1. (2)

All tasks τi ∈ τ satisfy∑
τi,j∈τi

Ci,j = Ci.

Each subtask τi,j ∈ τi is assigned a proportional period ϕi,j

such that, for all i, j,

Ui =
Ci,j

ϕi,j
. (3)

Note that, because Ui ≤ 1, we have

Ci,j ≤ ϕi,j . (4)

By (1) and (3), ϕi,j = Ci,j/Ui,j = TiCi,j/Ci, so τi satisfies∑
τi,j∈τi

ϕi,j = Ti. (5)

ϕi,j should not be confused with a subtask’s true period,
which is identical to Ti. There is no minimum separation time
between subjobs of the same job.

Additionally, the “ideal” relative release time ρi,j of a
subtask is defined as

ρi,j =

j−1∑
k=1

ϕi,k. (6)

Ideally, if Ji,1 of task τi were released at the same time as Ji
and each subjob Ji,k were released ϕi,k−1 time units after the
release of the immediately preceding subjob Ji,k−1, Ji,j would
release ρi,j time units after Ji. ρi,j should not be confused with
a Ji,j’s true release time, which is identical to the release time
of Ji.
ρi,j and ϕi,j will be used to concisely express the processor

demand and interference to other tasks induced by τi,j .
We assume ∑

τi∈τ

Ui ≤ m, (7)

which was shown by Leontyev and Anderson to be a necessary
condition for bounded tardiness [2]. We define

U+ =

⌈∑
τi∈τ

Ui

⌉
. (8)

We assume that n > m. If this is not the case, each task
may be assigned its own processor and no job will have a
response-time exceeding its WCET.

We use Ci,max to denote the largest WCET of all subtasks
of τi such that

Ci,max = max
τi,j∈τi

{Ci,j} . (9)

We also use Cmax to denote the largest WCET of all subtasks
in τ such that

Cmax = max
τi∈τ

{Ci,max} . (10)

For each subtask τi,j , we use Υi,j to denote its relative
priority point (PP). When a processor becomes available, the
G-FPP-EL scheduler schedules the subjob with the earliest PP.
Υi,j must satisfy

Υi,j ≥ 0. (11)

For all τi and j < k we require

Υi,j ≤ Υi,k, (12)

reflecting that subjob Ji,k cannot have higher priority than a
subjob Ji,j that precedes it. For succinctness of later analysis,
we define Yi,j as the relative PP of τi,j relative to its “ideal”
release ρi,j such that

Υi,j = ρi,j + Yi,j . (13)

We define Ymin as the smallest Yi,j across all subtasks τi,j
such that

Ymin = min
τi,j∈τ

{Yi,j} . (14)

for use in later analysis.
If a job has its absolute deadline at time d and completes

execution at time t, its lateness is defined as t − d, and its
tardiness is max{0, t− d}. If the job is released at time r, its
response-time is t− r. Similarly, a subjob with release time r
and completion at t′ has response-time t′−r. We upper-bound
the lateness and response time of each τi by upper-bounding
the response time of each τi,j .

We denote Ri as the response-time bound of τi and Li as
its lateness bound. From the definition of lateness,

Li = Ri −Di. (15)

Ri,j denotes the response-time bound of τi,j . Since a job of τi
and its final subjob (which corresponds to τi,fi) have identical
release and completion time, we have

Ri = Ri,fi (16)

and consequently,

Li = Ri,fi −Di. (17)

For succinctness, we use vector notation for variables sub-
scripted with i, j to refer to the set of all values for the subtasks
of τi. For example, the values of Yi,j for each subtask of τi
are written, Y⃗i = ⟨Yi,1, Yi,2, . . . , Yi,fi⟩. We model all time
points and time-based variables such as PPs and WCETs as
continuous values.

Notably, under this model, subjobs cannot be preempted
once they have begun executing. Therefore, even if a subjob
Ji,j is ready at time t its PP occurs before another subjob
Jk,l executing at t, Ji,j cannot interrupt Jk,l and cannot be
scheduled if there is no idle processor available at t. The
Ji,j experiences a priority inversion and is referred to as the
blocked subjob, whereas Jk,l is referred to as the blocking
subjob.

0

ϕi,1

job release

subjob PP

“ideal” subjob release

subjob execution

Yi,2 Yi,1Yi,1 Yi,1

time

Ti

2 4 6 8 10 12

ϕi,2

Yi,2

Ti

ϕi,2ϕi,1

Yi,2

Ti

ϕi,2ϕi,1

Fig. 1. Illustration of task parameters on timeline of τi releasing jobs as fast
as possible where Ti = 4, Ci = 1, C⃗i = {0.75, 0.25}, ρ⃗i = {0, 3},
ϕ⃗i = {3, 1}, Υ⃗i = {1, 4}, and Y⃗i = {1, 1}. All subjobs of a given
job release simultaneously, regardless of their “ideal” release times and
proportional periods.

B. Derivation of Subtasks from Preemption Points

Consider a conventionally defined sporadic task set τ =
{τ1, τ2, . . . , τn} with τi = (Ti, Di, Ci), where each WCET
Ci is measured from sequential, uninterrupted execution and
does not include any preemption-related overheads. Assuming
that a list of fixed preemption points are pre-provided, we can
use the following procedure to define a subtask sequence τ ′i
compatible with our model for each τi.

pi,1

ri,1

pi,2

τ ′i,3τ ′i,1

τi

τ ′i

τ ′i,2

si,1 si,2 ri,2

Fig. 2. Conversion of conventional task τi with preemption points to
subtask sequence τ ′i = {τ ′i,1, τ ′i,2, τ ′i,3}. Preemption-related overheads
si,1, ri,1, si,2, ri,2 are illustrated as delays added to τi’s execution, but may
encompass increased execution time due to task slowdown.

Suppose τi has fi − 1 total preemption points. Let the jth
preemption point be denoted Pi,j and pi,j ∈ (0, Ci) represent
the WCET of work in τi preceding Pi,j . Preemption points are
ordered such that pi,j < pi,j+1 for all i and j < fi − 1. The
worst-case delays occurring due to Pi,j are denoted si,j and
ri,j , representing additional processing time incurred due to
preempting or resuming execution of τi at Pi,j , respectively.
For convenience, we also define pi,0 = 0 and ri,0 = 0 to mark
the beginning of a task and si,fi = 0 to mark the end.

C ′
i, the total WCET of τ ′i , is defined as the sum of the

WCET of τi and all its preemption overheads.

C ′
i = Ci +

fi−1∑
j=1

(si,j + ri,j) .

Note that C ′
i ≤ Ti is needed for bounded response-times as

stated in (2).

From a sequence of fi − 1 preemption points of τi, we can
derive fi subtasks of τi. For each integer j with 1 ≤ j ≤ fi,
we define subtask τi,j to be the subtask whose execution ends
at Pi,j , with corresponding WCET

C ′
i,j = pi,j − pi,j−1 + si,j + ri,j−1.

For the remainder of this paper, we analyze task sets
assumed to have been converted using the above procedure.

III. COMPLIANT-VECTOR ANALYSIS

In this section, we present CVA for G-FPP-EL schedulers
under our task model, which will allow us to derive response-
time bounds. While work in this section uses techniques
similar to those used by Erickson et al. for GEL schedulers [3],
additional considerations are needed to accommodate the non-
preemptivity, varying sizes, and separate PPs of each subtask.

A. Linear Bound on Demand

When analyzing a task system, we must quantify the total
processor demand that each task can require over given
intervals, accounting for jobs with both releases and PPs within
that interval.

If modeling an implicit-deadline sporadic system with PPs
set equal to task deadlines such that, for all τi,j ∈ τi, Υi,j =
Di = Ti, we can bound the demand that can be created by
τi by simply multiplying Ui by the length of the interval.
However, when a subtask’s PP occurs before the succeeding
subtask’s “ideal” release time, i.e., Υi,j < ρi,j and Yi,j < ϕi,j ,
such a bound may underestimate the demand from τi.

An example is depicted in Fig. 3 where Ui = 0.25, but
0.75 units of demand are generated in fewer than ϕi,1 = 3
time units. The slope of the linear bound may be set equal to
Ui, which may be interpreted as the average rate at which τi
generates demand. However, in order avoid underestimating
the demand at any time point, the line must be shifted upward
by some fixed amount.

0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10 12

Ci,2

Ci,1

Yi,1

Yi,2

Si(Y⃗i)

time

de
m

an
d

Fig. 3. Illustration of linear bound (dotted line) on demand generated (solid
line) by task τi defined in Fig. 1. Timeline is identical to Fig. 1. Note that
demand rises at subjob PPs.

Thus, we use the following term to account for the extra
demand.

Si(Y⃗i) = max
τi,j∈τi

{
Ci,j ·max

{
0, 1− Yi,j

ϕi,j

}}
(18)

This term is visually represented in the vertical axis in Fig. 3,
showing the smallest amount the smallest amount the linear
demand bound must be “raised” by in order not to underesti-
mate, i.e., never fall below, the demand from τi,j .

This notion is more formally stated as Lemma 3.2 and
Lemma 3.3. We define τi,∗ as any subtask of τi satisfying

Ci,∗ ·
(
1− Yi,∗

ϕi,∗

)
= max

τi,j∈τi

{
Ci,j ·

(
1− Yi,j

ϕi,j

)}
. (19)

τi,∗ can be described as the subtask of τi requiring the highest
amount of potential extra demand to be accounted for, and thus
is the subtask determining the value of Si(Y⃗i).

For simplicity, we use

S(Y⃗) =
∑
τi∈τ

Si(Y⃗i) (20)

to represent the total such demand in τ .
The following lemma, proven in the appendix [14], bounds

any Yi,j with respect to Yi,∗, ϕi,∗, and ϕi,j . Lemma 3.1 enables
us to derive the linear bounds on demand in the succeeding
two lemmas.

Lemma 3.1. For all τi,j ∈ τi and any τi,∗ satisfying (19),

Yi,j ≥ Yi,∗ − ϕi,∗ + ϕi,j .

We define DBF(τi, Y⃗i, ℓ), the demand bound function, as
the total demand that a task τi can produce within an interval
of length ℓ, as depicted by the solid line in Fig. 3. We use
the next two lemmas, proven in the appendix [14], to provide
linear bounds on the DBF. This will later allow us to bound
response-times as a linear expression.

Lemma 3.2. For any τi, if ℓ ≥ Yi,∗ − ϕi,∗, then

DBF(τi, Y⃗i, ℓ) ≤ Uiℓ+ Ci,∗

(
1− Yi,∗

ϕi,∗

)
. (21)

Lemma 3.3. ∀ℓ ≥ 0,

DBF(τi, Y⃗i, ℓ) ≤ Uiℓ+ Si(Y⃗i). (22)

B. Compliant-Vector Analysis

We define a real value xi,j ≥ 0 for each τi,j such that each
subjob of τi,j has a response time of at most

Ri,j = ρi,j + Yi,j + xi,j + Ci,j . (23)

By (17), we can express the lateness bound of task τi as

Li = ρi,fi + Yi,fi + xi,fi + Ci,fi −Di. (24)

We define

Vi(x⃗i, Y⃗i) = Ui max
τi,j∈τi

{Yi,j + xi,j}+ Ci,∗

(
1− Yi,∗

ϕi,∗

)
− UiCmax − Si(Y⃗i). (25)

and

G(x⃗, Y⃗) =
∑
τi∈τ

UiCmax +
∑

τi∈MG

max
{
0, Vi(x⃗i, Y⃗i)

}
. (26)

where MG is the set of U+−1 tasks that maximizes G(x⃗, Y⃗).
G(x⃗, Y⃗) bounds the demand from certain critical tasks that can
contribute to lateness of the system. We also define

Hi,j(Yi,j) =
∑

τk∈Mi

max {0, Ck,max − (Yi,j + ρi,j)} (27)

where Mi is the set of m − U+ tasks in τ excluding τi
that maximizes Hi,j(Yi,j). Hi,j(Yi,j) bounds the demand from
priority inversions that can contribute to lateness of τi,j .

We will show at the end of this section, as Theorem III.1,
that if x⃗ is compliant, ∀τi ∈ τ , (23) is a correct bound.

Definition III.1. (adapted from [3]) x⃗ is near-compliant iff
∀i, j,

xi,j ≥
S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j)− Ci,j

m
, (28)

Yi,j + ρi,j + xi,j + Ci,j ≤ Yi,j+1 + ρi,j+1 + xi,j+1, (29)

and

Yi,fi + ρi,fi + xi,fi + Ci,fi − Ti ≤ Yi,1 + xi,1. (30)

A near-compliant vector is compliant iff ∀i, j, xi,j ≥ 0 or
U+ = 1.

For the remainder of this section, we consider an arbitrary
but fixed schedule. We bound the response-time of a subjob
of interest, subjob Ji,j of task τi, based on the inductive
assumption that subjobs with higher priority than Ji,j have
response-times no greater than specified by (23).

We define HP as the set of all subjobs with priority at
least that of Ji,j , i.e., all jobs in HP have PPs no later
than that of Ji,j . Because we do not allow preemptions of
subtasks, Ji,j can experience blocking, where Ji,j has been
released and fewer than m jobs in HP are executing, but
an already executing job of lower priority prevents Ji,j from
being scheduled. Furthermore, lower-priority work can block
and delay work in HP. Thus, we also define LP as the set
of all subjobs Ji,j with lower priority than Ji,j . Jobs not in
HP ∪ LP cannot be scheduled before Ji,j , and thus cannot
prevent Ji,j from executing.

We define Wk(t) as the total amount of work in HP
remaining at time t for jobs of τk. We define W (t) as the
total work remaining at time t for all jobs in HP such that

W (t) =
∑
τk∈τ

Wk(t).

We denote Bk(t) as the amount of work remaining at time t
for jobs of τk in LP capable of blocking work in HP and B(t)
as the total such work across all tasks such that

B(t) =
∑
τk∈τ

Bk(t).

For our analysis, we define the following time points. ty
denotes the absolute PP of Ji,j . tr denotes the release time of
Ji,j . tb denotes the earliest time point such that, during [tb, ty),
at least U+ processors are busy executing higher-priority
work. I.e., at every time in [tb, ty), at least U+ processors

are executing subjobs in HP. ti denotes the earliest time such
that at every time in [ti, tb), fewer than U+ processors are
executing jobs from HP. These time points are illustrated in
an example schedule in Sec. 4.

For each time point t, a superscripted ‘−’ is used to denote
any instant immediately before that time point such that no
scheduling changes occur during the interval [t−, t).

.

ty

ρi,j + Yi,jsubjob in LP

tb trti
time→

πU+

π1

...

Fig. 4. Illustration of example schedule with time points ti, tb, tr , and ty .

We begin by bounding W (tb)+B(tb), the amount of work
in HP ∪ LP remaining at tb, if it exists, that is capable of
delaying Ji,j .

The following lemma bounds work in HP remaining at time
tb, if it exists.

Lemma 3.4. If tb exists, x⃗ is compliant, and every subjob Jk,l
of τk,l with higher priority than Ji,j completes with response-
time no greater than ρk,l + Yk,l + xk,l + Ck,l, then

W (tb) ≤
∑
τk∈τ

Uk(ty − tb) + S(Y⃗) +G(x⃗, Y⃗). (31)

Proof. We examine the execution state of each task τk ∈ τ
immediately before time tb and derive and upper bound for
Wk(tb), the amount of uncompleted work in HP remaining
for τk. We can then bound W (tb), the total amount of work
in HP remaining at tb.
Case 1. τk has no subjob in HP executing at time t−b .

If at least one processor is idle at t−b , then the τk must not
have any unfinished released work at t−b . Otherwise, since a
processor is available, such work would have been scheduled
before tb.

If all processors are busy at t−b , by definition of tb and
because U+ ≤ m by (7), at least one processor must be
executing a subjob in LP. Each such subjob must have begun
executing no earlier than tb − Cmax as they have not finished
by t−b .

If τk has any unfinished released work in HP at t−b , such
work cannot have been released at or before tb − Cmax.
Otherwise, that work would have been scheduled in place of
one of the subjobs in LP executing at t−b .

Therefore, Wk(tb) must consist only of work from jobs
released by τk after tb −Cmax and with PPs before ty , giving
us

Wk(tb) ≤ DBF
(
τk, Y⃗k, ty − (tb − Cmax)

)
≤ {By Lemma 3.3}

Uk (ty − (tb − Cmax)) + Sk(Y⃗k)

= Uk(ty − tb) + UkCmax + Sk(�Yk). (32)

Case 2. τk has a subjob in HP executing at time t−b but
there exists a time in [ti, tb) when no job of τk is executing.

subjob in LP

. . .

tytbti
time

πU+

π1

...

ts

Fig. 5. Illustration of task τk and time point ts in Case 2. If Jk,l were
released before the subjob in LP, it would have been scheduled at ti instead.

In this case, denote ts as the earliest time such that τk is

executing continuously in [ts, tb).
If at least one processor is idle at t−s , τk must not have any

unfinished released work at t−s , as it otherwise would have

began executing earlier than ts.

If all processors are busy at t−s , because at most U+ − 1
processors are executing work in HP, at least one processor

is executing a subjob in LP. Such a subjob could have been

released no later than ts − Cmax. Any work of τk that is

released and unfinished but not executing at t−s could only

have been released after ts−Cmax, as it would have otherwise

been scheduled in place of a subjob in LP executing at t−s .

Therefore, Wk(ts) must consist only of work from jobs

released by τk after ts −Cmax and with PPs before ty , giving

us

Wk(ts) ≤ DBF
(
τk, �Yk, ty − (ts − Cmax)

)
≤ {By Lemma 3.3}

Uk (ty − (ts − Cmax)) + Sk(�Yk)

= Uk(ty − ts) + UkCmax + Sk(�Yk). (33)

Because τk is executing continuously in [ts, tb), and because

the subjob of τk executing at t−b and any preceding subjobs

are in HP,

Wk(tb) = Wk(ts)− (tb − ts)

≤ {By (33)}
Uk(ty − ts) + UkCmax + Sk(�Yk)− (tb − ts)

≤ {Because Uk ≤ 1}
Uk(ty − ts) + UkCmax + Sk(�Yk)− Uk(tb − ts)

= Uk(ty − tb) + UkCmax + Sk(�Yk). (34)

Case 3. τk executes work in HP continuously in [ti, tb) and
Jk,l, the subjob of τk executing at tb, has its PP at or after
tb.

The release time of Jk,l must be no earlier than tb −Yk,l −
ρk,l or its PP would be before tb and Case 4 below would

instead apply.

. . .

tytb
time

πU+

π1

...

PP of Jk,lrelease of Jk,l

ρk,l + Yk,l

Fig. 6. Illustration of task τk in Case 3 with Jk,l highlighted.

Thus, Wk(ts) must consist only of work from jobs released

by τk at or after tb − (ρk,l + Yk,l) and with PPs before ty .

We also exclude work from subjobs of the same job preceding

Jk,l, as they must have finished before ts. Note that the length

of the interval [tb − (ρk,l + Yk,l), ty] satisfies

ty − (tb − (ρk,l + Yk,l)) = ty − tb + ρk,l + Yk,l

≥ {Because tb < ty by definition

and because ρk,l ≥ 0}
Yk,l

≥ {By Lemma 3.1}
Yk,∗ − φk,∗ + φk,l

≥ Yk,∗ − φk,∗, (35)

so Lemma 3.2 may be used to bound the demand created in

the interval. Therefore we have

Wk(tb)

≤ DBF
(
τk, �Yk, ty − (tb − (ρk,l + Yk,l))

)
−

l−1∑
α=1

Ck,α

≤ {By Lemma 3.2 and (35) and because∑l−1
α=1 Ck,α ≤ ∑l−1

α=1 φk,α = ρk,l by (4) and (6)}
Uk (ty − (tb − (ρk,l + Yk,l))) + Ck,∗

(
1− Yk,∗

φk,∗

)
− ρk,l

= Uk(ty − tb) + Ukρk,l + UkYk,l + Ck,∗

(
1− Yk,∗

φk,∗

)
− ρk,l

≤ {Because Uk ≤ 1 and so Ukρk,l − ρk,l ≤ 0}
Uk(ty − tb) + UkYk,l + Ck,∗

(
1− Yk,∗

φk,∗

)
. (36)

Case 4. τk executes work in HP continuously in [ti, tb) and
Jk,l, the subjob of τk executing at tb, has its PP before tb.

Since Jk,l’s PP is before tb and tb < ty , Jk,l is not Ji,j .

Thus, by precondition of the lemma, Jk,l’s response time must

be at most ρk,l + Yk,l + xk,l + Ck,l.

We define δ such that the remaining execution of Jk,l at tb
is Ck,l − δ. If Jk,l runs for its full WCET, then δ is equal to

Jk,l’s execution before tb. Otherwise, δ may be greater.

Jk,l finishes at tb + Ck,l − δ and has a response time of at

most ρk,l+Yk,l+xk,l+Ck,l, so Jk,l must have been released

. . .

tytb
time

πU+

π1

...

at most ρk,l + Yk,l + xk,l

Ck,l − δ

PP of Jk,lrelease of Jk,l

Fig. 7. Illustration of task τk in Case 4 with Jk,l highlighted.

no later than

(tb + Ck,l − δ)− (ρk,l + Yk,l + xk,l + Ck,l)

= tb − δ − ρk,l − Yk,l − xk,l. (37)

Thus, Wk(tb) must consist only of work from jobs released
after that time and with PPs at or before ty . We may exclude
work from subjobs of the same job preceding Jk,l, as they must
have finished before Jk,l began executing. We also exclude
the δ units of Jk,l’s work that are not part of its remaining
execution.

Note that the length of the interval [tb − δ − ρk,l − Yk,l −
xk,l, ty] satisfies

ty − (tb − δ − ρk,l − Yk,l − xk,l)

= (ty − tb) + δ + ρk,l + Yk,l + xk,l

≥ {Because tb < ty , ρk,l ≥ 0, and δ ≥ 0 by definition
and xk,l ≥ 0 by precondition of lemma and Def. III.1}
Yk,l

≥ {By Lemma 3.1}
Yk,∗ − ϕk,∗ + ϕk,l

≥ Yk,∗ − ϕk,∗, (38)

so Lemma 3.2 may be used to bound the demand created in
the interval. Therefore we have

Wk(tb)

≤ DBF
(
τk, Y⃗k, ty − (tb − δ − ρk,l − Yk,l − xk,l)

)
−

l−1∑
α=1

Ck,α − δ

≤ {By Lemma 3.2 and (38) and because∑l−1
α=1 Ck,α ≤

∑l−1
α=1 ϕk,α = ρk,l by (4) and (6)}

Uk (ty − (tb − δ − ρk,l − Yk,l − xk,l))

+ Ck,∗

(
1− Yk,∗

ϕk,∗

)
− ρk,l − δ

= Uk(ty − tb) + Uk(ρk,l + δ) + UkYk,l + Ukxk,l

+ Ck,∗

(
1− Yk,∗

ϕk,∗

)
− (ρk,l + δ)

≤ {Because Uk ≤ 1 so Uk(ρk,l + δ) ≤ ρk,l + δ}

Uk(ty − tb) + Uk(Yk,l + xk,l) + Ck,∗

(
1− Yk,∗

ϕk,∗

)
(39)

Total remaining work at tb: By definition of tb, at most
U+ − 1 tasks can be in Cases 2-4. All other tasks must be in
Case 1. By (36) and (39), Case 3 cannot cause Wk(tb) greater
than Case 4. Since Cases 1 and 2 reach the same bound, W (tb)
can be upper-bounded by selecting the set M of U+−1 tasks
maximizing∑

τk∈M

(
Uk(ty − tb) + max

τk∈τ

{
UkCmax + Sk(Y⃗k),

Uk max
τk,l∈τk

{Yk,l + xk,l}+ Ck,∗

(
1− Yk,∗

ϕk,∗

)})
+

∑
τk∈τ\M

(
Uk(ty − tb) + UkCmax + Sk(Y⃗k)

)
=

∑
τk∈τ

Uk(ty − tb) +
∑
τk∈τ

Sk(Y⃗k) +
∑
τk∈τ

UkCmax

+
∑

τk∈M

max

{
0, Uk max

τk,l∈τk
{Yk,l + xk,l}

+ Ck,∗

(
1− Yk,∗

ϕk,∗

)
− UkCmax − Sk(Y⃗k)

}
= {By the definitions of Vi(x⃗i, Y⃗i) and G(x⃗, Y⃗)

in (25) and (26)}∑
τk∈τ

Uk(ty − tb) + S(Y⃗) +G(x⃗, Y⃗)

Thus, the lemma holds.

In order to bound B(ty), the amount of lower-priority work
remaining at ty that can delay Ji,j from being scheduled, we
use the following lemma.

Lemma 3.5. For all τk,

Bk(ty) ≤ max {0, Ck,l − (Yi,j + ρi,j)} . (40)

Proof. Let subjob Jk,l of subtask τk,l be a subjob in LP
executing at time tr. By definition of priority, a subjob in LP
cannot begin execution at or after tr unless Ji,j has already
been scheduled. Thus, τk cannot have any subjobs after Jk,l
that delay Ji,j from being scheduled, so Jk,l must be the only
contributor to Bk(ty) Since Jk,l was scheduled before tr and
continues executing until it finishes, its remaining work at ty
is at most

Bk(ty) ≤ max {0, Ck,l − (ty − tr)}
= max {0, Ck,l − (Yi,j + ρi,j)} .

Thus, the lemma holds.

Using Lemmas 3.4 and 3.5, for the case that tb exists, we
may bound W (ty) +B(ty), the total remaining work at time
ty that can prevent Ji,j from being scheduled.

Lemma 3.6. If tb exists, x⃗ is compliant, and every subjob Jk,l
of τk,l with higher priority than Ji,j complete with response-
time no greater than ρk,l + Yk,l + xk,l + Ck,l, then

W (ty) +B(ty) ≤ S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j). (41)

Proof. By the definition of tb, at least U+ processors are
executing work in HP during the interval [tb, ty]. Thus, at
least U+(ty − tb) units of work in HP must complete during
[tb, ty], so

W (ty) ≤ W (tb)− U+(ty − tb)

≤ {By Lemma 3.4}∑
τk∈τ

Uk(ty − tb) + S(Y⃗) +G(x⃗, Y⃗)

− U+(ty − tb)

≤
{

Because
∑

τk∈τ Uk ≤ U+ by (8)
}

S(Y⃗) +G(x⃗, Y⃗). (42)

Since at least U+ processors are occupied with work in HP
at time ty , at most m − U+ tasks can have a subjob in LP
executing at ty and contributing to B(ty). Thus, B(ty) can be
bounded by selecting the set Mi of m− U+ tasks other than
τi that maximizes

B(ty) ≤
∑

τk∈Mi

Bk(ty)

≤ {By Lemma 3.5}∑
τk∈Mi

max {0, Ck,l − (Yi,j + ρi,j)}

= {By the definition of Hi,j(Yi,j) in (27)}
Hi,j(Yi,j). (43)

Therefore, by (42) and (43),

W (ty) +B(ty) ≤ S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j)

and the lemma holds.

The following lemma bounds W (ty) + B(ty) for the case
that tb does not exist.

Lemma 3.7. If tb does not exist, x⃗ is compliant, and every
subjob Jk,l of τk,l with higher priority than Ji,j completes
with response time no greater than ρk,l + Yk,l + xk,l + Ck,l,
then

W (ty) +B(ty) ≤ S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j). (44)

Due to space constraints, the full proof of Lemma 3.7 is
deferred to the appendix [14]. A proof sketch follows.

Proof sketch of Lemma 3.7: For each task τk not exe-
cuting at t−r , Wk(tr) is bounded using derivation identical to
Case 1 in the proof of Lemma 3.4 with tr supplanting tb.
Similarly, Wk(tr) for each τk executing a subjob in HP at t−r
is bounded using derivation identical to Cases 3 and 4 in the
proof of Lemma 3.4 with ty supplanting tb. Bk(tr) for each
τk executing a subjob in LP at t−r is most the cost of that
subjob, as work in LP cannot be scheduled before Ji,j after
tr. This also implies no task can have work remaining in both
Wk(tr) and Bk(tr).

We show that if τk has a subjob Jk,l executing at t−y ,
Wk(tr) in the case that Jk,l ∈ HP is always greater than
Bk(tr) when Jk,l ∈ LP. Additionally, since tb does not exist,

at most U+−1 processors are executing work in HP at t−r . By
combining these results, we demonstrate that W (ty) +B(ty)
cannot exceed the bound given by the lemma.

Our next lemma bounds the response time of all subjobs.

Lemma 3.8. If x⃗ is compliant and every subjob Jk,l of τk,l
with priority higher than Ji,j completes with response time no
greater than ρk,l + Yk,l + xk,l + Ck,l, then Ji,j finishes with
response time no greater than ρi,j + Yi,j + xi,j + Ci,j .

Proof. By Lemmas 3.6 and 3.7, the remaining work in HP,
including Ji,j , and potentially interering work in LP at time
ty is at most S(Y⃗) + G(x⃗, Y⃗) +Hi,j(Yi,j). Therefore, there
can be at most S(Y⃗) + G(x⃗, Y⃗) +Hi,j(Yi,j) − Ci,j units of
competing work scheduled before Ji,j .

All m processors may be occupied with completing such
work before a processor becomes available for Ji,j to be
scheduled on. Thus, the latest time that a processor becomes
available for Ji,j is given by

ta = ty +
S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j)− Ci,j

m
.

We consider the following cases.
Case 1. At time ta, Ji,j−1, the subjob immediately pre-
ceding Ji,j in its subjob sequence, exists and has not
completed.

. . .

ty ta
time

πm

π1

...

PP of Ji,jrelease of Ji,j−1, Ji,j

at most ρi,j−1 + Yi,j−1 + xi,j−1

tr

Ji,j−1 Ji,j

Fig. 8. Illustration of subjob Ji,j in Case 1. Ji,j cannot be scheduled
immediately at ta because Ji,j−1 has not yet finished.

By the response-time bound stated in the precondition of
the lemma and because Ji,j−1 has higher priority than Ji,j ,
Ji,j−1 finishes at most Yi,j−1 + ρi,j−1 +xi,j−1 +Ci,j−1 time
units after its release, which occurs simultaneously with Ji,j’s
release. Since at least one processor is available for Ji,j at ta,
Ji,j begins execution immediately upon completion of Ji,j−1.
Thus, the response time of Ji,j is at most

Yi,j−1 + ρi,j−1 + xi,j−1 + Ci,j−1 + Ci,j

≤ {By (29) from Def. III.1}
Yi,j + ρi,j + xi,j + Ci,j

as desired.
Case 2. Ji,j is the first subjob of its subjob sequence and
at time ta, J ′

i,fi
, the preceding job’s final subjob, has not

completed.
By the response-time bound stated in the precondition of the

lemma and because J ′
i,fi

was released at least Ti time units
before Ji,j , J ′

i,fi
finishes at most Yi,fi+ρi,fi+xi,fi+Ci,fi−Ti

time units after the release of Ji,j .

Since at least one processor is available for Ji,j at ta, Ji,j
finishes execution immediately upon completion of J ′

i,fi
. Thus,

the response time of Ji,j is at most

Yi,fi + ρi,fi + xi,fi + Ci,fi − Ti + Ci,j

≤ {By (30) from Def. III.1 and because ρi,j = 0}
Yi,j + ρi,j + xi,j + Ci,j

as desired.
Case 3. All subjobs of τi preceding Ji,j complete by ta.

In this case, Ji,j may be scheduled immediately at ta and
finishes no later than

ta + Ci,j = ty +
S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j)− Ci,j

m
+ Ci,j

≤ {By (28) from Def. III.1}
ty + xi,j + Ci,j .

Since ty is the absolute priority point of Ji,j , Ji,j finishes no
more than Yi,j + ρi,j + xi,j +Ci,j time units after its release.

Thus, in all cases, the response-time bound of the lemma
holds for Ji,j .

Using these lemmas, we can finally state and prove our
response-time bound.

Theorem III.1. If x⃗ is compliant, then no subjob of any
subtask τi,j will have a response time exceeding ρi,j + Yi,j +
xi,j + Ci,j .

Proof. The theorem follows immediately from Lemma 3.8 by
induction over all subjobs in the system, considered in order
of decreasing priority. In the base case(s) of the absolute first
subjob(s) to be scheduled, the precondition for Lemma 3.8
holds vacuously.

C. Linear Optimization of Response-Time Bounds

The response-time bound from Thm. III.1 is based on
a compliant vector x⃗. The condition for compliance, given
in Def. III.1, is a linear combination of x⃗ and vector of
PP assignments Y⃗ . Consequently, we can adapt the linear-
programming technique of [3] to find Y⃗ and compliant x⃗
resulting in response-time bounds that are optimal under CVA.
Exact linear constraints and objective functions to calculate
optimal values for Y⃗ and x⃗ are presented in the appendix [14]
and are used in the following section.

IV. EXPERIMENTS

In this section, we present experiments examining lateness
bounds under CVA of G-FPP-EL schedulers. The sched-
ulers we evaluate have PPs chosen by applying the linear-
programming technique of [3]. We demonstrate that the result-
ing G-FPP-EL schedulers achieve improved lateness bounds
over variations of G-FPP-EDF.

A. Experimental Design

a) Task Set Generation: We generated implicit-deadline
task sets with per-task utilizations distributed uniformly or
bimodally. Uniformly distributed utilizations were chosen to
be light, moderate, or heavy, corresponding to samples from
ranges [0.001, 0.1], [0.1, 0.4], or [0.5, 0.9], respectively. Bi-
modally distributed utilizations were sampled uniformly from
either [0.001, 0.5] or [0.5, 0.9] with respective probabilities of
8/9 and 1/9, 6/9 and 3/9, or 4/9 and 5/9.

Task periods were chosen to be short, medium, or long, cor-
responding to uniform integral samples from [3, 33], [10, 100],
[50, 250], respectively. Fixed preemption points were generated
for each task, with their quantity per task being none, low, or
high, corresponding to uniform integral samples from [0, 0],
[0, 2], or [2, 5], respectively. Preemption point locations were
selected uniformly at random from the continous range of
positions within a task’s worst-case execution.

We considered a system with m = 8 processors, as clustered
scheduling is typically preferred over global scheduling in
systems with a high number of processors [15]. For each per-
task utilization and preemption frequency combination, 250
task sets were generated for each total system utilization value
in {1.25, 1.50, · · · , 8.0}. We did not consider task systems
with total utilization of at most one, as they are schedulable on
a single processor. The maximum and mean lateness bounds
were recorded for each task set and averaged.

b) G-FPP-EDF Approaches Used: We tested two ap-
proaches to applying G-EDF to our FPP task model. The
first (EDF-1) is to select subtask PPs such that they are equal
to the deadline of the task. That is, we set Υi,j = Di and
Yi,j = Di − ρi,j for each τi,j . The second (EDF-2) is to
make all subtask PPs ‘implicit’ with respect to their “ideal”
relative release times and proportional periods. That is, we set
Υi,j = ρi,j + ϕi,j , i.e., Yi,j = ϕi,j .

For both approaches, we allow all PPs to be increased or
decreased by a single constant. Such a change would not affect
the ordering of subjob priorities and thus result in an identical
schedule while potentially allowing for better bounds under
CVA.

c) Optimization Criteria Used: We selected PPs for
each task set using the linear-programming technique and
optimization criteria described by [3]. The criteria tested are
as follows:

• ML: Minimizing the maximum lateness across all tasks.
• AL: Minimizing average lateness across all tasks.
• ML-AL: Minimizing average lateness across all tasks

without exceeding the maximum lateness bound derived
from ML.

B. Observations

Observation 1. EDF-2 often outperformed EDF-1 when
system utilization was high, with exceptions.

Most configurations had a system utilization threshold above
which EDF-2 acheived lower bounds under CVA than EDF-
1, regardless of metric (maximum or mean). The opposite

Fig. 9. Maximum lateness bounds for bimodal, moderate utilization, medium
period, high preemption-point frequency task sets, averaged over 250 trials.

held true below this threshold. Interestingly, this pattern did

not hold for some task sets with uniform, heavy per-task

utilizations, where EDF-2 consistently fared worse.

Observation 2. All optimized schedulers consistently ob-
tained the lowest bounds for their respective optimization
criterion.

This observation shows empirically that G-FPP-EL schedul-

ing optimized by the linear-programming technique of [3] can

achieve lower bounds under CVA compared to G-FPP-EDF.

Observation 3. Optimizing for AL always obtained lower
mean lateness bounds than optimizing for ML-AL.

This observation mirrors one made in [3], and implies that

we cannot achieve the lowest possible maximum lateness

bounds and the lowest mean lateness bounds simultaneously.

I.e., past a certain point, a decrease in maximum lateness

requires an increase to the mean lateness and vice versa.

These observations are exemplified by Fig. 9 and further

supported by graphs included in the appendix [14].

V. DISCUSSION

While we have shown that our analysis can be leveraged

to design G-FPP-EL schedulers with reduced response-time

bounds when compared with G-FPP-EDF, we do not address

the issue of selecting and enabling preemption points based

on their positions and overheads.

Because of the increase in total WCET and utilization

caused by each preemption point, it may be the case that

enabling a higher number of preemption points results in

worse response-time bounds despite increased granularity in

PP selection. Additionally, some preemption points, such as

those in low-cost tasks or close to other preemption points,

may be of relatively little value while still inflating WCETs.

Future research addressing this issue could help guide the

selection of effective preemption points and quantify the

benefits and trade-offs of using G-FPP-EL scheduling over

non-preemptive GEL scheduling.

VI. CONCLUSION

We have presented response-time bounds for G-FPP-EL

schedulers under a fixed preemption-point model using CVA.

Our analysis can be inclusive of preemption-related overheads

and simplifies overhead analysis significantly when compared

with fully preemptive schedulers. We argue that G-FPP-EL

schedulers can replace G-EDF and GEL schedulers, especially

in systems where fully preemptive scheduling can require

unacceptably high overheads and WCET inflation. We have

demonstrated that G-FPP-EL schedulers whose parameters are

chosen using a linear-programming technique can obtain lower

response-time bounds than G-FPP-EDF. In scenarios where an

offline computation step is practical, we believe such G-FPP-

EL schedulers should be used in place of G-FPP-EDF.

REFERENCES

[1] C. J. Kenna, J. L. Herman, B. B. Brandenburg, A. F. Mills, and
J. H. Anderson, “Soft real-time on multiprocessors: Are analysis-based
schedulers really worth it?” in 2011 IEEE 32nd Real-Time Systems
Symposium, 2011, pp. 93–103.

[2] H. Leontyev and J. H. Anderson, “A unified hard/soft real-time schedu-
lability test for global edf multiprocessor scheduling,” in 2008 Real-Time
Systems Symposium, Nov 2008, pp. 375–384.

[3] J. P. Erickson, J. H. Anderson, and B. C. Ward, “Fair lateness scheduling:
Reducing maximum lateness in g-edf-like scheduling,” Real-Time Syst.,
vol. 50, no. 1, p. 5–47, jan 2014.

[4] S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic
task systems,” in 17th Euromicro Conference on Real-Time Systems,
2005, pp. 137–144.

[5] B. Chattopadhyay and S. Baruah, “Limited-preemption scheduling on
multiprocessors,” in 22nd International Conference on Real-Time Net-
works and Systems. New York, NY, USA: Association for Computing
Machinery, 2014, p. 225–234.

[6] Q. Zhou, G. Li, J. Li, C. Deng, and L. Yuan, “Response time analysis
for tasks with fixed preemption points under global scheduling,” ACM
Transactions on Embedded Computing Systems, vol. 18, no. 5, oct 2019.

[7] A. Thekkilakattil, S. Baruah, R. Dobrin, and S. Punnekkat, “The global
limited preemptive earliest deadline first feasibility of sporadic real-time
tasks,” in 2014 26th Euromicro Conference on Real-Time Systems, 2014,
pp. 301–310.

[8] J. Erickson, U. Devi, and S. Baruah, “Improved tardiness bounds for
global edf,” in 2010 22nd Euromicro Conference on Real-Time Systems,
2010, pp. 14–23.

[9] M. Bertogna and S. Baruah, “Limited preemption edf scheduling of
sporadic task systems,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 4, pp. 579–591, 2010.

[10] A. Thekkilakattil, R. I. Davis, R. Dobrin, S. Punnekkat, and M. Bertogna,
“Multiprocessor fixed priority scheduling with limited preemptions,” in
23rd International Conference on Real Time and Networks Systems.
New York, NY, USA: Association for Computing Machinery, 2015, p.
13–22.

[11] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and
M. Caccamo, “Preemption points placement for sporadic task sets,” in
2010 22nd Euromicro Conference on Real-Time Systems, 2010, pp. 251–
260.

[12] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,
“Optimal selection of preemption points to minimize preemption over-
head,” in 2011 23rd Euromicro Conference on Real-Time Systems, 2011,
pp. 217–227.

[13] J. P. Erickson and J. H. Anderson, “Reducing tardiness under global
scheduling by splitting jobs,” in 2013 25th Euromicro Conference on
Real-Time Systems, 2013, pp. 14–24.

[14] J. Goh and J. H. Anderson, “Reducing response-time bounds via global
fixed preemption point edf-like scheduling,” 2023, full version with
appendix. [Online]. Available: https://jamesanderson.web.unc.edu/papers

[15] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, USA, 2011.

[16] W. Ogryczak and A. Tamir, “Minimizing the sum of the k largest
functions in linear time,” Information Processing Letters, vol. 85, no. 3,
pp. 117–122, 2003.

[17] J. Goh and J. H. Anderson, “Reducing response-time bounds via global
fixed preemption point edf-like scheduling,” in 2023 IEEE 29th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2023, pp. 117–126, to appear.

APPENDIX A
NOTATION

Various notation and brief descriptions can be found in
Tab. I.

APPENDIX B
ADDITIONAL PROOFS

Lemma 3.1. For all τi,j ∈ τi and any τi,∗ satisfying (19),

Yi,j ≥ Yi,∗ − ϕi,∗ + ϕi,j .

Proof. We prove the lemma by contradiction. Suppose that
Yi,j < Yi,∗ − ϕi,∗ + ϕi,j . We then have

Ci,j ·
(
1− Yi,j

ϕi,j

)
= Ci,j −

Ci,j

ϕi,j
Yi,j

> {Because Yi,j < Yi,∗ − ϕi,∗ + ϕi,j}

Ci,j −
Ci,j

ϕi,j
(Yi,∗ − ϕi,∗ + ϕi,j)

= {Because Ui = Ci,j/ϕi,j = Ci,∗/ϕi,∗}

Ci,j −
Ci,∗

ϕi,∗
(Yi,∗ − ϕi,∗)−

Ci,j

ϕi,j
ϕi,j

= Ci,j −
Ci,∗

ϕi,∗
Yi,∗ + Ci,∗ − Ci,j

= Ci,∗

(
1− Yi,∗

ϕi,∗

)
.

This contradicts the definition of τi,∗ from (19), so the lemma
must hold.

Lemma 3.2. For any τi, if ℓ ≥ Yi,∗ − ϕi,∗, then

DBF(τi, Y⃗i, ℓ) ≤ Uiℓ+ Ci,∗

(
1− Yi,∗

ϕi,∗

)
. (45)

Proof. Let time 0 represent the beginning of the analysis
interval of length ℓ. Consider the worst-case release pattern
of τi during the interval, i.e., jobs of τi are released as fast
as possible with subsequent releases separated by exactly Ti

time units.
Let Ji denote the last job of task τi to be released within the

interval [0, ℓ] and having a subjob with its PP by time ℓ. Let tr
denote the release time of Ji. Let subjob Ji,j , corresponding
to subtask τi,j , be the last subjob to have its PP by time ℓ.
Case 1. Ji does not exist.

In this case, no subjob has its PP by the end of the interval,
so the total demand created is 0. This gives us

Uil + Ci,∗ ·
(
1− Yi,∗

ϕi,∗

)
≥ {Because l ≥ Yi,∗ − ϕi,∗}

Ui(Yi,∗ − ϕi,∗) + Ci,∗ ·
(
1− Yi,∗

ϕi,∗

)
= {Rearranging and using Ui = Ci,∗/ϕi,∗}

Ci,∗Yi,∗

ϕi,∗
− Ci,∗ϕi,∗

ϕi,∗
+ Ci,∗ −

Ci,∗Yi,∗

ϕi,∗

= 0,

TABLE I
NOTATION AND DEFINITIONS USED

Symbol Description
τ Task system.
τi Task i in task system τ .
τi,j jth subtask of τi.
Ji,j Arbitary subjob of interest under analysis.
Ci Worst-case execution time of task τi.
Ci,j Worst-case execution time of subtask τi,j .
Cmax Maximum Ci of tasks in τ .
Di Relative deadline of τi.
fi The number of subtasks and index of the final subtask of τi.
HP Set of jobs with priority at least that of Ji.
LP Set of jobs released prior to but with priority lower than Ji.
Li Lateness bound for τi.
Lmax Maximum lateness bound for tasks in τ .
ℓ Used to represent interval length in demand bound function.
m Number of (identical) processors.
oi,j The preemption overhead associated with the jth preemption point of τi.
Pi,j The jth preemption point of τi.
pi,j The worst-case execution time of the work of τi occurring before Pi,j .
ρi,j The “ideal” relative release time of τi,j according to its position and proportion of WCET in τi.
Ri Response-time bound for τi.

Si(Y⃗i) Demand that can be created by τi in excess of that accounted for by its utilization.
S(Y⃗) Total excess demand described by Si(Y⃗i) from all tasks in τ .
Ti Period of τi, minimum separation time for jobs of τi.
Ui Utilization of τi, defined as Ci/Ti.
U+ Ceiling of the total utilization of τ .
Υi,j Relative priority point of τi,j .
Yi,j Priority point of τi,j relative to its “ideal” release time ρi,j .
xi,j Component of response-time bound Ri,j = Yi,j + xi,j + Ci,j for τi,j .
ty Absolute priority point of Ji,j .
tr Release time of Ji,j .
tb Earliest time instant such that at least U+ processors are always busy executing work in HP during [tb, ty).
t− Any instant immediately before time t such that no scheduling changes occur during [t−, t).

which satisfies (45).
Case 2. Ji exists.

In this case, no more than tr/Ti jobs of τi could have been
released before tr, so the amount of work released within the
interval, excluding Ji, is at most

tr
Ti

· Ci = Uitr.

By (12), subjobs preceding Ji,j and contained by Ji must
have their PPs before tr + Υi,j ≤ ℓ. By definition of Ji,j ,
all succeeding subjobs have PPs after time ℓ and do not
contribute to demand created within the interval. Thus, the
demand created by Ji,j and all its preceding subjobs is given
by

Uitr +

j∑
k=1

Ci,k

= Uitr +

j−1∑
k=1

Ci,k + Ci,j

= {By (3)}

Uitr +

j−1∑
k=1

Uiϕi,j + Ci,j

= {By (6)}
Uitr + Uiρi,j + Ci,j

= Uitr + Uiρi,j + Ci,j + UiYi,j − UiYi,j

= Ui(tr + ρi,j + Yi,j) + Ci,j − UiYi,j

≤ {Because tr + ρi,j + Yi,j = tr +Υi ≤ ℓ}
Uiℓ+ Ci,j − UiYi,j

= {By (3)}

Uiℓ+ Ci,j −
Ci,jYi,j

ϕi,j

= Uiℓ+ Ci,j

(
1− Yi,j

ϕi,j

)
≤ {By (19)}

Uiℓ+ Ci,∗

(
1− Yi,∗

ϕi,∗

)
,

which satisfies (45).

Thus, the lemma holds for all cases.

Lemma 3.3. ∀ℓ ≥ 0,

DBF(τi, Y⃗i, ℓ) ≤ Uiℓ+ Si(Y⃗i). (46)

Proof. Let time 0 represent the beginning of the analysis
interval of length ℓ. Consider the worst-case release pattern
of τi during the interval. Define job Ji and its release time tr
identically to the proof of Lemma 3.2. We consider two cases.

Case 1. Ji does not exist.

If Ji does not exist, the total demand created is 0, which
clearly satisfies (46) since

0 ≤ Uiℓ+ 0

≤ Uiℓ+max

{
0, Ci,∗

(
1− Yi,∗

ϕi,∗

)}
= {By the definition of Si(Y⃗i) in (18)}

Uiℓ+ Si(Y⃗i).

Case 2. Ji exists.
Let Ji denote the last job of task τi to be released within

the interval [0, ℓ] and have a subjob with its PP by the end of
the interval [0, ℓ]. tr denotes the release time of Ji. Let Ji,j ,
corresponding to subtask τi,j , be the last subjob to have its PP
by l.

If Ji exists, we can argue identically to Case 2 of the proof
of Lemma 3.2 to show the demand generated in [0, ℓ] is at
most

Uitr +

j∑
k=1

Ci,k ≤ Uiℓ+ Ci,∗

(
1− Yi,∗

ϕi,∗

)
≤ Uiℓ+max

{
0, Ci,∗

(
1− Yi,∗

ϕi,∗

)}
= {By the definition of Si(Y⃗i) in (18)}

Uiℓ+ Si(Y⃗i),

satisfying (46).

Lemma 3.7. If tb does not exist, x⃗ is compliant, and every
subjob Jk,l of τk,l with higher priority than Ji,j completes
with response time no greater than ρk,l + Yk,l + xk,l + Ck,l,
then

W (ty) +B(ty) ≤ S(Y⃗) +G(x⃗, Y⃗) +Hi,j(Yi,j).

Proof. We examine the execution state of each task τk ∈ τ
immediately before time tr and derive upper bounds for
Wk(tr), the amount of uncompleted work in HP remaining
for τk. We can then bound W (tr), the total amount of work
in HP and interfering work in LP remaining at tr, which in
turn gives us a bound on W (ty). Finally, using Lemma 3.5 to
bound Bkty for each τk, we will show that the bound of the
lemma holds.

Because tb does not exist, at most U+ − 1 processors must
be executing work in HP. Because U+ ≤ m by (7), at least
one processor is idle or executing work in LP at t−r . Consider
the following cases.
Case 1. τk is no subjob executing at t−r .

If at least one processor is idle at t−r , then the τk must not
have any unfinished released work at t−r . Otherwise, since a
processor is available, such work would have been scheduled
before tr.

If all processors are busy at t−r , by definition of tr and
because U+ ≤ m by (7), at least one processor must be
executing a subjob in LP. Each such subjob must have begun

executing no earlier than tr − Cmax as they have not finished
by t−r .

If τk has any unfinished released work in HP at t−r , such
work cannot have been released at or before tr − Cmax.
Otherwise, that work would have been scheduled in place of
one of the subjobs in LP executing at t−r .

Therefore, Wk(tr) must consist only of work from jobs
released by τk after tr −Cmax and with PPs before ty , giving
us

Wk(tr) ≤ DBF
(
τk, Y⃗k, ty − (tr − Cmax)

)
≤ {By Lemma 3.3}

Uk (ty − (tr − Cmax)) + Sk(Y⃗k)

= Uk(ty − tr) + UkCmax + Sk(Y⃗k). (47)

Because no subjob in LP can be scheduled at or after tr,
Bk(tr) = 0.
Case 2. τk is executing a subjob in LP, Jk,l, at t−r .

Since τk is executing a subjob in LP, τk must not have any
work remaining in HP at t−r , so

Wk(tr) = 0. (48)

Because no subjob in LP can be scheduled at or after tr,
so Jk,l must be the only subjob contributing to Bk(tr). Thus
we have

Bk(tr) ≤ Ci,j . (49)

Case 3. τk is executing a subjob in HP, Jk,l, at t−r , and
Jk,l has its PP at or after tr.

The release time of Jk,l must be no earlier than tr −Yk,l−
ρk,l or its PP would be before tr and Case 4 below would
instead apply.

Thus, Wk(ts) must consist only of work from jobs released
by τk at or after tr − (ρk,l + Yk,l) and with PPs before ty .
We also exclude work from subjobs of the same job preceding
Jk,l, as they must have finished before ts. Note that the length
of the interval [tr − (ρk,l + Yk,l), ty] satisfies

ty − (tr − (ρk,l + Yk,l)) = ty − tr + ρk,l + Yk,l

≥ {Because tr < ty by definition
and because ρk,l ≥ 0}
Yk,l

≥ {By Lemma 3.1}
Yk,∗ − ϕk,∗ + ϕk,l

≥ Yk,∗ − ϕk,∗, (50)

so Lemma 3.2 may be used to bound the demand created in
the interval. Therefore we have

Wk(tr)

≤ DBF
(
τk, Y⃗k, ty − (tr − (ρk,l + Yk,l))

)
−

l−1∑
α=1

Ck,α

≤ {By Lemma 3.2 and (35) and because∑l−1
α=1 Ck,α ≤

∑l−1
α=1 ϕk,α = ρk,l by (4) and (6)}

Uk (ty − (tr − (ρk,l + Yk,l))) + Ck,∗

(
1− Yk,∗

ϕk,∗

)
− ρk,l

= Uk(ty − tr) + Ukρk,l + UkYk,l + Ck,∗

(
1− Yk,∗

ϕk,∗

)
− ρk,l

≤ {Because Uk ≤ 1 and so Ukρk,l − ρk,l ≤ 0}

Uk(ty − tr) + UkYk,l + Ck,∗

(
1− Yk,∗

ϕk,∗

)
. (51)

Because no subjob in LP can be scheduled at or after tr,
Bk(tr) = 0.
Case 4. τk is executing a subjob in HP, Jk,l, at t−r , and
Jk,l has its PP before tr.

Since Jk,l’s PP is before tr and tr < ty , Jk,l is not Ji,j .
Thus, by precondition of the lemma, Jk,l’s response time must
be at most ρk,l + Yk,l + xk,l + Ck,l.

We define δ such that the remaining execution of Jk,l at tr
is Ck,l − δ. If Jk,l runs for its full WCET, then δ is equal to
Jk,l’s execution before tr. Otherwise, δ may be greater.
Jk,l finishes at tr +Ck,l − δ and has a response time of at

most ρk,l+Yk,l+xk,l+Ck,l, so Jk,l must have been released
no later than

(tr + Ck,l − δ)− (ρk,l + Yk,l + xk,l + Ck,l)

= tr − δ − ρk,l − Yk,l − xk,l. (52)

Thus, Wk(tr) must consist only of work from jobs released
after that time and with PPs at or before ty . We may exclude
work from subjobs of the same job preceding Jk,l, as they must
have finished before Jk,l began executing. We also exclude
the δ units of Jk,l’s work that are not part of its remaining
execution.

Note that the length of the interval [tr − δ − ρk,l − Yk,l −
xk,l, ty] satisfies

ty − (tr − δ − ρk,l − Yk,l − xk,l)

= (ty − tr) + δ + ρk,l + Yk,l + xk,l

≥ {Because tr < ty , ρk,l ≥ 0, and δ ≥ 0 by definition
and xk,l ≥ 0 by precondition of lemma and Def. III.1}
Yk,l

≥ {By Lemma 3.1}
Yk,∗ − ϕk,∗ + ϕk,l

≥ Yk,∗ − ϕk,∗, (53)

so Lemma 3.2 may be used to bound the demand created in
the interval. Therefore we have

Wk(tr)

≤ DBF
(
τk, Y⃗k, ty − (tr − δ − ρk,l − Yk,l − xk,l)

)
−

l−1∑
α=1

Ck,α − δ

≤ {By Lemma 3.2 and (38) and because∑l−1
α=1 Ck,α ≤

∑l−1
α=1 ϕk,α = ρk,l by (4) and (6)}

Uk (ty − (tr − δ − ρk,l − Yk,l − xk,l))

+ Ck,∗

(
1− Yk,∗

ϕk,∗

)
− ρk,l − δ

= Uk(ty − tr) + Uk(ρk,l + δ) + UkYk,l + Ukxk,l

+ Ck,∗

(
1− Yk,∗

ϕk,∗

)
− (ρk,l + δ)

≤ {Because Uk ≤ 1 so Uk(ρk,l + δ) ≤ ρk,l + δ}

Uk(ty − tr) + Uk(Yk,l + xk,l) + Ck,∗

(
1− Yk,∗

ϕk,∗

)
(54)

Because no subjob in LP can be scheduled at or after tr,
Bk(tr) = 0.

Total remaining work at tr: By definition of tb, and
because tb does not exist, at most U+−1 tasks can be in Cases
3 or 4. All other tasks must be in Case 1 or Case 2. By (51)
and (54), Case 3 cannot cause Wk(tr) + Bk(tr) greater than
Case 4. Additionally, Case 2 cannot cause Wk(tr) + Bk(tr)
greater than Case 3 (and thus Case 4) because

Uk(ty − tr) + UkYk,l + Ck,∗

(
1− Yk,∗

ϕk,∗

)
≥ {Because Uk ≥ 0, ty − tr = Υi,j ≥ 0}

UkYk,l + Ck,∗

(
1− Yk,∗

ϕk,∗

)
≥ {Adding Ck,l − Ck,l = 0

and rearranging using Uk = Ck,l/ϕk,l}

Ck,l + Ck,∗

(
1− Yk,∗

ϕk,∗

)
− Ck,l

(
1− Yk,l

ϕk,l

)
≥ {By definition of τk,∗ from (19)}

Ck,l.

Thus, W (tr) can be upper-bounded by selecting the set M of
U+ − 1 tasks maximizing∑

τk∈M

(
Uk(ty − tr) + max

τk∈τ

{
UkCmax + Sk(Y⃗k),

Uk max
τk,l∈τk

{Yk,l + xk,l}+ Ck,∗

(
1− Yk,∗

ϕk,∗

)})
+

∑
τk∈τ\M

(
Uk(ty − tr) + UkCmax + Sk(Y⃗k)

)
=

∑
τk∈τ

Uk(ty − tr) +
∑
τk∈τ

Sk(Y⃗k) +
∑
τk∈τ

UkCmax

+
∑

τk∈M

max

{
0, Uk max

τk,l∈τk
{Yk,l + xk,l}

+ Ck,∗

(
1− Yk,∗

ϕk,∗

)
− UkCmax − Sk(Y⃗k)

}
= {By the definitions of Vi(x⃗i, Y⃗i) and G(x⃗, Y⃗)

in (25) and (26)}∑
τk∈τ

Uk(ty − tr) + S(Y⃗) +G(x⃗, Y⃗). (55)

If a processor becomes available for Ji,j during [tr, t, y], no
work that can interfere with Ji,j must remain at ty . Otherwise,
if all processors are busy during [tr, t, y], exactly m(ty − ty)
units of work complete during the interval, so

W (ty) +B(ty) = W (ty) +B(ty)−m(ty − ty)

≤ {By (55)}∑
τk∈τ

Uk(ty − tr) + S(Y⃗) +G(x⃗, Y⃗)

−m(ty − ty)

≤ {Because
∑

τk∈τ Uk ≤ m by (7)}
S(Y⃗) +G(x⃗, Y⃗)

≤ {Because Hi,j ≥ 0 by its definition in (27)}
S(Y⃗) +G(x⃗, Y⃗) +Hi,j .

Thus, the lemma is satisfied.

APPENDIX C
BOUND OPTIMIZATION VIA LINEAR PROGRAMMING

In this section, we use the linear-programming technique of
Erickson et al. presented in [3] to formulate our response-time
bounds into a linear program. The linear program presented in
this section may be used to calculate a compliant vector x⃗ for
a given task set and assignment of PPs, and thus response-time
bounds under CVA. The linear program may also be used in
combination with objective functions that optimize for given
criteria to choose PP assignments Y⃗ optimal under CVA.

Throughout this section, variables with a subscript i or i, j
(e.g., Ui, Yi,j) each refer to one variable or constant for each
task or subtask (e.g., constant Ui for each task, variable Yi,j

for each subtask). We consider xi,j , Yi,j , Si, Ssum, G, and
Hi,j as variables. We also introduce auxiliary variables si, a,
bi, c, and di. All other values are currently considered to be
constants (i.e., ρi,j , Ui, Ci,j , Ci,max, Cmax, ϕi,j , Di, U+, and
m).

Constraint Set 1. The linear constraints corresponding to the
definition of x⃗ in Def. III.1 are given by

∀i, j : xi,j ≥
Ssum +G+Hi,j − Ci,j

m
xi,j ≥ 0

∀i, j such that j < fi :

Yi,j + ρi,j + xi,j + Ci,j

≤ Yi,j+1 + ρi,j+1 + xi,j+1 + Ci,j+1

∀i : Yi,fi + ρi,fi + xi,fi + Ci,fi ≤ Ti + Yi,1 + xi,1

Constraint Set 2. The linear constraints corresponding to the
definition of Si(Y⃗i) in (18) are given by

∀i, j : Si ≥ 0; Si ≥ Ci,j(1− Yi,j/ϕi,j).

Constraint Set 3. The linear constraint corresponding to the
definition of S(Y⃗) in (20) is given by

Ssum =
∑
τi∈τ

Si.

Constraint Set 2 ensures

Si ≥ Si(Y⃗i). (56)

By (56), Constraint Set 3 ensures

Ssum ≥ S(Y⃗). (57)

Constraint Set 4. The linear constraints corresponding to the
definition of Vi(x⃗i, Y⃗i) in (25) are given by

∀i, j : Vi ≥ Ui (Yi,j + xi,j) + si − UiCmax − Si

Vi ≥ 0

∀i, j : si ≥ Ci,j − UiYi,j .

Note that the auxiliary variable si satisfies

si ≥ Ci,∗

(
1− Yi,∗

ϕi,∗

)
(58)

because

si ≥ max
τi,j∈τi

{Ci,j − UiYi,j}

= max
τi,j∈τi

{
Ci,j −

Ci,j

ϕi,j
Yi,j

}
= max

τi,j∈τi

{
Ci,j

(
1− Yi,j

ϕi,j

)}
= {By the definition of τi,∗ in (19)}

Ci,∗

(
1− Yi,∗

ϕi,∗

)
.

This gives us

Ui (Yi,j + xi,j) + si ≥ Ui (Yi,j + xi,j) + Ci,∗

(
1− Yi,∗

ϕi,∗

)
= Ui (Yi,j + xi,j) + Ci,∗ −

Ci,∗

ϕi,∗
Yi,∗

= {Rearranging using Ui = Ci,∗/ϕi,∗}
Ui (Yi,j − Yi,∗ + xi,j) + Ci,∗

= Vi(x⃗i, Y⃗i).

Thus, Constraint Set 4 ensures

Vi ≥ Vi(x⃗i, Y⃗i). (59)

Constraint Sets 5 and 6, corresponding to G(x⃗, Y⃗) and
Hi,j(Yi,j), respectively, are formulated using a technique
adapted from [16]. Erickson et al. provides a detailed ex-
planation of the technique in [3]. This technique allows
efficient calculation of expressions that are the sum of the
“k largest” function values without the use of mixed-integer
linear programming or an overbearing number of constraints.

Constraint Set 5. The linear constraints corresponding to the
definition of G(x⃗, Y⃗) in (26) are given by

G = a(U+ − 1) +
n∑

i=1

bi

a ≥ 0

∀i : bi ≥ Vi + UiCmax + Si − a

∀i : bi ≥ 0.

Constraint Set 5 sets G to be at least the sum of the U+−1
largest Vi − UiCmax + Si. Thus, by (56) and (59), Constraint
Set 5 ensures that

G ≥ G(x⃗, Y⃗). (60)

Constraint Set 6. The linear constraints corresponding to the
definition of Hi,j(Yi,j) in (27) is given by

Hi,j = ci,j(m− U+) +
n∑

i=1

di,j,k

ci,j ≥ 0

∀k such that τk ∈ τ : di,j,k ≥ Ck,max − Yi,j − ρi,j − ci,j

∀k such that τk ∈ τ : di,j,k ≥ 0

Constraint Set 6 ensures that

Hi,j ≥ Hi,j(Yi,j). (61)

Constraint Set 7. The linear constraints corresponding to the
definition of relative PPs in (11) and (12) are given by

∀i, j :Yi,j ≥ −ρi,j

∀i, j such that j < fi :Yi,j ≤ Yi,j+1.

Constraint Set 7 is unnecessary if one wishes to analyze a
fixed, given assignment of PPs, and thus view Y⃗ as constant.
Otherwise, setting each Yi,j as a variable and using Constraint
Set 7 allows one to find the PPs optimal under CVA.

By (56)-(61), 1-6 ensure that x⃗ is a compliant vector.

A. Optimization Criteria

In this subsection, we show objective functions, and at times
additional constraint sets, to be used with Constraint Sets 1-
6 to find optimal PP assignments under CVA with respect to
alternative criteria.

The following criteria were originally described and moti-
vated in [3]. Each criterion aims to minimize some lateness
metric, and are denoted with two letters inidicating the type of
lateness to be minimized. The first letter is “A” for average or
“M” for maximum. The second letter is “L” for lateness and
“P” for proportional latness.

a) Minimizing Maximum Lateness: ML: The following
linear program minimizes the maximum lateness bound under
CVA.

Minimize: Lmax
Subject to: ∀i, Lmax ≥ ρi,fi + Yi,fi + xi,fi + Ci,fi −Di,fi

Constraint Sets 1-7

b) Minimizing Average Lateness: AL: For systems where
it is desirable to decrease the lateness bounds of all tasks in
the system, the following linear program minimizes average
lateness bounds under CVA.

Minimize:
∑
τi∈τ

(ρi,fi + Yi,fi + xi,fi)

Subject to: Constraint Sets 1-7

c) Minimizing Average Lateness from Smallest Maximum
Lateness: ML-AL: While the ML criterion achieves the small-
est maximum lateness bound under CVA, it may be possible
to further reduce the lateness bounds of some tasks without
altering the maximum lateness bound for the system. Let Lmax
denote the maximum lateness bound obtained by solving the
linear program under ML.

The following linear program minimizes the average late-
ness under CVA while maintaining the same maximum late-
ness bound under ML.

Minimize:
∑
τi∈τ

(Yi,fi + xi,fi)

Subject to: ∀i, ρi,fi + Yi,fi + xi,fi + Ci,fi −Di,fi ≤ Lmax
Constraint Sets 1-7

d) Minimizing Maximum Proportional Lateness: MP: In
systems where tasks with longer relative deadlines can permit
more tardiness, it may be desirable to minimize proportional
lateness. We define the auxiliary variable Imax corresponding
to the maximum proportional lateness for the task system.

The following lienar program minimizes maximum propor-
tional lateness under CVA.

Minimize: Imax

Subject to: ∀i, Imax ≥ ρi,fi + Yi,fi + xi,fi + Ci,fi −Di

Di
Constraint Sets 1-7

While not described in this section, minimizing average
proportional lateness (AP) can be defined in a similar way
as AL. MP-AP and ML-AP can also be defined similar to
ML-AL.

APPENDIX D
ADDITIONAL EXPERIMENT GRAPHS

In this section, we include a selection of graphs from our
experiments described in Sec. IV. Fig. 10 - 12 illustrate results
for task sets with uniformly selected per-task utilization and
high preemption-point frequency. Fig. 13 - 15 illustrate results
for bimodally selected utilizations and high preepmtion-point
frequency. Finally, Fig. 14, 16, and 17 illustrate results for task
sets with bimodal, moderate per-task utilizations with varying
preemption-point frequencies.

APPENDIX E
ERRATA

Errata from the version of this paper published in 2023
IEEE 29th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA) [17] are
listed in Tab. II. These errors have been corrected in the full
version of the paper [14].

TABLE II
ERRATA IN RTCSA 2023 PROCEEDINGS VERSION [17]

Page Description
p. 121 In Fig. 4, the length of the time interval from tr to ty is depicted to have length Yi,j . The correct length

is given by ρi,j + Yi,j or, equivalently, Υi,j .
p. 121 Immediately before the introduction of Lem. 3.4, we state, “We begin by bounding W (tL) + B(tL),

the amount of work in HP ∪ LP at tL.” tb should take the place of tL in this sentence.
p. 121 In paragraph 2 of Case 1 of the proof of Lem. 3.4, “Each such subjob must have begun executing no

later than tb −Cmax” should instead read, “Each such subjob must have begun executing no earlier than
tb − Cmax.”

Fig. 10. Maximum and mean lateness bounds (upper and lower graphs,
respectively) for uniform, light utilization, medium period, high preemption-
point frequency task sets, averaged over 250 trials.

Fig. 11. Maximum and mean lateness bounds (upper and lower graphs,
respectively) for uniform, moderate utilization, medium period, high
preemption-point frequency task sets, averaged over 250 trials.

Fig. 12. Maximum and mean lateness bounds (upper and lower graphs,
respectively) for uniform, heavy utilization, medium period, high preemption-
point frequency task sets, averaged over 250 trials.

Fig. 13. Maximum and mean lateness bounds (upper and lower graphs,
respectively) for bimodal, light utilization, medium period, high preemptiive-
point frequency task sets, averaged over 250 trials.

Fig. 14. Maximum and mean lateness bounds (upper and lower graphs,
respectively) for bimodal, moderate utilization, medium period, high
preemption-point frequency task sets, averaged over 250 trials.

Fig. 15. Maximum and mean lateness bounds (upper and lower graphs,
respectively) for bimodal, heavy utilization, medium period, high preemption-
point frequency task sets, averaged over 250 trials.

Fig. 16. Maximum and mean lateness bounds (upper and lower graphs, re-
spectively) for bimodal, moderate utilization, medium period, low preemption-
point frequency task sets, averaged over 250 trials.

Fig. 17. Maximum and mean lateness bounds (upper and lower graphs, re-
spectively) for bimodal, moderate utilization, medium period, non-preemptive
task sets, averaged over 250 trials.

