
Want Predictable GPU Execution? Beware SMIs!
Rohan Wagle∗, Zelin Tong∗, Richard L. Sites†, and James H. Anderson∗

∗Department of Computer Science
The University of North Carolina at Chapel Hill

†Google Emeritus

Abstract—It is common practice today to design complex
safety-critical systems by repurposing hardware and software
components originally designed for other contexts and using
such components in a “black-box” fashion. However, if a black
box’s inner workings are not fully understood, then this can be
unsafe. This paper reports on an investigation pertaining to a
black box that is important for autonomous systems, namely
NVIDIA’s CUDA GPU framework. This investigation was moti-
vated by certain timing glitches in CUDA kernels reported in the
literature. After extensive tracing and testing efforts, the culprit
causing these glitches was surprisingly found to be not CUDA-
related at all, but rather delays due to system management
interrupts (SMIs), a known source of timing unpredictability
on x86 machines that is rarely if ever mentioned in work on
real-time GPU usage. The effects of these SMIs are invisible to
the operating system and can cause all cores on an x86 machine
to become unavailable for over 20ms! This paper describes
the methods used to uncover this timing-glitch source. It also
discusses some lessons learned when trying to validate the timing
behavior of black-box components.

I. INTRODUCTION

In work on safety-critical embedded systems, the introduc-
tion of AI-based autonomous features ranks as a fundamental
sea change. The potential impact here can best be seen in the
automotive industry, where companies are fiercely competing
to field ever more sophisticated autonomous features in their
product lines. The hoped for culmination of this competition
is full autonomy at mass-market scales. The stakes here are
high: the companies (and countries) that get there first will be
in a commanding position to influence how autonomy-related
capabilities evolve for decades to come. This high-stakes
competition has resulted in significant pressure to innovate
quickly with respect to key technologies for autonomy, such
as perception and decision-making capabilities.

Enabling innovation: the “black-box” approach. This pres-
sure to innovate quickly has led to a “black-box” approach to
system design, with off-the-shelf software and hardware com-
ponents, originally intended for other contexts, repurposed
for safety-critical settings. In the automotive domain, two no-
table examples of repurposed black-box components are ROS
(the Robot Operating System) [10], and NVIDIA’s CUDA
API [25], which facilitates using NVIDIA GPUs to accelerate
mathematical computations common of AI applications.

While this black-box approach can speed innovation, it can
also lead to unsafe system designs if a black box’s inner
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workings are not fully understood. While this statement may
seem self-evident with respect to logical correctness, it is also
true of temporal correctness, i.e., that black-box computations
predictably complete within specified time limits. Although
black-box design approaches certainly did not originate with
work on autonomy, the ubiquitous usage of such approaches
in work on this topic raises disturbing safety concerns.

Focus of this paper. This paper reports on an investigation
undertaken to peer inside CUDA, an important black box for
autonomy. This investigation was motivated by rare “timing
glitches” observed in prior work by our group [13], wherein
certain CUDA functions took several orders of magnitude
longer than usual to complete. Such glitches have also been
reported by others on online developer forums [7], [11],
[12]. We are also aware of one autonomous-driving company
(which we cannot name due to privacy concerns) where large
GPU execution-time variations were seen in a vehicle under
test.

In this paper, we examine the CUDA-related timing glitches
reported in [13], and explain various hypotheses we for-
mulated concerning these glitches. We also elucidate the
experimental tools and processes we used to confirm or refute
each hypothesis. Parts of the CUDA framework are closed-
source, so understanding its functioning in depth can be
challenging; we explain how we addressed such challenges.
We also cover various lessons learned in this effort that may
be useful to others wishing to peer inside other important
black boxes.

Summary of our findings. Our investigation extends the
initial examination of the timing glitches reported in [13].
We initially suspected the CUDA runtime, or one of its
dependency libraries, as the culprit. To pinpoint the source
of the problem, we performed extensive tracing, using the
KUtrace tracing framework [29], of the CUDA application
considered in [13]. This provided a clearer picture of the inter-
nal operations within the application and the CUDA runtime,
but the complexity of the application’s code stymied attempts
to find simple answers. This led us to seek a minimal example
CUDA program that exhibits the latency, while using only a
few instructions. The minimal example program eventually
revealed that the latency can affect any x86 application, not
just CUDA programs (which was a surprise to us). After
much effort, we eventually uncovered the true culprit: sys-
tem management interrupts (SMIs) associated with a hidden
motherboard firmware management routine that monitors and



controls fan speed. This routine is completely invisible to the
operating system (OS), and may arbitrarily preempt all CPUs
on the system simultaneously, while maintaining complete
control over the system for over 20ms!

The potential for SMIs to disrupt real-time workloads
on x86 machines is an issue that has been known for at
least two decades [24] and is mentioned in documentation
from Red Hat [3] and RT Linux [4]. However, due to the
complex and black-box nature of the CUDA framework,
it may contain many unknown sources of latency. Thus,
SMI-induced latencies may easily be attributed to CUDA
mistakenly. This can misdirect debugging efforts from finding
true latency sources. Despite the well-documented disruptive
nature of SMIs, their potential impact on CUDA seems to
be not widely appreciated. Indeed, while a wealth of papers
have been written where worst-case GPU kernel execution
times are a subject of consideration (an up-to-date citation
list, which we omit here due to space constraints, can be
found [15]), we are aware of no such papers that mention the
impact of SMIs. The primary contribution of this paper lies
in documenting this impact, so that others working on real-
time GPU-enabled systems will be aware of it. A secondary
contribution lies in discussing techniques that can be applied
to black-box system components (even closed-source ones) to
understand their timing behavior.

Organization. In the rest of this paper, we provide necessary
background (Sec. II), discuss the research agenda we followed
to discover the source of the timing glitches reported in [13],
and provide further detail on this latency source (Sec. III).
Then, we discuss the broader implications of our investigation
(Sec. IV), explain the necessity of documenting SMIs as a
CUDA latency source (Sec. V), and conclude (Sec. VI).

II. BACKGROUND

In this section, we provide relevant background informa-
tion.

A brief introduction to CUDA. NVIDIA developed the
CUDA platform and API to facilitate GPU acceleration of
non-graphics-related computing tasks. The general structure
of a CUDA program is as follows: (i) allocate necessary
memory on the GPU; (ii) copy input data from the CPU to
the GPU; (iii) execute a GPU program called a kernel; (iv)
copy the results from the GPU back to the CPU; (v) free
unneeded memory. The API functions that implement these
operations are provided by NVIDIA in the form of a runtime
library. Later in this section, we provide additional details
concerning CUDA that are relevant to our investigation.

TimeWall. This paper was motivated by GPU-related timing
glitches noticed by our group in work on a framework
called TimeWall [13]. Thus, a brief description of TimeWall
is in order. TimeWall is a Linux-based (more precisely,
LITMUSRT-based [8]) framework for isolating modular soft-
ware components on a multicore platform augmented with
GPUs as computational accelerators. Each component encap-
sulates a real-time workload. For the sake of understanding

Device GPU CPU
Statistic max 99.9th 99.95th 99.99th max
Kernel1 27 154 161 1342 1391
Kernel2 42 146 148 163 1388

TABLE I: Kernel execution times (in microseconds) for two
different kernels as measured on the GPU (using nvprof)
and on the CPU (using clock_gettime()) [13].

our investigation, it is sufficient to know that for TimeWall
to ensure temporal correctness, it requires knowledge of the
execution times of each GPU computation, including the time
required to launch it from the CPU, execute it on the GPU,
and then transmit its results back to the CPU.

High tail latencies. In [13], a sample CUDA application,
Histogram of Oriented Gradients (HOG), was instrumented
to work within the TimeWall framework. To determine the
application’s execution time, a measurement-based approach
was used. The considered GPU kernels typically required
tens of microseconds to execute on the GPU itself. Naturally,
when measuring the full execution time of a GPU kernel on
the CPU (which adds the overhead time of launching it and
obtaining its results), increased values were seen. At quite
high percentiles (99.9th to 99.95th ), a reasonable extent of
increase was noted, but when moving to worst-case observed
values (which may not even be true worst-case values), large
increases of almost two orders of magnitude were seen. Tbl. I
shows some example data that was reported as part of that
investigation that illustrates this increase. Our work in this
paper is directed at understanding the reason for the high tail
latencies in this execution-time distribution data.

Tail-latency sources. [13] describes a cursory investiga-
tion into the source of these tail latencies that was per-
formed. It was found that the latencies were attributed
to two CPU-bound functions inside the closed-sourced
CUDA runtime API library, namely, cudaLaunchKernel,
which is responsible for initiating CUDA kernels, and
cudaStreamSynchronize, which awaits kernel comple-
tion. Fig. 1 illustrates the scenarios where these functions
were seen to incur significant latency.

Ruled-out causes. In the initial investigation, several steps
were taken to rule out certain possible latency sources.
First, interrupt-related causes were eliminated by directing all
maskable interrupts to dedicated CPU cores not involved in
GPU work. Second, various power-management causes such
as CPU frequency scaling and low-powered CPU states (C-
states) were ruled out by disabling such features in the BIOS
and the OS kernel. Finally, thermal throttling was ruled out
as a cause by monitoring core frequencies in the experiments.

Tail-latency mitigation. In TimeWall, high tail lantencies
are mitigated via a GPU budget-enforcement mechanism that
aborts any computation that runs for too long. While budget
enforcement is always advisable for safety, fully understand-
ing why these latencies occur would obviously be desirable.

Further CUDA details. CUDA provides an API for sup-



//
CPU

GPU

latency

CPU Execution

Launch Kernel

Stream Sync

GPU Execution

(a) An anomalous cudaLaunchKernel call.

//
CPU

GPU

latency

(b) An anomalous cudaStreamSynchronize call.

Fig. 1: High-latency scenarios in TimeWall.

porting GPU operations (data copies and kernel launches),

known as the CUDA User-Space Driver API, referred to here

as CUDA-UDA for brevity. CUDA-UDA is distributed as a

shared-object library file, libcuda.so, with the standard

NVIDIA GPU driver. User-space applications link to this

library file to use CUDA-UDA. However, while CUDA-UDA

provides fine-grained GPU control, writing CUDA applica-

tions using it directly can be tedious, as this requires setting

up and managing several GPU data structures. To alleviate

developers from this, NVIDIA provides the CUDA runtime
API, which wraps CUDA-UDA to automatically handle the

tedious GPU set-up and management chores. We henceforth

refer to the CUDA runtime API as CUDA-RT for brevity.

CUDA-RT is distributed as a linkable shared-object library,

libcudart.so, separate from the NVIDIA GPU driver

installation package. As the latency could have been caused

by either interface, it was important in our investigation

that we study both separately. Given that the latencies were

observed in CUDA-RT functions, cudaLaunchKernel and

cudaStreamSynchronize, it was important that we un-

derstood how they wrap functions in CUDA-UDA.

These interactions take place within the broader context

illustrated in Fig. 2. At the base, the NVIDIA GPU kernel

module for Linux facilitates communication between the CPU

and GPU. Sitting atop the NVIDIA GPU kernel module

is CUDA-UDA. It acts as an interface between user-space

applications and the GPU kernel driver. Data and CUDA

kernel functions given to CUDA-UDA are relayed to the

NVIDIA GPU kernel driver for transmission to the GPU.

User-space applications communicate with CUDA-UDA by

linking to its shared-object library file, which contains an

implementation of CUDA-UDA’s functions. Similar to using

CUDA-UDA, user-space applications may use CUDA-RT by

linking to its shared-object library file, which contains the

runtime functions’ implementation. As noted above, user-

space applications may use CUDA either through CUDA-

UDA or CUDA-RT.

KUtrace. In order to obtain an understanding of CUDA’s tim-

ing behavior, we relied heavily on a powerful tracing frame-

work called KUtrace. KUtrace is a low-overhead software
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Fig. 2: CUDA architecture overview.

tracing tool that records every transition between kernel- and

user-mode execution on every CPU core of a running com-

puter system—all system calls and returns, interrupts/returns,

faults/returns, and context switches. KUtrace also supports

the tracking of user-placed markers. Post-processing turns the

transitions and marker occurrences into timelines showing

exactly what is executing on each core every nanosecond.

KUtrace is implemented via a small number of Linux kernel

patches. Total trace overhead is well under 1%, so it is

usable with minimal distortion in real-time systems. Its use

is described in [29] and its implementation in [28].

III. INVESTIGATION

In this section, we present an overview of the investigation

we conducted to identify the source of the high latencies

seen in [13] as summarized in Tbl. I. Our investigation pro-

ceeded in three phases. Initially, we sought to simply broaden

the cursory investigation reported in [13], by systematically

considering as many potential latency sources as seemed

plausible, within HOG. However, the HOG code base proved

to be so complex, it became clear to us that it would never

be possible to exhaustively list (or maybe even identify) all

plausible latency sources affecting it. This led us to take a

new direction: finding a minimal CUDA sample program that

is subject to the high latencies. This shift in focus allowed us

to ultimately pinpoint SMIs as the true high-latency culprit.

A. Broadening the Initial TimeWall Investigation

In [13], the CUDA-RT functions cudaLaunchKernel
and cudaStreamSynchronize were both subject to high

latencies, so these functions were our initial focus. Power

management and thermal throttling were already ruled out as

latency sources in [13], so we did not consider them further

(although the ultimate culprit proved to be “hidden” code

connected to thermal issues). Although interference due to

maskable interrupts had also been ruled out as a source, as

we shall see, interrupts did become part of our investigation.

The TimeWall framework actually manages GPU kernel

execution so that only one kernel may execute at a time.

That is, concurrent invocations of cudaLaunchKernel
and/or cudaStreamSynchronize cannot happen. How-

ever, taken together, CUDA-RT and CUDA-UDA form a com-

plex software system that is subject to concurrency issues—

like an OS, different components of this software, perhaps



executing on different cores, must presumably need to update
and access shared state, using locking protocols in doing so.
Noting this, we initially suspected that high latencies could
be caused by improper lock usage, or a bug in the lock
implementation. Perhaps different components within CUDA
are subject to deadlock, or a component neglects to release
a lock, which is later resolved by a timeout in the locking
function or some watchdog routine? This line of thinking led
us to formulate the following hypothesis.

Hypothesis 1. The high latencies observed in [13] were the
result of improper lock usage in CUDA-RT or CUDA-UDA,
or a bug in their underlying lock implementation.

The high latencies seen in [13], while rare, do tend to
occur regularly. Their regular occurrence led us to postulate
an alternate latency source: perhaps CUDA engages in the
deferred cleanup of GPU resources through garbage collection
on some regular basis. This line of thinking led to the
following hypothesis.

Hypothesis 2. The high latencies observed in [13] were the
result of intermittent garbage-collection operations occurring
in CUDA-RT.

Our initial investigative efforts focused entirely on attempt-
ing to validate (or refute) Hyps. 1 and 2 for the function
cudaLaunchKernel (we had planned to consider cuda-
StreamSynchronize as well, but never actually got to it,
as the latency source was later found to be not CUDA-related).

We used the same hardware configuration as in [13].
The platform we used is a Dell Precision 7920 2-socket
motherboard running BIOS version 1.9.0, with an eight-
core 2.10-GHz Intel Xeon Silver 4110 processor per socket,
and one NVIDIA Titan V GPU. The software environment
consists of the TimeWall code base (of course) running on the
5.4.0-rc7 LITMUSRT kernel [8], [16], [17], which patches the
5.4.0-rc7 Linux kernel to allow different real-time scheduling
algorithms and synchronization protocols to be defined as plu-
gins. To ensure more predictable code execution, we disabled
simultaneous multi-threading (i.e., HyperThreading), directed
all maskable interrupts to cores not involved in GPU work,
and disabled BIOS and OS features for power-management,
such as C-states and frequency scaling, as in [13]. Timer
interrupts were configured to occur every 4ms (250Hz). After
reproducing the TimeWall environment, we were able to
run the HOG application and observe the high latencies as
were observed in [13]. However, now we sometimes observed
latencies of up to 21 ms! We will consider this in detail later.

Given the rare appearance of these latencies, a manual
step-by-step examination of CUDA-RT instructions during
execution with a traditional debugger, like gdb, is infeasible.
Tools like gdb are not clairvoyant: they cannot be set to
trigger before an event occurs. This prevented us from using
breakpoints to examine program state at the time of a latency
occurrence. Consequently, we leveraged the event-marker
functionality of KUtrace [28], [29], also used in [13], to
instrument the HOG code. Using this approach, we were

able to easily identify when a high latency occurs. Whenever
such a latency occurs, KUtrace provides the relevant context
surrounding it, potentially enabling us to capture its cause.

Understanding CUDA lock usage. We began our investiga-
tion by testing Hyp. 1. To that end, we needed to instrument
the CUDA-RT functions with KUtrace event markers at every
occurrence of a locking operation. However, each of these
functions is implemented in a closed-source shared-object
library (libcudart.so). Therefore, we could not simply
inspect its source code to learn how it uses locks, or edit it to
add trace markers. We needed to find a way of circumventing
these closed-source limitations.

We did this by first surveying CUDA-RT’s shared-object
file, libcudart.so, for clues regarding the types of
locks and the specific lock-implementation library the API
uses (if any). To accomplish this, we used ldd to list the
libraries CUDA-RT’s source code dynamically links to.
By means of this approach, we found the shared object
pthread.so to be one of the API’s dependencies. This
led us to conjecture that CUDA-RT uses pthread locks for
synchronization. An object dump of the symbols contained
in libcudart.so confirmed that it calls the pthread mutex
and read/write (rwlock) functions. As the pthread library
provides both mutex and rwlocks to CUDA-RT, we proceeded
to intercept the pthread locking functions for both mutexes
and rwlocks to instrument them with KUtrace markers.
These functions included: pthread_rwlock_rdlock,
pthread_rwlock_wrlock, pthread_mutex_lock,
and and their respective unlocks.

Intercepting pthread functions. To intercept calls to pthread
locking functions from cudaLaunchKernel, we created
“shim” versions of these pthread functions, and forced
cudaLaunchKernel to call them, instead of the authentic
pthread library. To implement this, we created a shared-object
library containing the shim functions with identical names
and argument lists as the corresponding authentic pthread
locking functions. By setting the LD_PRELOAD environment
variable to our shared-object file, we ensured that it was
loaded first, thus making our shim versions of the pthread
locking functions the earlier entries in the program’s symbol
table. This forced any call made to a genuine pthread locking
function to instead call its shim counterpart.

Our shim pthread functions act as wrappers to the authentic
functions. Before and after calling an original pthread func-
tion, our counterpart shim function emits KUtrace markers
that output the function name and the lock address. This
enabled us to precisely monitor the timing and duration of
each invocation of a pthread lock inside of the CUDA-RT
code. The markers also enabled us to distinguish between
lock types and to identify the resources these locks protect.

Locking pattern in cudaLaunchKernel. We performed sev-
eral traces of HOG using this mechanism. We saw that in
the region surrounding a high-latency occurrence, cuda-
LaunchKernel runs in the only scheduled process at this



(a) High latency occurring inside of a call to
pthread_rwlock_unlock. Shown is a timeline of CPU
1 from 752.3ms to 753.8ms within a two-minute trace. The
horizontal black line is the idle process, and the multi-color
horizontal bar is user-mode execution of HOG. The orange-stripe
overlay is the extra ∼1ms delay. The labels pulk and /pulk are
inserted into the trace by shim code, showing that the latency is
inside the unlock.

(b) High latency occurring in the CUDA-RT code, between the end
of an unlock call (/pulk) and the beginning of a write lock call
(pwrlk), i.e., outside the locking code.

Fig. 3: Two KUtrace simplified snippets showing timelines of events
around an occurrence of high latency. “pulk” is an abbreviation for
pthread_rwlock_unlock and “pwrlk” is an abbreviation for
pthread_rwlock_wrlock.

time. This eliminated the possibility of multiple threads
contending for a lock, but did not necessarily invalidate
Hyp. 1, as erroneous lock usage (e.g., failing to release a lock)
was not precluded. We found that cudaLaunchKernel
executes with the following lock pattern. A rwlock is write-
locked using pthread_rwlock_wrlock, and then imme-
diately unlocked. This rwlock lock/unlock sequence occurs
64 times, before returning.1 In our traces, we observed
two latency-occurrence categories, shown in Fig. 3. Fig. 3a
exemplifies the first category: high latency occurs inside a
pthread_rwlock_unlock call. Fig. 3b exemplifies the
second category: high latency occurs inside cudaLaunch-
Kernel, in-between two pthread locking functions. Based
on this trace data, we made the following observation.

Observation 1. Within cudaLaunchKernel, high latency
can occur both inside and between pthread rwlock functions.

From Obs. 1, high latencies can occur in-between calls to
the pthread library (i.e., within the CUDA-RT code itself).
If Hyp. 1 were the sole latency cause, then high latency
would only occur inside of pthread locking functions, not
between them. Obs. 1 also has implications for Hyp. 2. If
Hyp. 2 were the sole latency cause, then high latency (due to
garbage collection) would only occur inside of a CUDA-RT
function, not within a pthread function. This leaves us with

1These rwlock function calls actually occur while holding an outer mutex
lock. We have avoided delving into that detail here to simplify the discussion.

two possibilities: either there are multiple latency sources,
i.e., both Hyps. 1 and 2 could be true, or high latency
is caused by some activity that is asynchronous to HOG.
For example, perhaps the GPU can generate a non-maskable
interrupt (NMI) (e.g., maybe as part of garbage collection)
across some or even all CPU cores while a single CPU is
executing within CUDA-RT or CUDA-UDA. We respected
Occam’s Razor and considered multiple error sources to be
less likely, so we continued to search for a single latency
source. This line of thinking led to a new hypothesis.

Hypothesis 3. High latencies can be caused by a GPU-
triggered NMI, which could be in response to some operation
in cudaLaunchKernel.

Narrowing down the problem scope. Since the job of
CUDA-RT is to mainly perform bookkeeping, we suspected
that any operation that could elicit an NMI response from
the GPU would be part of the underlying CUDA-UDA.
As high latencies were observed in cudaLaunchKernel,
which wraps the CUDA-UDA function cuLaunchKernel,
our prime suspect with respect to Hyp. 3 naturally be-
came cuLaunchKernel. Accordingly, we instrumented
cudaLaunchKernel with KUtrace markers, before and
after it calls cuLaunchKernel. If high latency were to
occur prior to the invocation of cuLaunchKernel, it would
indicate that any operation that elicited an NMI from the GPU
had occurred even before any CUDA-UDA code executes.
This would refute our suspicion that code within CUDA-UDA
is responsible for eliciting an NMI; it would instead point
to the bookkeeping operations performed by CUDA-RT in
cudaLaunchKernel before calling cuLaunchKernel.

Injecting markers. In order to surround cuda-
LaunchKernel’s calls to cuLaunchKernel with
KUtrace markers, we first attempted to intercept calls
to cuLaunchKernel, much like we did earlier with
shim functions. However, our shim technique requires that
function symbols be resolved at process initialization time.
Unfortunately, cudaLaunchKernel dynamically searches
and loads the CUDA-UDA function cuLaunchKernel at
runtime, so this technique could not be used.

We therefore turned to a code-injection technique to insert
our KUtrace markers. We added a routine at the beginning
of HOG to search its address space at runtime for calls to
cuLaunchKernel. We replaced all such calls with calls to
a custom function, while still passing the original arguments
meant for cuLaunchKernel.

The custom function was a secondary routine we created
also within HOG. It simply calls cuLaunchKernel, for-
warding the arguments it was passed, but emitting KUtrace
markers before and after the cuLaunchKernel call. This
technique allowed us to insert KUtrace markers whenever
cudaLaunchKernel calls cuLaunchKernel, despite
the hurdle of dynamic linking. Algs. 1 and 2 depict the
effective changes in cudaLaunchKernel, before and after
the marker injection technique was applied.



Trace results with injected markers. We performed several
traces of HOG after injecting markers. In each of these traces,
we found that any high latency that occurs always happens be-
fore cudaLaunchKernel calls cuLaunchKernel. Con-
sequently, we refined Hyp. 3 as follows.

Hypothesis 4. High latency can occur due to the processing
of a GPU-triggered NMI in response to some bookkeeping
operation in cudaLaunchKernel, performed before it
calls cuLaunchKernel.

Algorithm 1 Effective logic of cudaLaunchKernel before
marker injection

1: function cudaLaunchKernel
2: PerformBookkeeping()
3: cuLaunchKernel(SomeCUDAKernel)

Algorithm 2 Effective logic of cudaLaunchKernel after
marker injection

1: function cudaLaunchKernel
2: PerformBookkeeping()
3: CustomInjectedFunc(SomeCUDAKernel)

1: function CustomInjectedFunc(args)
2: KUtraceMarker(“CUDA-UDA start”)
3: cuLaunchKernel(args)
4: KUtraceMarker(“CUDA-UDA end”)

All indicators were pointing to bookkeeping instructions
within CUDA-RT as the high-latency source. To confirm
whether that was so, it behooved us to strip away the CUDA-
RT wrapper entirely, and use CUDA-UDA directly. However,
HOG is composed of almost 10,000 lines of code. Clearly,
reinstrumenting it to use CUDA-UDA directly would have
been a herculean task.

This motivated us to find a minimal set of CUDA instruc-
tions capable of experiencing high latency, but small enough
for us to easily reimplement with CUDA-UDA directly. If the
minimal program were to exhibit high latency when using
CUDA-RT, but not when using CUDA-UDA directly, then
Hyp. 4 would be verified. Moving to a minimal program like
this proved to be a major breakthrough in our investigation.
This was an important lesson learned for us in thinking about
the broader issue of trying to understand the timing behavior
of black-box software/hardware components.

B. Shifting to a Minimal Program
We were posed with the challenge of producing a CUDA-

RT program that can exhibit high latency, using a mini-
mal set of instructions. We had narrowed down the high-
latency source to be associated with the bookkeeping code of
cudaLaunchKernel, before it calls cuLaunchKernel.
Thus, we started searching for a minimal instruction set by
considering the characteristics of HOG we suspected could
be responsible for any latency in the bookkeeping operations.

First minimal program: round-robin kernels. One property
of HOG we suspected could cause high latencies in book-
keeping operations is its continual rotation through multiple

kernels. We observed that every time HOG launches a ker-
nel, it is different from the kernel it launched previously.
Furthermore, we knew that CUDA code is compiled into
GPU-architecture-specific microcode at runtime, using a just-
in-time (JIT) compiler. To avoid incurring the overhead cost
of the JIT compiler during each kernel launch, it would stand
to reason that such microcode is cached. Suspecting this,
we conjectured that rotating between different kernels each
launch may occasionally lead to launches of kernels whose
microcode is not cached. This would lead to longer-than-usual
launch times, which would appear as high latencies.

Following our caching theory, we conjectured that a set
of CUDA kernels, executed in a round-robin fashion, could
experience high latencies. Thus, our first attempt at a minimal
latency-impacted CUDA-RT program consisted of two dif-
ferent CUDA kernels, repeatedly executing in a round-robin
fashion, with KUtrace markers placed before and after each
kernel launch. This program is outlined in Alg. 3.

We immediately discovered that roughly one in 20,000
iterations of the loop in Alg. 3 incurred a 1.3ms latency.
This corresponds to both the magnitude and frequency of
the latencies observed in HOG as per Tbl. I. Our lucky first
attempt at a minimal CUDA program had yielded a program
that can experience the same high latencies as HOG! Having
this program put us into a position of being able to either
validate or refute Hyp. 4.

Algorithm 3 2 CUDA kernels executed back-to-back by the
CUDA runtime API

1: function kernel1 { ... }
2: function kernel2 { ... }
3: function CUDA-RT-Min-Example
4: for i = 1 to 100000 do
5: KUtraceMarker(“startK1”)
6: cudaLaunchKernel(kernel1)
7: KUtraceMarker(“endK1”)
8: KUtraceMarker(“startK2”)
9: cudaLaunchKernel(kernel2)

10: KUtraceMarker(“endK2”)

Algorithm 4 2 CUDA kernels executed back-to-back by
CUDA-UDA

1: function kernel1 { ... }
2: function kernel2 { ... }
3: function CUDA-UDA-Min-Example
4: cuCtxCreate() ▷ bookkeeping function
5: LoadCUDAKernel(kernel1)
6: LoadCUDAKernel(kernel2)
7: for i = 1 to 100000 do
8: KUtraceMarker(“startK1”)
9: cuLaunchKernel(kernel1)

10: KUtraceMarker(“endK1”)
11: KUtraceMarker(“startK2”)
12: cuLaunchKernel(kernel2)
13: KUtraceMarker(“endK2”)

Second minimal program: CUDA-UDA-only. Given our
minimal two-kernel program in Alg. 3, we had the means



Fig. 4: A delay of 21ms (orange stripes) while running Alg. 4.
Timelines for all 16 CPU cores are shown. Some OS kernel threads
are executing on four cores at the far right (colors of the horizontal
bars vary with process ID), and the rest are idle. The purple vertical
bars are timer interrupts delivered simultaneously to multiple cores.
The regular 4ms (HZ=250) spacing is lost during the delay, with five
timer interrupts completely skipped and one delivered to all cores
just after the unknown delay.

to verify whether CUDA-RT’s bookkeeping operations are
a high-latency source. To confirm whether this is so, we
replaced the CUDA-RT calls with CUDA-UDA calls, and
added bookkeeping functions required for CUDA-UDA-only
applications. Since Alg. 3 contains only two kernel calls and
just a handful of other instructions, this conversion task was
trivial. Alg. 4 outlines the CUDA-UDA-only program.

Following the conversion of our minimal program to use
CUDA-UDA only, we expected to validate Hyp. 4 by ob-
serving no high latencies. However, to our surprise, when we
ran Alg. 4, we observed high latencies as before. They still
occurred roughly one in 20,000 iterations, and lasted for about
1.3ms, but some were as high as 21ms, as depicted in Fig. 4.
We had unexpectedly refuted Hyp. 4.

Skipping timer interrupts. Slimming down our test applica-
tion from HOG to the minimal latency-impacted programs,
which allowed us to capture longer trace windows, had
the unintended consequence of revealing other unexpected
phenomena. The first phenomenon we witnessed is that
periodic timer interrupts in LITMUSRT stopped arriving in
their regular 4ms intervals during high-latency intervals. This
behavior is also shown in Fig. 4.

If only one timer interrupt was due to occur within a high-
latency interval, we observed that it would immediately be
handled at the end of that interval, with later timer interrupts
occurring as expected. However, if a high-latency interval
extended over 4ms, multiple timer interrupts were skipped.

Everything stops all at once. In our traces of HOG, we
only detected high latencies while HOG was the only running
process in the system. However, in our traces of Alg. 4,
we happened to capture instances of high latency with other
processes running in the background. This led us to observe
another unexpected phenomenon. When high latency occurs,
tasks on other cores also become “stuck” throughout the
duration of the latency. We further examined this phenomenon
by retracing HOG while intentionally executing it alongside
other processes. We saw from our traces, one of which is
shown in Fig. 5, that when an instance of high latency occurs,
non-CUDA processes across the system can also simultane-
ously experience high latency. This begs the question: is it

Fig. 5: Processes on all cores are affected by the high latency (or-
ange stripes). In addition to the test-program threads running sporad-
ically on core 5, there are unrelated processes running on cores, 12
(in:imklog), 14 (rs:mainQ), and 15 (systemd-journal).
The 1.24ms delay here is consistent with the maximum observed
HOG delays in Fig. 1.

reasonable to believe that a single CUDA application could
effectively delay all processes in the system, including kernel
threads, or is the true source of high latency something deeper
in the system?

C. Identifying the Latency Source

We were now faced with the task of finding a powerful yet
silent high-latency source. The source had to be privileged
enough to bring all CPUs to an abrupt halt for milliseconds
at a time, yet would not appear as an event in KUtrace.
As KUtrace detects events inside the OS kernel itself, this
suggested a latency source even “deeper” than the OS.

System management interrupts. There are only a handful of
latency sources that can evade even the OS’s supervision. One
such source are the system management interrupts (SMIs) and
their associated system management mode (SMM).

SMIs on x86 CPUs are used to switch the CPU to critical
hardware-management tasks such as thermal and power man-
agement routines. These routines are typically in the form of
closed-source firmware, which handles operations relating to
CPU temperature management, hardware-assisted debugging,
and emulation of legacy hardware devices [22, Chapter 25].
An SMI can be invoked by external hardware (often another
chip on the motherboard) via a specific input pin on the CPU,
but can also be invoked by the CPU itself through writing to
the CPU’s model-specific register (MSR) 0xb2.

When an SMI occurs, the CPU is preempted at the nearest
instruction boundary, and is placed into system management
mode (SMM) (ring -2). Inside SMM, all CPUs suspend nor-
mal operation until the hardware management routine finishes
execution on CPU 0. Consequently, the execution of this
routine is entirely opaque to the OS. When an SMI occurs, the
OS is preempted without warning, and subsequently resumed
after the SMM routine completes.

While these SMM routines should take only a few mi-
croseconds at worst, whether this expectation is met depends



entirely upon the hardware’s firmware developers. It is pos-
sible for the OS and all processes within to be asleep for
milliseconds at a time. We therefore suspected the following.

Hypothesis 5. High latencies are caused by excessively long
SMM routines, triggered by SMIs.

SMI Confirmation. To test Hyp. 5, we first confirmed SMIs
were regularly occurring on our system. To do so, we used the
Cyclictest package [2], which counts the number of SMI
occurrences within a fixed period of time by reading a specific
SMI-count MSR. Cyclictest revealed that our system
experiences six SMIs every second. Thus, SMIs could be
the high-latency culprit we had been seeking. To definitively
determine whether this is so, we modified Alg. 4 to log the
SMI count on each iteration of its loop. A KUtrace marker
was then placed each time the SMI count increased. In the
KUtrace output, we observed that high latencies were always
immediately followed by an increase in the SMI count. This
validated Hyp. 5, confirming that SMIs were the true high-
latency culprit. However, this begged the question: what was
triggering these SMIs and what SMM routine is responsible
for the high latency?

Revisiting prior assumptions. Motivated by these questions,
we turned our attention to investigating two common sources
of SMIs: routines for triggering power management and
thermal throttling. As part of this, we were forced to revisit
our initial assumptions born out of the original TimeWall
investigation [13]. As in that investigation, we had ensured
that power-management features such as CPU frequency
scaling and C-states were disabled in both the OS kernel
and BIOS. However, the investigation in [13] eliminated
thermal throttling as a latency culprit through the continuous
monitoring of CPU frequency. This reflects the reasonable
assumption that thermal throttling does not just occur “out of
the blue,” beyond the purview of the OS, causing CPUs to stall
for up to tens of milliseconds. Thinking now that categorically
discounting thermal management as a latency source might
have been ill-advised, we hypothesize the following.

Hypothesis 6. The high latency-causing SMIs are triggered
by intermittent thermal-management from the motherboard.

Temperature monitoring. To test Hyp. 6, we turned to the
lm-sensors [9] package to monitor hardware states, such
as CPU temperature and CPU fan speed. However, during the
execution of Alg. 4, we saw that, in addition to the sporadic
occurrence of high latency, additional high latencies coincided
with lm-sensors querying hardware states. This discovery
led us to suspect that lm-sensors was manually invoking
SMIs. Given that the length of the high latencies during
lm-sensors’ queries are in the order of milliseconds, we
hypothesized that lm-sensors and the mysterious SMI
source were invoking related, if not the same, SMM functions.

Hypothesis 7. The high-latency-inducing mechanism in
lm-sensors is the same mechanism that causes the high

tail latencies in HOG.

Identifying the problem in lm-sensors. To test Hyp. 7, we
first sought to identify the exact operation in lm-sensors
that was responsible for high latencies. After consult-
ing the lm-sensors documentation, we found that it
reads CPU temperature and fan speed using the Linux
kernel’s hwmon sysfs interface. Specifically for our ma-
chine, this corresponds to reading from the driver-
mapped files temp2_input and fan2_input from
the /sys/devices/virtual/hwmon/hwmon2 direc-
tory. To confirm that reads from these two files were indeed
the problematic operations in lm-sensors, we executed
Alg. 4 while manually reading from these files. We found that
reads from fan2_input were able to cause high latencies in
Alg. 4. We were now very close to understanding the source
of the high latency-causing SMIs!

The culprit, finally! Looking for the hwmon device driver
backing the fan2_input file for our machine model led
us to the dell-smm-hwmon [6] driver, located in the Linux
kernel tree at drivers/hwmon/dell-smm-hwmon.c. At
the heart of this driver, the function i8k_smm_func is used
to invoke SMM routines in order to query hardware states,
such as fan speeds.

Due to the SMM routines in lm-sensors being related
to CPU temperatures and fan speeds, it is highly likely that
our mysterious source of SMIs is the automatic fan speed
management in the motherboard firmware. From this assump-
tion, if the default “auto” fan speed profile was causing the
motherboard firmware to invoke the same SMM routines as
i8k_smm_func to manage fan speeds, then it is likely that
forcing the fans to always operate at 100% would invalidate
the need for the motherboard firmware to execute these SMM
routines. This would, in theory, cause high latencies in the
execution of Alg. 4 to disappear. We then ran Alg. 4 with fan
speed set to 100% in the BIOS, and observed no occurrences
of high latencies, thus proving Hyp. 7.

Peering slightly farther into CUDA. After finding the true
high-latency source, we wanted to develop a more precise
understanding of where SMI/SMM-induced latencies can
have an impact within the overall CUDA ecosystem. Here,
the closed-source nature of CUDA eventually stymied much
further progress. Still, in our experiments (and those in [13])
involving both HOG and our minimal programs, these laten-
cies were only ever observed to impact the CUDA functions
cudaLaunchKernel and cudaStreamSynchronize.
Why? To shed some light on this question, we conducted
further tracing experiments involving HOG and found that it
spends almost all of its CPU execution time within these two
functions (it invokes additional CUDA functions to transfer
data to and from the GPU). The same is true of Alg. 4. As a
result of these additional tracing efforts, we find it reasonable
that only these two CUDA functions were ever seen to be
impacted by high latencies. However, for programs that use
other CUDA functions more extensively, these other functions
could also similarly be negatively impacted.



Discussion. For the sake of brevity, we chose not to elaborate
upon several aspects of our investigation. These include
various dead ends we encountered, a few technical details
pertaining to injecting KUtrace markers, and (a surprise to
us) a bug we found in KUtrace. Regarding the latter, the
relative rarity of the high latencies of interest resulted in a
high enough volume of trace data that a buggy corner case in
KUtrace was found (it has since been fixed). This experience
bears witness to the importance of validating the correctness
of traces, as it is easy for incorrect trace data to lead an
investigation down wrong paths. To guard against this, in each
step of our investigation, we corroborated our KUtrace results
with results from NVIDIA’s tracing tool, nvprof.

IV. BROADER IMPLICATIONS OF OUR INVESTIGATION

Our investigation revealed the sought-for high-latency
source in CUDA to be SMIs inducing transitions to SMM,
completely out of view of the OS kernel. This discovery raises
further questions about the broader effects and consequences
SMIs impose on x86-based real-time systems.

Implications of SMM latencies. While executing SMI-
handler routines in SMM may be necessary to ensure the
stability and reliability of the system in the long-term, their
execution times can be unbounded. It is often the preroga-
tive of the BIOS developer alone to determine and enforce
an appropriate worst-case execution time (WCET) for SMI
handler routines executed in SMM. Rarely are these WCETs
made public. Furthermore, SMI handler routines can be in-
voked aperiodically. Therefore, they are notorious for creating
difficulties when performing schedulability analysis of real-
time task systems on x86 platforms, and are often ignored
when calculating WCETs, as noted by [18].

Accounting for SMIs and SMM in schedulability analysis.
As the arrival times of SMIs are unpredictable, there is no
guarantee of SMI inter-arrival spacing. Thus, if we were
to perform a non-probabilistic schedulability analysis that
accounts for SMM execution sections, we would be required
to assume the worst-case SMI arrival behavior—SMIs con-
tinuously arrive in succession, each releasing handler routines
that execute up to their WCET in SMM. In such a case, the
execution time of regular tasks on the OS would be delayed
indefinitely, making any system unschedulable.

In order to make SMM execution sections potentially
analyzable, a minimal inter-arrival time between SMIs must
be enforced, and the WCETs of the SMI handler routines
must be known. This would allow SMM execution sections
to be modeled as m (number of CPUs) sporadic tasks with
the highest priorities in the system, with periods equal to
the minimal inter-arrival time of SMIs. However, such inter-
arrival spacing and WCET information is not typically made
public by BIOS vendors. This highlights one of the dangers
of implementing real-time systems using closed-source black-
box system components.

How SMIs are typically accounted for in research
and industry. Despite the existence of unpredictable,

non-preemptive, unbounded SMI handler routines, x86-
architecture CPUs have been commonly used in real-time
systems research and industry for decades. This begs the
question: why are SMI-related latencies not more commonly
discussed among real-time systems developers? Is everyone
aware they exist?

Interested to learn how others in the real-time-systems
community have handled SMI-induced latencies, we surveyed
recent publications discussing SMIs or SMM, but none of
them perform a schedulability analysis taking SMI/SMM
delays into account [18], [19], [23], [24], [27].

Further consulting industry sources, we discovered that
the detrimental effects of SMIs have been known among
industrial real-time systems architects for many years. Reports
published over ten years ago documented SMM latencies as
long as a few milliseconds [27]. While recent SMM latencies
were reported to be much lower at around 400µs in [23],
they can reach as high as 177 ms under malicious interfer-
ence [20]. To attenuate the effect SMM latencies have on
system performance and predictability, developers in industry
often use customized motherboards and BIOS firmware. This
allows them to either disable SMIs, or at least know their tim-
ing parameters for schedulability analysis. For example, HP
ProLiant servers, used for low-latency applications like high-
frequency trading and image processing, provide a custom
motherboard and BIOS that allows SMIs to be disabled [21].
We further learned that the ARM architecture also contains a
processor mode similar to x86 SMM, called Secure Monitor
Mode [14]. However, exploring this mode’s impacts is outside
the scope of our investigation.

Both the real-time Linux kernel patch website [4], and the
Red Hat documentation website [3] mention the effects of
SMIs and the difficulty of debugging them. Both also mention
the near-impossibility of totally disabling SMIs, without direct
contact with hardware and firmware vendors. We also located
a Linux kernel bug report thread for the dell-smm-hwmon
module, which discusses observations of a very high SMI-
induced latency of approximately 500ms [5]!

Danger of closed-source black-box systems. Most x86-
architecture CPUs are susceptible to SMIs. Therefore, real-
time systems architects must be provided the full set of
timing parameters regarding their system’s hardware and
software. This includes the BIOS firmware, and any hidden
latency sources, no matter how paltry they may seem. If
these parameters are not documented publicly, then real-
time systems architects will not have the means to produce
accurate system scheduling models. Left unaccounted for,
lurking latency sources may manifest at the most inopportune
time, leading to a catastrophic system failure.

V. NECESSITY OF A GPU-RELATED SMI INVESTIGATION

We have seen that the high latencies originally seen to
impact HOG are actually not GPU-related at all—so why
present this work in a paper that focuses on GPUs? Several
GPU developer-forum posts have discussed inexplicably long



CUDA task-related latencies [7], [11], [12], of which our
investigation has revealed one possible cause: SMM execution
in x86 processors. To our knowledge, this latency source in
the context of GPUs has not been heretofore discussed in de-
veloper forums nor in academic publications. In fact, we made
our findings available to the engineers of a task-scheduler
team in a major autonomous-vehicle platform supplier and
they were completely unaware of any SMM-related pitfalls.

It’s easy to overlook SMIs. Despite the fact that we were
aware of the existence of SMIs, we (perhaps like many GPU
developers) initially discounted SMIs as a latency source in
our investigation, for two reasons. First, when SMIs are not
considered to be under malicious interference as in [20], SMM
latencies have been reported to be around 400 µs on modern
hardware [23], which does not correlate with the much longer
latencies we were seeing. Second, since SMIs are transparent
to the OS, SMM latencies in GPU-heavy workloads can easily
be mistaken as latencies either in GPU-related code itself or
in the underlying highly complex framework necessary for
GPU acceleration.

More broadly, these factors can greatly prolong the debug-
ging process in the development of GPU-accelerated real-time
systems, wasting both valuable time and money. We therefore
wish to educate developers, especially those developing GPU
applications, of the possibility of SMM-related latency issues.

VI. CONCLUSION

In work involving performance measurements, Ousterhout
cautions to “always measure one level deeper” [26]. In this
paper, we have done precisely that in trying to identify the
source of the CUDA “timing glitches” seen in TimeWall and
elsewhere. Specifically, we broadened the original TimeWall
investigation by systematically posing several CUDA-related
hypotheses. Relying mainly on KUtrace, we then carefully
explained the processes we followed in verifying or refuting
each hypothesis. We ultimately learned that the CUDA-related
timing glitches were not a CUDA problem at all, but were
due to high latencies caused by SMIs inducing transitions
to SMM. The latencies due to SMIs and SMM we observed
were over two orders of magnitude higher than those reported
in prior publications on real-time systems. This fact raises
troubling questions regarding the viability of x86 platforms in
supporting modern safety-critical real-time applications such
as autonomous vehicles.

In future work, we intend to explore the possibility of
enforcing timing properties on SMIs to enable schedulability
analysis that accounts for them, using open-source BIOS
firmware like Coreboot [1]. Additionally, we have noted that a
mode similar to SMM also exists on ARM machines [14]. We
plan to conduct an experimental examination of the effects of
this mode using the methods discussed in this paper.
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