
Optimal Multiprocessor Locking Protocols under1

FIFO Scheduling2

Shareef Ahmed #3

University of North Carolina at Chapel Hill, USA4

James H. Anderson #5

University of North Carolina at Chapel Hill, USA6

Abstract7

Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-8

blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a9

number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds10

under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking11

protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents12

the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer13

synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when14

schedulability analysis treats suspension times as computation. Experiments are presented that15

demonstrate the effectiveness of these protocols.16

2012 ACM Subject Classification Computer systems organization → Real-time systems17

Keywords and phrases Real-Time Systems, Real-Time Synchronization, Multiprocessors18

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.1219

Funding Supported by NSF grants CPS 1837337, CPS 2038855, CPS 2038960, and CNS 2151829,20

ARO grant W911NF-20-1-0237, and ONR grant N00014-20-1-2698.21

1 Introduction22

In recent years, a number of suspension-based multiprocessor real-time locking protocols have23

been developed that provide asymptotically optimal bounds on priority-inversion blocking24

(pi-blocking) under suspension-oblivious (s-oblivious) schedulability analysis, which treats25

suspension time analytically as computation time [11,13,14]. For mutual-exclusion (mutex)26

sharing, most (if not all) known asymptotically optimal locking protocols ensure a per-task27

s-oblivious pi-blocking bound of 2m−1 request lengths on an m-processor platform under job-28

level fixed-priority (JLFP) scheduling [11, 13].1 The commonality of this bound is somewhat29

surprising as these protocols include ones that target different scheduling strategies (e.g.,30

partitioned, global, and clustered scheduling) and employ different mechanisms to cope with31

pi-blocking (e.g., priority inheritance vs. priority donation [11,13]).32

In contrast, under s-oblivious analysis, the current best lower bound yields a worst-case33

per-task pi-blocking bound of at least m − 1 request lengths [11]. This gap between the34

existing lower bound and upper bound raises an obvious question: is a pi-blocking bound of35

2m − 1 request lengths fundamental under JLFP scheduling?36

In this paper, we answer this question negatively by showing that, under s-oblivious37

analysis, the existing lower bound of m − 1 request lengths is tight under first-in-first-out38

(FIFO) scheduling. To show this, we give a suspension-based locking protocol for mutex39

sharing that ensures a per-lock-request s-oblivious pi-blocking bound of at most m−1 request40

lengths under FIFO scheduling, matching the lower bound. Our protocol is designed for41

1 We refine this statement later by distinguishing between request blocking and release blocking.

© Shareef Ahmed and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 12; pp. 12:1–12:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shareef@cs.unc.edu
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

clustered scheduling, so it can be applied under global and partitioned scheduling as well.42

To our knowledge, this is the first truly optimal suspension-based multiprocessor locking43

protocol under any practical scheduling algorithm.44

In designing our protocol, we exploit the fact that independent (non-resource-sharing)45

tasks are non-preemptive under FIFO scheduling. Such non-preemptivity is a property of the46

scheduler itself and does not have to be otherwise enforced: under FIFO scheduling, a newly47

released instance of a task cannot cause any other task instance to have insufficient priority48

to be scheduled. Asymptotically optimal locking protocols such as the C-OMLP [13] enforce49

such a property via an explicit progress mechanism. We show that such mechanisms are not50

required under FIFO scheduling.51

Our locking protocol strengthens the case for using FIFO scheduling on multiprocessors.52

In addition to enabling a tight pi-blocking bound, FIFO scheduling has low overheads, ensures53

bounded response times (and hence bounded deadline tardiness in soft real-time systems)54

without capacity loss [2, 22], and is sustainable with respect to execution times, meaning55

that it is safe to perform schedulability analysis assuming all instances of a task take its56

worst-case execution time (WCET) to complete. Moreover, non-preemptive execution also57

eases the determination of WCETs, which is challenging on modern multiprocessors [31].58

According to a recent survey, around 30% of industrial respondents reported using FIFO59

scheduling [3].60

Contributions. Our contributions are fourfold.61

First, we propose a suspension-based mutex locking protocol called the optimal locking62

protocol under FIFO scheduling (OLP-F). The OLP-F restricts a task from issuing a resource63

request until it has high enough priority. Together with properties of FIFO scheduling, this64

ensures that the OLP-F has a tight s-oblivious pi-blocking bound under FIFO scheduling.65

Second, we consider an extension of mutex sharing called k-exclusion sharing, which66

permits k simultaneous lock holders. For k-exclusion, we propose the optimal locking protocol67

for k-exclusion under FIFO scheduling (k-OLP-F) and show that it has a tight s-oblivious68

pi-blocking bound under FIFO scheduling.69

Third, we expand even further beyond mutex sharing by considering reader-writer (RW)70

sharing, where exclusive resource usage is only required for write accesses and concurrent read71

accesses are permitted. For RW sharing, we propose the read-optimal RW locking protocol72

under FIFO scheduling (RW-OLP-F), which provides a tight s-oblivious pi-blocking bound for73

read requests under FIFO scheduling. Additionally, under the RW-OLP-F, the pi-blocking74

bound for write requests is just under two request lengths of optimal.75

Finally, we provide experimental results that show the benefits of our locking protocols.76

Organization. In the rest of this paper, we provide needed background (Sec. 2), delve77

further into s-oblivious pi-blocking (Sec. 3), establish a FIFO-based progress property for78

resource sharing (Sec. 4), present the above-mentioned protocols (Secs. 5–7), present our79

experimental results (Sec. 8), more fully review related work (Sec. 9), and conclude (Sec. 10).80

2 System Model and Background81

In this section, we provide needed definitions; Tbl. 1 summarizes the notation given here.82

Task model. We consider a system of n sporadic tasks τ1, τ2, . . . , τn to be scheduled on m83

identical processors by a FIFO scheduler. Each task τi releases a potentially infinite sequence84

of jobs Ji,1, Ji,2, . . .. (We omit job indices if they are irrelevant.) Each task τi has a period Ti85

specifying the minimum spacing between consecutive job releases. Each task has a relative86



S. Ahmed and J. H. Anderson 12:3

Table 1 Notation summary.

Symbol Meaning Symbol Meaning
n Number of tasks ℓq qth shared resource
m Number of processors Nq

i Maximum number of requests for ℓq by τi

τi ith task Lq
i Maximum request length for ℓq by τi

Ji,j jth job of τi Lq
max max1≤i≤n{Lq

i }
Ti Period of τi Lmax max1≤q≤nr Lq

max

Ci WCET of τi R A request
Di Relative deadline of τi ri,j Release time of Ji,j

ui Utilization of τi fi,j Finish time of Ji,j

nr Number of resources Lq
sum,h sum of the h highest Lq

i values

deadline Di. Task τi has an implicit deadline if Di = Ti, a constrained deadline if Di ≤ Ti,87

and an arbitrary deadline if no relationship between Di and Ti is assumed. Each task has a88

WCET denoted Ci. Task τi’s utilization is defined as ui = Ci/Ti.89

The release time (resp., finish time) of a job Ji,j is given by ri,j (resp., fi,j). Ji,j is90

pending at time t if ri,j ≤ t < fi,j . Jobs of a task τi are sequential, i.e., Ji,j+1 cannot91

commence execution before Ji,j finishes. Job Ji,j is eligible to execute at time t if Ji,j is92

pending at time t and t ≥ fi,j−1 holds (if j > 1). An eligible job is either ready (when it can93

be scheduled) or suspended (when it cannot be scheduled).94

We assume time to be discrete and a unit of time to be 1.0. All scheduling decisions are95

taken at integer points in time. We also assume all task parameters to be integers.96

Multiprocessor scheduling. Multiprocessor scheduling approaches can be broadly classified97

into two categories: partitioned and global. Under partitioned scheduling, a task is statically98

assigned to a processor and cannot migrate to another processor. Global scheduling allows a99

task to execute on any of the m processors. Clustered scheduling is a hybrid of partitioned100

and global scheduling. Under clustered scheduling, all m processors are partitioned into101

m/c ∈ N clusters (without loss of generality, we assume m is an integer multiple of c) each102

containing c processors.2 Each task is assigned to a cluster and can migrate only among the103

processors of the cluster. We consider clustered scheduling, as both partitioned and global104

scheduling are special cases (c = 1 and c = m, respectively).105

Under a job-level fixed-priority (JLFP) scheduler, each job is assigned a fixed priority106

throughout its execution, but a task’s priority may change over time. Common JLFP107

schedulers include earliest-deadline-first (EDF), FIFO, and fixed-priority scheduling algorithms.108

When such algorithms are employed with clustered scheduling, the c highest-priority ready109

jobs (if that many exist) of each cluster are scheduled on the processors of that cluster. In110

this paper, we consider clustered FIFO (C-FIFO) scheduling where, within a cluster, jobs111

with earlier release times have higher priority. We assume ties are broken arbitrarily but112

consistently. Hereafter, we assume all schedules to be C-FIFO unless otherwise stated.113

Resource model. We consider a system that has a set {ℓ1, . . . , ℓnr
} of shared resources.114

For now, we limit attention to mutual exclusion (mutex) sharing, although other notions of115

sharing will be considered later. Under mutex sharing, a resource ℓq can be held by at most116

one job at any time. When a job Ji requires a resource ℓq, it issues a request R for ℓq. R117

is satisfied as soon as Ji holds ℓq, and completes when Ji releases ℓq. R is active from its118

issuance to its completion. Ji must wait until R can be satisfied if it is held by another job.119

2 Our results can be adapted for non-uniform cluster sizes at the expense of additional notation.

ECRTS 2023



12:4 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

Table 2 Asymptotically optimal locking protocols for mutex locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Global JLFP OMLP [11] 0 (2m − 1)Lq

max

Clustered JLFP C-OMLP [13] mLmax (m − 1)Lq
max

Clustered JLFP OMIP [7] 0 (2m − 1)Lq
max

C-FIFO OLP-F (This work) 0 (m − 1)Lq
max

It may do so either by busy-waiting (or spinning) in a tight loop, or by being suspended by120

the operating system (OS) until R is satisfied. We assume that if a job Ji holds a resource121

ℓq, then it must be scheduled to execute.3 A resource access is called a critical section (CS).122

We assume that each job can request or hold at most one resource at a time, i.e., resource123

requests are non-nested. We let Nq
i denote the maximum number of times a job of task τi124

requests ℓq, and let Lq
i denote the maximum length of such a request. We define Lq

i to be 0125

if Nq
i = 0. Finally, we define Lq

max = max1≤i≤n{Lq
i }, and Lmax = max1≤q≤nr {Lq

max}, and126

let Lq
sum,h be the sum of the h largest Lq

i values. We assume all Lq
i and Nq

i to be constant.127

Priority inversions. Priority-inversion blocking (or pi-blocking) occurs when a job is128

delayed and this delay cannot be attributed to higher-priority demand for processing time.129

Under a given real-time locking protocol, a job may experience pi-blocking each time it130

requests a resource—this is called request blocking—and/or upon its release and each time it131

releases a resource—this is called release blocking.132

On multiprocessors, the formal definition of pi-blocking actually depends on how schedulab-133

ility analysis is done. Of relevance to suspension-based locks, schedulability analysis may be134

either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [11]. Under s-oblivious135

analysis (the focus of this work), suspension time is analytically treated as computation time.136

Blocking complexity. Request lengths are unavoidable in assessing maximum pi-blocking,137

as a request-issuing job may have to wait for a current resource-holder to complete before138

its request can be satisfied. As such, maximum pi-blocking bounds are usually expressed as139

an integer multiple of the maximum request length, i.e., the number of requests that are140

satisfied while a resource-requesting job is pi-blocked.141

Asymptotically optimal locking protocols. For mutex locks, Brandenburg and Anderson142

established a lower bound of m − 1 request lengths on per-request s-oblivious pi-blocking143

under any JLFP scheduler [11]. Thus, under s-oblivious analysis, an asymptotically optimal144

locking protocol achieves O(m) per-job pi-blocking. Locking protocols such as the OMLP [11],145

the OMIP [7], and the C-OMLP [13] are asymptotically optimal under JLFP scheduling.146

Tbl. 2 provides a summary of existing asymptotically optimal locking protocols.4147

Optimal locking protocols. We call a locking protocol optimal under a scheduling148

algorithm if it ensures a pi-blocking bound that is tight, i.e., it matches the lower bound on149

pi-blocking under that scheduling algorithm.150

3 This is a common assumption in work on synchronization. It is needed for shared data, but may be
pessimistic for other shared resources such as I/O devices.

4 Note that, for the C-OMLP, the 2m − 1 bound mentioned in Sec. 1 comes from a combination of release
and request blocking.



S. Ahmed and J. H. Anderson 12:5

Time
Ji,j+1

Ji,j

0 5 10 15

Release Deadline Completion Execution CS

Suspension Request Issuance Lock Release

Figure 1 A schedule illustrating s-oblivious pi-blocking for arbitrary-deadline tasks.

3 Suspension-Oblivious Pi-Blocking151

Under s-oblivious schedulability analysis, each task’s WCET is inflated by the amount of152

worst-case s-oblivious pi-blocking any of its jobs may suffer. Such s-oblivious pi-blocking153

was originally defined for implicit-deadline hard real-time systems [11]. In this section, we154

show that this definition needs refinement for systems with arbitrary deadlines or soft timing155

constraints. We also provide a refined definition that works under such cases. We begin by156

reviewing the original definition of s-oblivious pi-blocking under clustered scheduling.157

▶ Definition 1 ([11]). Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious158

pi-blocking at time t if Ji is pending but not scheduled and fewer than c higher-priority jobs159

are pending in its cluster.160

If tasks have arbitrary deadlines or can miss their deadlines due to soft timing constraints,161

Def. 1 may inappropriately identify certain delays due to the sequential execution of tasks as162

s-oblivious pi-blocking. The following example illustrates this.163

▶ Example 2. Fig. 1 illustrates two consecutive jobs Ji,j , and Ji,j+1 of a task τi with Ti = 7164

and Di = 11. Job Ji,j+1 is released at time 7 and job Ji,j finishes execution at time 10.165

Thus, job Ji,j+1 is pending but not eligible during the time interval [7, 10). Assume that166

both Ji,j and Ji,j+1 are among the c highest-priority pending jobs in their cluster during167

[7, 10). Assuming c > 1, by Def. 1, Ji,j+1 is s-oblivious pi-blocked during the interval [7, 10).168

However, Ji,j+1’s delay during [7, 10) is not due to a locking-related suspension. Under169

s-oblivious schedulability analysis, it is not necessary to inflate τi’s WCET to include such a170

delay. In fact, doing so may cause a circular problem, i.e., the inflated WCET may cause171

additional delays, which can then necessitate further inflation.172

The above example motivates refining the notion of s-oblivious pi-blocking as follows.173

▶ Definition 3. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-174

blocking at time t if Ji is eligible but not scheduled and fewer than c higher-priority jobs are175

eligible in its cluster.176

▶ Example 2 (Cont’d). Ji,j+1 is pending but not eligible during the interval [7, 10). Thus,177

it is not s-oblivious pi-blocked during that interval. However, Ji,j+1 is eligible during178

[12, 13). Assume that Ji,j+1 is among the c highest-priority eligible jobs during [12, 13), but179

is suspended. Then, by Def. 3, Ji,j+1 is s-oblivious pi-blocked during [12, 13).180

4 Resource-Holder’s Progress Under FIFO Scheduling181

Any real-time locking protocol needs to ensure a resource-holding job’s progress whenever182

a job waiting for the same resource is pi-blocked, for otherwise, the maximum per-job183

ECRTS 2023



12:6 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

pi-blocking can be very large or even unbounded. To ensure that the maximum pi-blocking184

is reasonably bounded, real-time locking protocols employ progress mechanisms that may185

temporarily raise a job’s effective priority. One such mechanism is priority inheritance [26,28],186

which raises the effective priority of a job holding resource ℓq to the maximum of its priority187

and the priorities of all jobs waiting for ℓq. Another alternative is priority donation [14],188

which ensures that a job Ji can only issue a request when its priority is high enough to189

be scheduled. Moreover, if a job Jj ’s release causes Ji to have insufficient priority to be190

scheduled, then Jj “donates” its priority to Ji. This ensures that a resource holder is always191

scheduled. This property makes priority donation particularly effective under clustered192

scheduling.193

Progress under FIFO scheduling. The above-mentioned progress mechanisms can be194

utilized to design multiprocessor locking protocols that are asymptotically optimal under195

any JLFP scheduling policy [11, 14]. Interestingly, for the case of C-FIFO scheduling, no196

such progress mechanism is required to design optimal locking protocols. In fact, the C-FIFO197

scheduling policy itself has properties that ensure the progress of a resource-holding job. The198

key property that enables such progress is given in the following lemma.199

▶ Lemma 4. Under C-FIFO scheduling, if a job Ji,j becomes one of the c highest-priority200

eligible jobs in its cluster at time th, then it remains so during [th, fi,j).201

Proof. Assume for a contradiction that t is the first time instant in [th, fi,j) such that Ji,j202

is not one of the c highest-priority eligible jobs in its cluster. Then, t > th holds. By the203

definition of time t, there are at most c − 1 (resp., at least c) eligible jobs with higher priority204

than Ji,j at time t − 1 ≥ th (resp., t) in Ji,j ’s cluster. Thus, there is a task τu that has an205

eligible job Ju,v with higher priority than Ji,j at time t, but has no such job at time t − 1.206

Since Ju,v’s priority exceeds Ji,j ’s, ru,v ≤ ri,j holds. Since Ji,j is eligible at time th,207

ri,j ≤ th holds. Thus, ru,v ≤ th and Ju,v is pending at time t − 1. We now consider two cases.208

Case 1. v = 1. In this case, Ju,v is also eligible at time t − h. Thus, τu has an eligible job209

with higher priority than Ji,j at time t − 1, a contradiction.210

Case 2. v > 1. Since Ju,v is not eligible at time t − 1, job Ju,v−1 is eligible at time t − 1.211

We have ru,v−1 < ru,v ≤ ri,j . Thus, τu has an eligible job with higher priority than Ji,j at212

time t − 1, a contradiction.213

Therefore, we reach a contradiction in both cases. ◀214

Utilizing Lemma 4, we have the following lemma.215

▶ Lemma 5. If a job Ji,j issues a request R when it is one of the c highest-priority jobs in216

its cluster, then Ji,j is always scheduled from R’s satisfaction to completion.217

Proof. Let tr, ts, and tc be the time instants when R is issued, satisfied and complete,218

respectively. Thus, tr ≤ ts ≤ tc holds. Since Ji,j is one of the c highest-priority eligible jobs219

in its cluster at time tr, by Lemma 4, Ji,j remains one of the c highest-priority eligible jobs220

in its cluster throughout [tr, tc). Since R is satisfied at time ts ≥ tr, Ji,j is ready throughout221

[ts, tc). Thus, Ji,j is scheduled during [ts, tc). ◀222

Thus, by requiring a request to be issued only when the request-issuing job is one of223

the top-c-priority jobs in its cluster, we can ensure a resource-holder’s progress under FIFO224

scheduling. We exploit this property in designing our protocols. Note that the C-OMLP225

ensures this property by employing priority donation as its progress mechanism at the expense226

of additional release blocking that may be incurred by a job even if it does not require any227

resource [13]. Due to this, our protocols have features in common with the C-OMLP.228



S. Ahmed and J. H. Anderson 12:7

Time
J1

J2

J3

0 5 10 15
CS
Normal Execution

Suspension

Lock Release
Request Issuance
Completion
Deadline
Release

Figure 2 A schedule illustrating the OLP-F.

5 Mutex Locks229

In this section, we introduce the optimal locking protocol for mutual exclusion sharing under230

C-FIFO scheduling (OLP-F), which achieves optimal pi-blocking under C-FIFO scheduling. To231

match the lower bound on pi-blocking, the OLP-F ensures that each job suffers pi-blocking232

for the duration of at most m − 1 request lengths and incurs no release blocking.233

Structures. For each resource ℓq, we have a FIFO queue FQq that contains requests for ℓq.234

A request R is satisfied if and only if R is the head of the FQq.235

Rules. When a job Ji attempts to issue a request R for a resource ℓq, it proceeds according236

to the following rules.237

M1 Ji is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.238

Ji suspends if necessary to ensure this condition.239

M2 When Ji issues R, R is enqueued in FQq. If Ji becomes the head of FQq, then it is240

immediately satisfied. Otherwise, it suspends.241

M3 R is satisfied when it is the head of FQq. R is removed from the FQq when it is complete.242

▶ Example 6. Fig. 2 illustrates a C-FIFO schedule of three jobs on a two-processor cluster.243

J1 and J2 are released earlier (hence, have higher priorities) than J3. Both J1 and J2 issue244

requests for resource ℓq at time 3 and J1’s request is enqueued first. Assuming no job in245

a different cluster holds ℓq, J1 acquires ℓq at time 3 by Rule M2. At time 3, since J2 is246

suspended, J3 starts to execute. At time 4, J3 attempts to issue a request for ℓq, but it is247

suspended due to Rule M1 as it is not one of the top-2-priority jobs at that time. At time 6,248

J1 releases ℓq and J2’s request is satisfied according to Rule M3. Since J3 becomes one of249

the top-2-priority jobs when J1 completes, it issues a request for ℓq at time 7.250

Analysis. To derive an upper bound on the pi-blocking suffered by a job, we first show that251

FQq contains no more than m requests at any time.252

▶ Lemma 7. Under the OLP-F , at any time, FQq contains at most m requests.253

Proof. Assume that t is the first time instant when FQq contains more than m requests.254

Each job has at most one active request at any time. Thus, at time t, FQq must contain a255

request R issued by a job Ji that is not one of the c highest-priority eligible jobs in its cluster.256

Let t′ ≤ t be the time instant when Ji issues R. By Rule M1, Ji is one of the c highest-priority257

eligible jobs in its cluster at time t′. Since Ji is not complete at time t, by Lemma 4, it is258

one of the c highest-priority eligible jobs in its cluster at time t, a contradiction. ◀259

We now determine an upper bound on the request blocking suffered by job Ji when it260

issues a request R for resource ℓq. Fig. 3 depicts the timeline of R from when Ji attempts261

ECRTS 2023



12:8 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

Time
R

t1 t2 t3 t4

Ji is not one of the c

highest-priority eligible
jobs it its cluster

Ji is one of the c

highest-priority eligible
jobs in its cluster

CS
Suspension
Lock Release
Request Issuance

Figure 3 Timeline of a request under the OLP-F.

to issue R to when R completes. Let t1 be the time instant when job Ji attempts to issue262

request R. Let t2 be the first time instant at or after time t1 when Ji, becomes one of the263

top-m-priority eligible jobs. Therefore, by Rule M1, R is issued at time t2. Let t3 and t4 be264

the time instants when R is satisfied and completes, respectively.265

▶ Lemma 8. During [t1, t3], Ji incurs pi-blocking for at most Lq
sum,m−1 time units.266

Proof. By the definition of t2, Ji is not one of the top-c-priority eligible jobs in its cluster267

during [t1, t2). Hence, Ji is not pi-blocked during that time. By Lemma 4, Ji is pi-blocked268

throughout [t2, t3). By Lemma 5, Ji is continuously scheduling during [t3, t4). Thus, from t1269

to t4, Ji is only pi-blocked during [t2, t3).270

By Lemma 7, at most m − 1 other requests precede R in FQq at time t2. By Rule M3271

and Lemma 5, each job at the head of FQq is continuously scheduled until its request is272

complete. Since each task has at most one eligible job and each job has at most one request273

at any time, t3 − t2 is not more than Lq
sum,m−1 time units and the lemma follows. ◀274

We now show that the OLP-F does not cause any release blocking under C-FIFO scheduling.275

▶ Lemma 9. Under the OLP-F , no job incurs release blocking.276

Proof. Since a resource-holding job is scheduled only when its priority is among the top c in277

its cluster, a resource request R does not cause pi-blocking to any job (within and across278

cluster boundaries) that does not issue a request during the time R is satisfied. ◀279

▶ Theorem 10. Under the OLP-F , Ji is pi-blocked for at most bi =
∑nr

q=1 Nq
i · Lq

sum,m−1280

time units.281

Proof. Follows from Lemmas 8 and 9. ◀282

Thus, the OLP-F is an optimal locking protocol under C-FIFO scheduling.283

6 k-Exclusion Locks284

k-exclusion generalizes mutual exclusion by allowing up to k simultaneous lock holders; thus,285

mutual exclusion is equivalent to 1-exclusion. In this section, we give an optimal k-exclusion286

locking protocol under C-FIFO scheduling. We assume that a resource ℓq can be concurrently287

held by up to kq ≤ m jobs. We begin by reviewing lower bound results for k-exclusion.288

Lower bound on pi-blocking. For k-exclusion, Elliot et al. showed that a task system289

and a release sequence for it exist such that a job requesting a resource ℓq incurs s-oblivious290

pi-blocking for the duration of ⌈ m−kq

kq
⌉ request lengths under any JLFP scheduler [18].291



S. Ahmed and J. H. Anderson 12:9

Table 3 Asymptotically optimal locking protocols for k-exlcusion locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Clustered JLFP CK-OMLP [11] maxq{⌈m/kq⌉Lq

max} (⌈m/kq⌉ − 1)Lq
max

Global JLFP OKGLP [18] 0 (2⌈m/kq⌉ + 4)Lq
max

Global JLFP R2DGLP [30] 0 (2⌈m/kq⌉ − 2)Lq
max

C-FIFO k-OLP-F (This work) 0 (⌈m/kq⌉ − 1)Lq
max

Asymptotically optimal locking protocols. Under s-oblivious analysis, the CK-OMLP [11],292

the OKGLP [18], and the R2DGLP [30] ensure asymptotically optimal pi-blocking for k-293

exclusion. Tbl. 3 summarizes these protocols.294

The k-OLP-F. We now introduce the optimal locking protocol for k-exclusion under C-FIFO295

scheduling (k-OLP-F), which achieves optimal pi-blocking for k-exclusion under C-FIFO296

scheduling. The k-OLP-F ensures that a job suffers pi-blocking for the duration of no more297

than ⌈ m−kq

kq
⌉ request lengths for each request for ℓq and incurs no release blocking.298

Structures. For each resource ℓq, we have a FIFO queue FQq that contains waiting requests299

for ℓq. We also have a queue SQq of length at most kq that contains the satisfied requests300

for ℓq. Initially, both queues are empty. A request R is satisfied if and only if R is in SQq.301

Rules. When a job Ji attempts to issue a request R for a resource ℓq, it proceeds according302

to the following rules.303

K1 Ji is allowed to issue R only if Ji is one of the c highest-priority eligible jobs in its cluster.304

Ji suspends if necessary to ensure this condition.305

K2 If the length of SQq is less than kq when Ji issues R, then R is enqueued in SQq and is306

immediately satisfied. Otherwise, R is enqueued in FQq and Ji suspends.307

K3 When R completes, it is removed from SQq. If FQq is non-empty at that time, then the308

head of FQq is dequeued, enqueued in SQq, and satisfied.309

▶ Example 11. Fig. 4 shows a schedule of five jobs that share a resource ℓq with kq = 2.310

Jobs J1, J2, and J3 (resp., J4, and J5) are FIFO scheduled on a two-processor cluster G1311

(resp., G2). Since SQq is initially empty, by Rule K2, J4 and J1 acquire ℓq at times 2 and 3,312

respectively. Since both J2 and J5 are one of the top-2-priority eligible jobs in their clusters,313

by Rule K1, they issue requests for ℓq at times 4 and 5, respectively. At time 5, J3 attempts314

to issue a request for ℓq, but is suspended, by Rule K1. At time 5, J4 releases ℓq and is315

removed from SQq by Rule K3. J2’s request is at the head of FQq at time 5, so by Rule K3,316

it is removed from FQq, enqueued in SQq, and satisfied. At time 7, J1 completes and J3317

becomes one of the top-2-priority jobs in G1 and issues its request, by Rule K1.318

Analysis. We now derive an upper bound on the pi-blocking suffered by a job under the319

k-OLP-F. We first derive an upper bound on the number of waiting requests in FQq.320

▶ Lemma 12. Under the k-OLP-F , FQq contains at most m − kq requests.321

Proof. Assume otherwise. Let t be the first time instant such that FQq contains more than322

m − kq requests. Thus, a new request R′ is enqueued in FQq at time t. By Rule K2, SQq323

contains kq requests at time t. Thus, the number of active requests (either satisfied or324

waiting) is more than kq + m − kq = m at time t. Since each job has at most one active325

request at any time, there is an active request R issued by a job Ji that is not one of the326

c highest-priority jobs in its cluster. By Rule K1, Ji is one of the c highest-priority jobs327

in its cluster when it issues R at time t′ ≤ t. By Lemma 4, Ji remains as one of the c328

highest-priority jobs in its cluster at time t, a contradiction. ◀329

ECRTS 2023



12:10 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

Time
J1

J2

J3

J4

J5

0 5 10 15

G1

G2

CS
Normal Execution

Suspension

Lock Release
Request Issuance
Completion
Deadline
Release

Figure 4 A schedule illustrating the k-OLP-F. Concurrent resource accesses are shaded differently.

We now determine an upper bound on request blocking. We consider a job Ji that issues a330

request R for resource ℓq. As in Fig. 3, let t1, t2, t3, and t4 be the time instants corresponding331

to when Ji attempts to issue R, and when R is issued, satisfied, and complete, respectively.332

▶ Lemma 13. For request R, Ji suffers request blocking for at most Lq

sum,⌈ m−kq
kq

⌉
time units.333

Proof. By Def. 3, Ji does not suffer any pi-blocking during [t1, t2) and [t3, t4). By Lemma 4334

and the definition of t2, Ji suffers pi-blocking during the entire duration of [t2, t3), so it suffices335

to upper bound (t3 − t2). If SQq contains fewer than kq requests at time t2, then t3 − t2 = 0336

holds by Rule K2, so assume otherwise. At time t2, no two requests in SQq and FQq are from337

the same task. By Rule K3, R is satisfied when it is dequeued from FQq. Thus, by Lemma 12,338

at most m − kq requests are required to be dequeued to satisfy R. By Rule K2, kq jobs339

hold ℓq throughout [t2, t3). By Rule K1 and Lemma 5, each resource-holding job is always340

scheduled. Thus, per Lq
sum,h time units during [t2, t3) at least h · kq requests complete—and341

hence, by Rule K3, at least h ·kq requests are dequeued from FQq. Dequeuing m−kq requests342

from FQq thus requires at most Lq

sum,⌈ m−kq
kq

⌉
time units, so t3 − t2 ≤ Lq

sum,⌈ m−kq
kq

⌉
. ◀343

Similar to the OLP-F, no release blocking occurs under the k-OLP-F. Therefore, by344

Lemma 13, we have the following theorem.345

▶ Theorem 14. Under the k-OLP-F , Ji suffers pi-blocking for at most bi =
∑nr

q=1 Nq
i ·346

Lq

sum,⌈ m−kq
kq

⌉
time units.347

Thus, the k-OLP-F is optimal for k-exclusion locking under C-FIFO scheduling.348

7 Reader-Writer Locks349

Some resources can be read without alteration. For such resources, it may be desirable to350

support reader-writer (RW) sharing. Here, writers have mutually exclusive access to the351

resource, but multiple readers can access the resource simultaneously.352

Under RW sharing, it is often desirable to ensure fast read access. However, enabling fast353

read access may cause write requests to starve. This can happen under a read-preference354

RW lock that never satisfies a write request if a read request is active. More generally, these355

observations give rise to an important question: what is the minimum request blocking a356

read request can incur without causing a write request to starve?357

Lower bound on read request blocking. As we show next, ensuring a read request delay358

of 2Lq
max − 2 time units can in fact cause writer starvation.359



S. Ahmed and J. H. Anderson 12:11

Time
τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

0 5 10

CS
Normal Execution

Suspension

Lock Release
Request Issuance
Completion
Deadline
Release

Figure 5 A schedule illustrating Theorem 15.

▶ Theorem 15. For m ≥ 8, a task system and a release sequence for it exist such that any360

locking protocol that ensures request blocking of at most 2Lq
max −2 time units for read requests361

causes unbounded request blocking for write requests under any work-conserving scheduler.362

Proof. We give an example task system Γ and a release sequence for it supporting the claim.363

Let τ1, τ2, . . . , τm be m sporadic tasks scheduled on m processors. All tasks have WCETs of364

L + 1 time units with 2 ≤ L ≤ (m − 2)/3. Fig. 5 illustrates this for m = 8 and L = 2. Each365

job’s execution consists of 1.0 time unit of non-CS execution followed by L time units of CS366

execution. Tasks τ1, τ2, . . . , τm−1 issue read requests for resource ℓq, while τm issues a write367

request for ℓq. The periods of all tasks are m − 1. Each task has an implicit deadline.368

Feasibility of Γ. We show that Γ is feasible under a write-preference RW lock. Such lock369

does not satisfy any read request if a write request is waiting. Since τm is the only writer task,370

under a write-preference RW lock, τm’s jobs acquire ℓq immediately (if no reader jobs hold371

ℓq) or immediately after the currently satisfied read requests complete (otherwise). Thus,372

E each of τm’s jobs acquires ℓq within L time units of its request issuance.373

Since there are m tasks, a processor is always available for τm. Thus, with a WCET374

of L + 1 and resource acquisition time of at most L, each job of τm completes within375

L + 1 + L = 2L + 1 ≤ 2(m − 2)/3 + 1 < m − 2 + 1 = m − 1 = Tm time units after its release.376

For reader tasks τ1, τ2, . . . , τm−1, a read request R issued at time t is satisfied immediately377

if there is no waiting write request. Otherwise, by (E), the pending write request by τm’s378

job is satisfied by time t + L and complete by time t + L + L = t + 2L (as a processor is379

available). Since τm is the only writer task, after completion of the write request, there is no380

pending write request. Thus, R is satisfied by time t + 2L. With a WCET of L + 1, the job381

issuing R completes within L + 1 + 2L = 3L + 1 ≤ 3(m − 2)/3 + 1 = m − 2 + 1 = m − 1 = Ti382

time units after its release. Therefore, Γ is feasible.383

Release sequence for Γ. τm releases its jobs periodically from time 1. τ1 releases its first384

job at time 0 and its subsequent jobs’ release times are defined as r1,j+1 = fm−1,j − L. The385

ECRTS 2023



12:12 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

release times of τi’s jobs with 2 ≤ i < m are ri,j = fi−1,j − L. Thus, for 2 ≤ i < m, we have386

ri,j = fi−1,j − L387

≥ {Since Ji−1,j executes for L + 1 time units}388

ri−1,j + L + 1 − L389

= ri−1,j + 1. (1)390
391

Similarly, for τ1, it can be shown that392

r1,j+1 ≥ rm−1,j + 1. (2)393

We now show that consecutive jobs of τi with i < m are released at least Ti time units apart.394

For 2 ≤ i < m, by (1), we have395

ri,j+1 ≥ ri−1,j+1 + 1396

≥ {Applying (1) repeatedly for i − 2 times}397

r1,j+1 + 1 + (i − 2)398

≥ {By (2)}399

rm−1,j + 1 + (i − 1)400

≥ {Applying (1) repeatedly for m − 1 − i times}401

ri,j + (m − 1 − i) + i402

= ri,j + m − 1403

= ri,j + Ti. (3)404
405

Similarly, we can show that consecutive jobs of τ1 are released at least T1 time units apart.406

We now show that each job of τi with i < m is eligible when it is released by showing407

that Ji,j completes before Ji,j+1’s release. For 2 ≤ i < m − 1, in the third step of the408

derivation of (3), applying (1) repeatedly for m − 2 − i times instead of m − 1 − i times,409

we have ri,j+1 ≥ ri+1,j + (m − 2 − i) + i = ri+1,j + m − 2. Since L ≤ (m − 2)/3 < m − 2410

and ri+1,j = fi,j − L, we get ri,j+1 > ri+1,j + L = fi,j . For i = m − 1, the first step in the411

derivation of (3) yields rm−1,j+1 ≥ r1,j+1 +1+(m−1−2) = r1,j+1 +m−2 > r1,j+1 +L. Since412

r1,j+1 = fm−1,j − L, we get rm−1,j+1 > fm−1,j . For i = 1, applying (1) in (2) repeatedly for413

m − 3 times, we have r1,j+1 ≥ r2,j + m − 2 > r2,j + L = f1,j . Thus, ri,j+1 > fi,j for i < m.414

Finishing up. We now prove the theorem by showing that Jm,1’s write request is never415

satisfied if the request delay for read requests is at most 2L − 2. Assume that Jm,1’s request416

is satisfied at time t. We have t > 2, as Jm,1 issues its request at time 2 and J1,1 holds417

ℓq then (under a work-conserving scheduling policy, J1,1 acquires ℓq at time 1). Since the418

scheduling policy is work-conserving, a job Ji,j must release ℓq at time t. Thus, fi,j = t.419

By the job release pattern of τ1, τ2, . . . , τm−1, there exists a job Ju,v such that ru,v =420

fi,j − L = t − L. Since each job is eligible when it is released and there are m tasks, Ju,v421

issues a read request R at time ru,v + 1 = t − L + 1 < t (as L ≥ 2). Since Jm,1’s write request422

is satisfied at time t, R cannot be satisfied before time t + L. Since the task count is m, Ju,v423

is pi-blocked for a duration of at least t + L − (t − L + 1) = 2L − 1 time units. Thus, request424

blocking for read requests exceeds 2L − 2 time units, reaching a contradiction. ◀425

Thus, read request blocking of at least 2Lq
max − 1 time units is fundamental to avoid426

writer starvation. We now establish a lower bound on write request blocking when read427



S. Ahmed and J. H. Anderson 12:13

Time

Read

Read

Read

Write

Write

Write

τ1

τ2

τ3

τ4

τ5

τ6

0 5 10 15

CS
Normal Execution

Suspension

Lock Release
Request Issuance
Completion
Deadline
Release

Figure 6 A schedule illustrating Theorem 16. Read and write CSs are shaded differently.

requests suffer request blocking for at most 2Lq
max − 1 time units.5428

▶ Theorem 16. For m ≥ 4, there exists a task system and a release sequence for it such429

that any locking protocol that ensures at most 2Lq
max − 1 read request blocking causes write430

request blocking of (2m − 5)Lq
max − 1 time units under any work-conserving scheduler.431

Proof. Let τ1, τ2, . . . , τn be n tasks scheduled on m ≥ 4 processors, where n = 2m − 4. Each432

task has a WCET of L + 1 time units with L ≥ 1. Fig. 6 illustrates this for m = 5 and433

L = 3. Each job’s execution consists of 1.0 time unit of non-CS execution followed by L434

time units of CS execution. Tasks τ1, τ2, . . . , τm−2 issue write requests for resource ℓq, while435

τm−1, τm, . . . , τ2m−4 issue read requests for ℓq. Each task’s period is T ≥ (2m − 4) · (L + 1).436

The task WCETs sum to (2m − 4) · (L + 1), so assuming implicit deadlines, the task system437

can be scheduled by sequentially executing the jobs on a single processor (i.e., it is feasible).438

Tasks τ1, τ2, . . . , τm−2 release their first jobs at time 1. Task τm−1 releases its first job439

at time 0. For i > m − 1, the release time of Ji,1 is determined as ri,1 = fi−1,1 − 1. Hence,440

from time 0, there is always an eligible first job of a task until all first jobs are complete.441

Since all WCETs sum to (2m − 4) · (L + 1), under a work-conserving scheduler, the first job442

of each task completes by time (2m − 4) · (L + 1) ≤ T . Subsequent job release times can be443

easily defined so that each task’s consecutive job releases are at least T time units apart.444

We now prove that each first job Ji,1 always incurs pi-blocking when it is waiting for ℓq.445

For any job Ji,1 with i > m, we have ri,1 = fi−1,1 − 1 ≥ ri−1,1 + L + 1 − 1 = fi−2,1 − 1 + L.446

Since L ≥ 1, we have ri,1 ≥ fi−2,1. Thus, at most two first jobs of the last m − 2 tasks are447

pending at the same time. Therefore, at most m − 2 + 2 = m first jobs are pending at any448

time, which implies that a job Ji,1 incurs pi-blocking if it is waiting.449

Finally, we prove the claim of the theorem by showing that there is a writer job that incurs450

pi-blocking for the duration of (2m − 5)L − 1 time units. Job Jm−1,1 issues a read request at451

time 1 and acquires ℓq (as the scheduling policy is work-conserving). Fig. 6 illustrates this.452

Each job Ji,1 with i < m − 1 issues a write request at time 2.453

Each job Ji,1 with i > m − 1 (e.g., the jobs of τ5 and τ6 in Fig. 6) is released 1.0 time unit454

before Ji−1,1 completes and issues a read request when Ji−1,1 completes. Thus, Ji,1’s read455

request cannot be delayed to satisfy two or more pending write requests without incurring456

5 Assuming higher read request blocking would yield a smaller lower bound on write request blocking.
Note that deriving tight lower bounds for RW locks is much more complicated than for the other locks
considered in this paper because much leeway exists regarding the interplay between readers and writers.

ECRTS 2023



12:14 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

Table 4 Asymptotically optimal locking protocols for RW locks under s-oblivious analysis.

Scheduling Protocol Release
blocking

Read request
blocking

Write request
blocking

Clustered JLFP CRW-OMLP [11] 2mLmax 2Lq
max (2m − 1)Lq

max

C-FIFO RW-OLP-F (This work) 0 2Lq
max − 1 (2m − 3)Lq

max

read request blocking of at least 2L time units. As a result, at most one write request can457

be satisfied between two consecutive read requests. Thus, there is a write request from a job458

Ju,1 with i < m − 1 (e.g., τ3’s job in Fig. 6) that must be satisfied after all read and write459

requests of each job Ji,1 with i ̸= u complete.460

Since Ju,1 issues its request at time 2 and Jm−1,1 (e.g., τ4’s job in Fig. 6) acquires ℓq at461

time 1, Jm−1,1 pi-blocks Ju,1 for L − 1 time units. The stated job release pattern ensures462

that no two of the remaining m − 3 read requests (e.g., those by τ5 and τ6 in Fig. 6) overlap,463

so they pi-block Ju,1 for (m − 3)L time units. Finally, Ju,1 is pi-blocked by each of the other464

m − 3 write requests (e.g., those by τ1 and τ2 in Fig. 6) for (m − 3)L time units. Thus, Ju,1465

incurs pi-blocking for L − 1 + (m − 3)L + (m − 3)L = (2m − 5)L − 1 time units. ◀466

For simplicity, Theorems 5 and 16 are stated for work-conserving scheduling. However,467

both theorems are also true under a wider class of schedulers and locking protocols that are468

top-c-work-conserving. On a c-processor cluster, a top-c-work-conserving scheduling ensures469

that any top-c-highest priority ready job immediately acquires a shared resource (including470

processor) if such a resource is idle. Note that a work-conserving scheduler and locking471

protocol combination is also top-c-work-conserving.472

Asymptotically optimal RW locking protocols. For RW locks, the CRW-OMLP is473

an asymptotically optimal locking protocol under clustered JLFP scheduling [11]. The474

CRW-OMLP is a phase-fair RW locking protocol. Phase-fair RW locks satisfy read and475

write requests in alternating phases [12]. At the beginning of a reader phase, all waiting476

read requests are satisfied simultaneously, while at the beginning of a writer phase, a single477

waiting write request is satisfied. Tbl. 4 summarizes the CRW-OMLP.478

The RW-OLP-F. We now introduce the read-optimal RW locking protocol under C-FIFO479

scheduling (RW-OLP-F ), which achieves optimal pi-blocking for read requests under C-FIFO480

scheduling. The RW-OLP-F is a phase-fair RW locking protocol that achieves 2Lq
max − 1481

(resp., (2m − 3)Lq
max) request blocking for read (resp., write) requests—here, however, we482

only prove a bound of 2Lq
max for reads due to space limitation. Unlike the CRW-OMLP, the483

RW-OLP-F has no release blocking under C-FIFO scheduling.484

Structures. For each resource ℓq, we have two queues RQ1
q and RQ2

q that contain read485

requests for ℓq, and a FIFO queue WQq that contains write requests for ℓq. One of the read486

queues acts as a collecting queue and the other acts as a draining queue. The roles of RQ1
q487

and RQ2
q alternate, i.e., each switches over time between being the collecting queue and being488

the draining queue. Initially, RQ1
q is the collecting queue and RQ2

q is the draining queue.489

Reader rules. Assume that a job Ji attempts to issue a read request R for resource ℓq. Let490

RQc
q and RQd

q be the collecting and draining queues, respectively, when Ji issues R.491

R1 Ji is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.492

Ji suspends if necessary to ensure this condition.493

R2 If WQq is empty when Ji issues R, then R is immediately satisfied and enqueued in494

RQd
q . Otherwise, Ji suspends and R is enqueued in RQc

q.495



S. Ahmed and J. H. Anderson 12:15

R3 If R is in RQc
q, then it is satisfied (along with all other requests in RQc

q) when RQc
q496

becomes the draining queue (see Rule W3). If RQc
q becomes the draining queue at time t497

and a read request is issued at time t, then that request is enqueued in RQc
q before making498

it the draining queue. R is removed from RQc
q when it is complete. If RQc

q becomes499

empty because of R’s removal, then the head of WQq (if any) is satisfied.500

Writer rules. When a job Jw attempts to issue a write request R for a resource ℓq, it501

proceeds according to the following rules.502

W1 Jw is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.503

Jw suspends if necessary to ensure this condition.504

W2 If RQ1
q, RQ2

q, and WQq are empty when R is issued, then R is immediately satisfied505

and enqueued in WQq. Otherwise, R is enqueued in WQq and Jw suspends.506

W3 Let RQd
q and RQc

q be the draining and collecting queues, respectively, when R is the507

head of WQq. R is satisfied when R is the head of WQq and RQd
q is empty. When R508

is complete, R is dequeued from WQq and if RQc
q is non-empty, then RQc

q (resp., RQd
q)509

becomes the draining (resp., collecting) queue. Otherwise (RQc
q is empty), the new head510

of WQq (if any) is satisfied.511

Analysis. We now determine an upper bound on request blocking. For m ≤ 2, by Lemma 4512

and Rules R1 and W1, there are at most two active requests and at most one waiting request513

at any time, so request blocking is at most Lq
max time units for both reads and writes.514

Henceforth, we assume m ≥ 3. The following lemma follows from Lemma 4 and Rules R1515

and W1; we omit its proof as it is similar to Lemma 7.516

▶ Lemma 17. The total number of requests in RQ1
q, RQ2

q, and WQq is at most m.517

We now give two helper lemmas.518

▶ Lemma 18. If a write request R is the head of WQq at time t, then it is satisfied by519

time t + Lq
max.520

Proof. Let RQc
q and RQd

q be the collecting and draining queue, respectively, at time t. If R521

is not satisfied at time t, then by Rule W3, RQd
q is non-empty at time t. By Rule R3, jobs522

with requests in RQd
q hold ℓq at time t. Let t′ be the time instant when all such requests523

are complete. By Lemma 5 and Rule R1, t′ ≤ t + Lq
max. By Rule R2, no read requests are524

enqueued in RQd
q during [t, t′). Thus, RQd

q becomes empty at time t′. By Rule W3, R is525

satisfied at time t′. Thus, the lemma holds. ◀526

▶ Lemma 19. If a write request R is the head of WQq at time t, then it is complete by527

time t + 2Lq
max.528

Proof. By Lemma 18, R is satisfied by time t + Lq
max. By Lemma 5 and Rule W1, R529

completes within Lq
max time units after being satisfied. Thus, the lemma holds. ◀530

We now determine an upper bound on the request blocking suffered by a job when it531

issues a read request. We consider a job Ji that issues a read request R for resource ℓq. As532

depicted in Fig. 3, let t1, t2, t3, and t4 be the time instants corresponding to when Ji attempts533

to issue R, and when R is issued, satisfied, and complete, respectively. In the lemma below,534

for simplicity, we show that request blocking for read requests is at most 2Lq
max. A tight535

bound of 2Lq
max − 1 can be established by a detailed analysis involving multiple cases.536

ECRTS 2023



12:16 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

▶ Lemma 20. For a read request R, Ji suffers request blocking for at most 2Lq
max time units.537

Proof. Ji suffers pi-blocking for the duration of [t2, t3). Let RQc
q and RQd

q be the collecting538

and draining queue, respectively, at time t2. If WQq is empty at time t2, then t2 = t3 holds539

according to Rule R2, so assume otherwise. By Rule R2, R is enqueued in RQc
q. Let R′ be540

the request at the head of WQq at time t2. Let t′
2 be the time instant when R′ completes.541

By Lemma 19, t′
2 ≤ t2 + 2Lq

max holds. By Rule W3, RQc
q becomes the draining queue at time542

t′
2. Thus, by Rule R3, all requests in RQc

q, including R, are satisfied at time t′
2, implying543

t3 = t′
2. Therefore, we have t3 − t2 ≤ 2Lq

max. ◀544

Finally, we give an upper bound on the request blocking incurred by a job when issuing a545

write request. Let Jw be a job that issues a write request R at time t.546

▶ Lemma 21. For a write request R, Jw incurs request blocking for at most (2m − 3)Lq
max547

time units.548

Proof. If no request holds ℓq at time t, then by Rule W2, R is immediately satisfied. This549

leaves two cases.550

Case 1. A job with a read request holds ℓq at time t. By Lemma 17, RQ1
q, RQ2

q, and WQq551

hold at most m requests at time t. Since there is an active read request, at most m − 2 write552

requests precede R in WQq. By Rule W3, each of those write requests becomes the head553

of WQq when its preceding write request completes. By Lemma 19, a write request at the554

head of WQq completes within 2Lq
max time units from when it becomes the head. Thus, all555

m − 2 write requests that precede R in WQq are complete by time t + 2(m − 2)Lq
max. By556

Lemma 18, after becoming the head of WQq, R is satisfied within an additional Lq
max time557

units. Thus, R is satisfied by time t + (2m − 3)Lq
max.558

Case 2. A job with a write request R′ holds ℓq at time t. We consider two subcases.559

Case 2a. WQq contains m requests at time t. Thus, m − 1 requests precede R in WQq.560

By Lemma 5 and Rule W1, R′ completes within Lq
max time units from t. By Lemma 4 and561

Rules R1 and W1, no requests are issued before R′ completes. Thus, by Rule W3, the write562

request R′′ following R′ is satisfied when R′ is complete. By Lemma 5 and Rule W1, R′′
563

completes within Lq
max time from when it is satisfied. Thus, the top two requests in WQq564

are complete by time t + 2Lq
max. By Lemma 19, each of the remaining m − 3 write requests565

preceding R is complete within 2Lq
max time units after becoming the head of WQq. Thus,566

R becomes the head of WQq by time t + 2Lq
max + 2(m − 3)Lq

max = t + 2(m − 2)Lq
max. By567

Lemma 18, R is satisfied within Lq
max time units after becoming WQq’s head. Thus, R is568

satisfied by time t + (2m − 3)Lq
max.569

Case 2b. WQq contains at most m − 1 requests at time t. Thus, at most m − 2 requests570

precede R in WQq. By Lemma 5, R′ completes within Lq
max time units from t. By Lemma 19,571

each of the remaining m − 3 write requests preceding R′ completes within 2Lq
max time units572

from when it becomes the head of WQq. Thus, R becomes the head of WQq within573

Lq
max +2(m−3)Lq

max = (2m−5)Lq
max time units from t. By Lemma 18, R is satisfied within574

Lq
max time units after becoming WQq’s head. Thus, R is satisfied by time (2m−4)Lq

max. ◀575

Similar to the OLP-F, no job suffers release blocking due to a resource-holding job under576

the RW-OLP-F. By Lemma 20 and 21 and letting Nq,r
i and Nq,w

i denote the maximum577

number of read and write requests for ℓq by τi, we have the following.578



S. Ahmed and J. H. Anderson 12:17

▶ Theorem 22. Under the RW-OLP-F , Ji is pi-blocked for at most

bi =
nr∑

q=1
(Nq,r

i · 2Lq
max + Nq,w

i · (2m − 3)Lq
max) .

As mentioned already, the 2Lq
max term above can be replaced by 2Lq

max −1 at the expense579

of more lengthy analysis. By Rules R1, R2, W1, and W2, FIFO scheduling and RW-OLP-F580

ensures top-c-work-conserving property. Thus, by Theorems 15 and 16, the RW-OLP-F581

ensures optimal request blocking for read requests, while ensuring that the request blocking582

for write requests is just under two request lengths of optimal.583

8 Experimental Evaluation584

In this section, we present the results of experiments we have conducted using the SchedCAT585

toolkit [1] to evaluate our proposed locking protocols.586

Task system generation. Our task-system generation method is similar to that used in587

prior locking-related schedulability studies [6, 9,32]. We generated task systems randomly588

for systems with {4, 8, 16} processors. For each processor count, we generated task systems589

that have a normalized utilization, i.e.,
∑n

i=1 ui/m, from 0.2 to 0.9 with a step size of590

0.1. We chose the number of tasks uniformly from [2m, 150]. We generated each task’s591

utilization uniformly following procedures from [19]. We chose each task’s period randomly592

from [3, 33]ms (short), [10, 100]ms (moderate), or [50, 500]ms (long). We set each task’s593

WCET Ci to Ti · ui rounded to the next microsecond.594

We considered {m/4, m/2, m, 2m} number of shared resources. For each τi and resource595

ℓq, we selected τi to access resource ℓq with probability pacc ∈ {0.1, 0.25, 0.5}. If so selected,596

τi was defined to access ℓq via Nq
i ∈ {1, 2, . . . , 5} requests. For each Nq

i > 0, we chose597

the maximum request length Lq
i randomly from three uniform distributions ranging over598

[1, 15]µs (short), [1, 100]µs (medium), or [5, 1280]µs (long). A chosen Lq
i value was decreased599

accordingly if it caused the sum of all request length of τi to exceed Ci. For each combination600

of m, normalized utilization, Ti, Lq
i , pacc, and nr, we generated 1,000 task systems. We call601

each combination of these parameters a scenario.602

Experiment 1. In our first experiment, we considered mutex sharing. Each task had a soft603

timing constraint, meaning that it was deemed schedulable if its response time was bounded.604

We considered resource synchronization under the OLP-F, the OMLP [11], the C-OMLP [13],605

the OMIP [7], and the FMLP [5]. For the OLP-F, each task system’s schedulability was tested606

under global FIFO scheduling [22]. For the remaining protocols, s-oblivious schedulability607

tests were performed under global EDF scheduling [16].6 For each scenario, we assessed608

acceptance ratios, which give the percentage of task systems that were schedulable under609

each locking protocol. We present a representative selection of our results in Fig. 7.610

▶ Observation 1. The average improvement under the OLP-F over the OMLP, the C-OMLP,611

the OMIP, and the FMLP was 20.2%, 14.9%, 16.4%, and 27.5%, respectively.612

This can be seen in insets (a) and (b) of Fig. 7. Unsurprisingly, schedulability was613

improved under the OLP-F because of lower pi-blocking compared to the other protocols.614

In some cases, as depicted in Fig. 7(b), all protocols had similar schedulability. This can615

6 The same schedulability test also applies for a wider class of global schedulers including FIFO.

ECRTS 2023



12:18 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized util

0.0

0.2

0.4

0.6

0.8

1.0
Sc

he
du

la
bi

lit
y

OMLP
COMLP
OMIP
FMLP
OLPF

(a) Exp. 1 with m = 8, moderate periods, me-
dium requests, pacc = 0.2, nr = 2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized util

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

OMLP
COMLP
OMIP
FMLP
OLPF

(b) Exp. 1 with m = 16, short periods, short
requests, pacc = 0.1, nr = 8.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized util

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

CRW-OMLP
RW-OLPF
OLPF

(c) Exp. 2 with m = 8, long periods, medium
requests, pacc = 0.2, pwrite = 0.3, nr = 32.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized util

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

COMLP
OLPF

(d) Exp. 3 with m = 4, long periods, short re-
quests, pacc = 0.5, nr = 8.

Figure 7 Experimental results.

happen when the number of request-issuing jobs for each resource is small (e.g., less than616

the number of processors), in which case all protocols have similar pi-blocking bounds.617

Experiment 2. This experiment pertains to RW sharing. To generate task systems, we used618

one additional parameter pwrite ∈ {0.1, 0.2, 0.3, 0.5, 0.7}. We defined each resource access to619

be a write (resp., read) access with probability pwrite (resp., 1 − pwrite). In this experiment,620

we considered soft real-time scheduling with resource synchronization under the RW-OLP-F,621

the CRW-OMLP [13], and the OLP-F. Each task system’s schedulability was tested under622

global FIFO scheduling when the OLP-F and the RW-OLP-F were employed, and under global623

EDF scheduling otherwise. We have the following observation.624

▶ Observation 2. The RW-OLP-F improved schedulability over the CRW-OMLP across all625

scenarios. The RW-OLP-F had less schedulability than the OLP-F when write accesses were626

more frequent, i.e., high pwrite values.627

This can be seen in Fig. 7(c). The improved pi-blocking bound enabled higher schedulab-628

ility under the RW-OLP-F. The RW-OLP-F had better or equal schedulability than the OLP-F629

across 90% of the total scenarios. Since the RW-OLP-F has higher write request blocking630

compared to the OLP-F (which does not have optimal read request blocking), the OLP-F had631

better schedulability than the RW-OLP-F when pwrite values are high, e.g., pwrite = 0.7.632

Experiment 3. In this experiment, we considered hard real-time scheduling under mutex633

locks. For each task τi, we randomly chose a relative deadline between [Ti, 2Ti]. We considered634

partitioned scheduling because of the lack of hard real-time schedulability tests for global635



S. Ahmed and J. H. Anderson 12:19

FIFO scheduling. We used the worst-fit bin packing heuristic to partition each task system.636

We compared schedulability under the OLP-F and partitioned FIFO scheduling with the637

partitioned OMLP (the C-OMLP with c = 1) and partitioned EDF scheduling.638

▶ Observation 3. The partitioned OMLP had better schedulability compared to the OLP-F .639

This can be seen in Fig. 7(d). Despite having lower pi-blocking and bounded response640

times, the partitioned OMLP enabled better schedulability because of the optimality of641

uniprocessor EDF in scheduling hard real-time workloads. Note that, unlike for EDF, the642

employed FIFO schedulability test was non-exact [4].643

9 Related Work644

The literature on suspension-based multiprocessor real-time locking protocols is quite vast645

(e.g., [7, 11, 13–15,17, 20, 21, 23–25,27, 29]). An excellent recent survey is given in [10]. Below,646

we comment further on a few specific relevant protocols.647

In work on mutex locks, the FMLP [5] was the first multiprocessor locking protocol to be648

studied under s-oblivious analysis. While relatively simple, the FMLP has O(n) pi-blocking649

under s-oblivious analysis. The first mutex protocols that were shown to have asymptotically650

optimal s-oblivious pi-blocking were the OMLP and its variants, which include protocols651

applicable under partitioned, global, and clustered JLFP scheduling [11,13,14]. In later work,652

the OMIP [7] was presented; it upholds an independence preserving property that results in653

asymptotically optimal s-oblivious pi-blocking under clustered JLFP scheduling.654

The first multiprocessor mutex locking protocols were designed to be studied under655

s-aware analysis. Many of these protocols (e.g., the MPCP [27], the PPCP [17], the PIP [26],656

etc.) were inspired by classical uniprocessor locking protocols. The FMLP+ [9] is an extension657

of the FMLP that has been shown to have asymptotically optimal s-aware pi-blocking under658

clustered JLFP scheduling. In other work, linear-programming techniques were proposed659

that enable improved s-aware analysis of various protocols, including the PIP, the PPCP, and660

the FMLP, under global and partitioned fixed-priority scheduling [8, 32].661

10 Conclusion662

In this paper, we have presented optimal suspension-based multiprocessor locking protocols663

for mutex, k-exclusion, and RW synchronization. In particular, we have shown that the664

s-oblivious lower bound of m − 1 request lengths for mutex locks is indeed tight under FIFO665

scheduling. We have also provided a tight s-oblivious lower bound on read-request blocking666

for RW locks. All three locking protocols presented herein can be used together in the same667

system without jeopardizing the presented analysis. Moreover, spin-based versions of these668

protocols can be easily obtained by following the same design principles.669

For some non-FIFO JLFP schedulers, it may be possible that 2m − 1 request lengths is670

indeed a tight lower bound on s-oblivious pi-blocking for mutex locks. Showing this would671

require a new lower-bound proof. As seen in Sec. 7, finding task systems that justify such a672

lower bound can be quite difficult. The results of this paper show that any task system used673

to justify a 2m − 1 lower bound must necessarily not be FIFO-scheduled. In some sense, this674

is unfortunate, as FIFO schedules are somewhat easier to deal with in lower-bound arguments,675

given that having “top-c” priority is a stable property for FIFO-scheduled jobs.676

ECRTS 2023



12:20 Optimal Multiprocessor Locking Protocols under FIFO Scheduling

References677

1 SchedCAT: Schedulability test collection and toolkit. https://github.com/brandenburg/678

schedcat. Accessed: 2023-05-07.679

2 S. Ahmed and J. Anderson. Tight tardiness bounds for pseudo-harmonic tasks under global-680

EDF-like schedulers. In ECRTS’21, pages 11:1–11:24, 2021.681

3 B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. Davis. An empirical survey-based682

study into industry practice in real-time systems. In RTSS’20, pages 3–11, 2020.683

4 K. Bedarkar, M. Vardishvili, S. Bozhko, M. Maida, and B. Brandenburg. From intuition to684

coq: A case study in verified response-time analysis of FIFO scheduling. In RTSS’22, pages685

197–210, 2022.686

5 A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol687

for multiprocessors. In RTCSA’07, pages 47–56, 2007.688

6 B. Brandenburg. Scheduling and Locking in Multiprocessor Real-time Operating Systems. PhD689

thesis, University of North Carolina at Chapel Hill, 2011.690

7 B. Brandenburg. A fully preemptive multiprocessor semaphore protocol for latency-sensitive691

real-time applications. In ECRTS’13, pages 292–302, 2013.692

8 B. Brandenburg. Improved analysis and evaluation of real-time semaphore protocols for P-FP693

scheduling. In RTAS’13, pages 141–152, 2013.694

9 B. Brandenburg. The FMLP+: an asymptotically optimal real-time locking protocol for695

suspension-aware analysis. In ECRTS’14, pages 61–71, 2014.696

10 B. Brandenburg. Multiprocessor real-time locking protocols. In Handbook of Real-Time697

Computing, pages 347–446. Springer, 2022.698

11 B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In699

RTSS’10, pages 49–60, 2010.700

12 B. Brandenburg and J. Anderson. Spin-based reader-writer synchronization for multiprocessor701

real-time systems. Real Time Syst., 46(1):25–87, 2010.702

13 B. Brandenburg and J. Anderson. Real-time resource-sharing under clustered scheduling:703

Mutex, reader-writer, and k-exclusion locks. In EMSOFT’11, pages 69–78, 2011.704

14 B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time705

locking protocols. Des. Autom. Embed., 17(2):277–342, 2014.706

15 C. Chen, S. Tripathi, and A. Blackmore. A resource synchronization protocol for multiprocessor707

real-time systems. In ICPP’94, pages 159–162, 1994.708

16 U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor.709

Real-Time Syst., 38(2):133–189, 2008.710

17 A. Easwaran and B. Andersson. Resource sharing in global fixed-priority preemptive multipro-711

cessor scheduling. In RTSS’09, pages 377–386, 2009.712

18 G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by713

multi-GPU systems. Real-Time Syst., 49(2):140–170, 2013.714

19 P. Emberson, R. Stafford, and R. Davis. Techniques for the synthesis of multiprocessor tasksets.715

In WATERS’10, pages 6–11, 2010.716

20 D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of the multiprocessor717

bandwidth inheritance protocol. Real Time Syst., 48(6):789–825, 2012.718

21 K. Lakshmanan, D. Niz, and R. Rajkumar. Coordinated task scheduling, allocation and719

synchronization on multiprocessors. In RTSS’09, pages 469–478, 2009.720

22 H. Leontyev and J. Anderson. Tardiness bounds for FIFO scheduling on multiprocessors. In721

ECRTS’07, page 71, 2007.722

23 F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time systems on multi-723

cores with shared resources. In ECRTS’11, pages 251–261, 2011.724

24 F. Nemati and T. Nolte. Resource hold times under multiprocessor static-priority global725

scheduling. In RTCSA’11, pages 197–206, 2011.726

25 F. Nemati and T. Nolte. Resource sharing among real-time components under multiprocessor727

clustered scheduling. Real Time Syst., 49(5):580–613, 2013.728

https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat


S. Ahmed and J. H. Anderson 12:21

26 R. Rajkumar. Synchronization In Real-Time Systems – A Priority Inheritance Approach.729

Kluwer Academic Publishers, 1991.730

27 R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for multiprocessors.731

In RTSS’88, pages 259–269, 1988.732

28 L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to733

real-time system synchronization. IEEE Trans. Comp., 39(9):1175–1185, 1990.734

29 Z. Tong, S. Ahmed, and J. Anderson. Overrun-resilient multiprocessor real-time locking. In735

ECRTS’22, pages 9:1–9:23, 2022.736

30 B. Ward, G. Elliott, and J. Anderson. Replica-request priority donation: A real-time progress737

mechanism for global locking protocols. In RTCSA’12, pages 280–289, 2012.738

31 R. Wilhelm. Real time spent on real time (invited talk). In RTSS’20, pages 1–2, 2020.739

32 M. Yang, A. Wieder, and B. Brandenburg. Global real-time semaphore protocols: A survey,740

unified analysis, and comparison. In RTSS’15, pages 1–12, 2015.741

ECRTS 2023


	1 Introduction
	2 System Model and Background
	3 Suspension-Oblivious Pi-Blocking
	4 Resource-Holder's Progress Under FIFO Scheduling
	5 Mutex Locks
	6 k-Exclusion Locks
	7 Reader-Writer Locks
	8 Experimental Evaluation
	9 Related Work
	10 Conclusion

