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ABSTRACT

Nathan Otterness: Developing Real-Time GPU-Sharing Platforms for Artificial-Intelligence Applications
(Under the direction of James H. Anderson)

In modern autonomous systems such as self-driving cars, sustained safe operation requires running

complex software at rates possible only with the help of specialized computational accelerators. Graphics

processing units (GPUs) remain a foremost example of such accelerators, due to their relative ease of use and

the proficiency with which they can accelerate neural-network computations underlying modern computer-

vision and artificial-intelligence algorithms. This means that ensuring GPU processing completes in a timely

manner is essential—but doing so is not necessarily simple, especially when a single GPU is concurrently

shared by many applications.

Existing real-time research includes several techniques for improving timing characteristics of shared-

GPU workloads, each with varying tradeoffs and practical limitations. In the world of timing correctness,

however, one problem stands above all others: the lack of detailed information about how GPU hardware and

software behaves. GPU manufacturers are usually willing to publish documentation sufficient for producing

logically correct software, or guidance on tuning software to achieve “real-fast,” high-throughput performance,

but the same manufacturers neglect to provide details used when establishing temporal predictability.

Techniques for improving the reliability of GPU software’s temporal performance are only as good as

the information upon which they are based, incentivising researchers to spend inordinate amounts of time

learning foundational facts about existing hardware—facts that chip manufacturers must know, but are not

willing to publish. This is both a continual inconvenience in established GPU research, and a high barrier to

entry for newcomers.

This dissertation addresses the “information problem” hindering real-time GPU research in several ways.

First, it seeks to fight back against the monoculture that has arisen with respect to platform choice. Virtually

all prior real-time GPU research is developed for and evaluated using GPUs manufactured by NVIDIA, but

this dissertation provides details about an alternate platform: AMD GPUs. Second, this dissertation works

towards establishing a model with which GPU performance can be predicted or controlled. To this end, it uses
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a series of experiments to discern the policy that governs the queuing behavior of concurrent GPU-sharing

processes, on both NVIDIA and AMD GPUs.

Finally, this dissertation addresses the novel problems for safety-critical systems caused by the changing

landscape of the applications that run on GPUs. In particular, the advent of neural-network-based artificial-

intelligence has catapulted GPU usage into safety-critical domains that are not prepared for the complexity of

the new software or the fact that it cannot guarantee logical correctness. The lack of logical guarantees is

unlikely to be “solved” in the near future, motivating a focus on increased throughput. Higher throughput

increases the probability of producing a correct result within a fixed amount of time, but GPU-management

efforts typically focus on worst-case performance, often at the expense of throughput. This dissertation’s

final chapter therefore evaluates existing GPU-management techniques’ efficacy at managing neural-network

applications, both from a throughput and worst-case perspective.
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CHAPTER 1: INTRODUCTION

Nothing is more destructive to the traditional concept of a safety-critical real-time system than attempting

to build such a system using hardware with unknown timing behavior, and software that exhibits frequent,

unavoidable logical failures. Yet, the advent of machine learning, made practical by graphics processing units

(GPUs), means that such systems are becoming commonplace—with or without correctness guarantees.

The application of GPU acceleration to machine-learning algorithms, and neural networks in particular,1

has led to enormous improvements in the field of computer vision over the past decade. With this improvement

came an explosion in the number of potential applications, such as handwriting recognition (Memon, Sami,

Khan and Uddin 2020), 3D object reconstruction (Han, Laga and Bennamoun 2019), and medical image

analysis (Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken and Sánchez 2017),

to name a few. However, none of these aforementioned applications are as significant to real-time research as

autonomous vehicles.

Autonomous vehicles are unlike any of the other examples due to their immediate impact on human

safety. Outside of contrived examples, incorrect handwriting recognition is unlikely to immediately result

in death or injury. Incorrect medical image analysis can certainly result in injury, but, when necessary,

medical applications can use high-end computers and results can be reviewed by human experts—reducing

the chance that a slow or incorrect algorithm is singly responsible for any mistakes. The potential risks of

autonomous-vehicle mishaps are far greater. In this case, a mistake not only harms the vehicle’s passengers,

but also the vehicle itself, other humans, and other vehicles and property. Put another way, autonomous

vehicles are a classic example of a safety-critical real-time system.

A brief overview of real-time systems. Generally, a real-time system is a set of hardware or software that

must react to events or regularly perform actions within a specific time frame. A computer-controlled machine

performing actions on a factory assembly line can certainly be classified as a real-time system. Arguably,

even a lower-stakes goal of rendering a video game at 60 frames per second is a real-time system; like the

1I define neural networks and other computer-vision and machine-learning terminology more thoroughly in Section 2.3.
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assembly line, video games must operate within timing constraints to be considered “correct.” However, the

distinction between real-time and non-real-time systems is most important in cases that are safety-critical:

where failure to perform on time can risk lives, injury, or large monetary costs. In terms of software, a

real-time system generally consists of a set of tasks. Tasks are most easily conceived of as computer programs

that run multiple, repeating jobs. For example, a video-processing task may launch a job to analyze a new

image from a camera every 1/30th of a second. Each job of a real-time task has a deadline—a point in time

by which the job must complete. Note that this simplistic overview is only intended to make it easier to

understand the remaining introductory material. The academic community has developed more extensive

models for discussing real-time systems, complete with formal notation, terminology, and increased nuance.

We save most of this material for a detailed discussion in Section 2.5.

1.1 GPU-Augmented Real-Time Systems

The academic discipline of real-time systems is primarily concerned with guaranteeing the temporal

correctness of safety-critical systems: ensuring that jobs complete by their deadlines. Focusing primarily on

timing is justified by treating logical correctness (producing correct results) as an orthogonal concern. If one

assumes that safety-critical computations produce correct results, the remaining challenge is to ensure that

results arrive in time for them to be useful.

This is easier said than achieved, especially for GPU-augmented systems. Ensuring temporal correctness

requires accurate models: sets of assumptions, formulas, or rules used to derive or justify predictions about

computations’ timing requirements. Well-established real-time models of CPU execution often assume that

a (relatively small) number of processors operate independently, with some limited contention for shared

resources. This does not apply to the highly parallel architecture of a GPU, where a very large number

of computations occur, but cannot operate independently. Additionally, ensuring that real-world behavior

matches the models’ assumptions requires careful hardware management: controlling how applications access

CPUs, memory, etc. Once again, CPU-focused real-time literature contains a large number of well-understood

strategies for scheduling computations on one or more CPUs, many of which are difficult to implement or

apply on GPU hardware. Novel approaches for both modeling and hardware management must be developed

in order to provide a traditional sense of timing correctness for GPU-using computations. All of these

problems are compounded when considering GPU sharing: allowing multiple, separate, applications to use a
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"nothing 

here!"

(a) Timeliness is meaningless without logical cor-
rectness.

"road work 

detected!"

(b) Logical correctness becomes meaningless when
delivered too slowly.

Figure 1.1: In modern applications, both timing and logical failures must be prevented.

single GPU in a system. In addition to modeling the behavior of a single GPU-using application, one must

also understand how to arbitrate GPU access when several applications attempt to use it at the same time.

This is particularly important for autonomous vehicles, where size, weight, and power constraints motivate a

desire to install a smaller number of less-powerful computers.

1.2 New Challenges from Modern Applications

Unfortunately, as hinted by this paper’s opening sentence, the challenge GPUs pose to this traditional

view of real-time systems comes not only from the GPUs themselves, but also from the applications they

are expected to run. As recently as 2015, entire dissertations about real-time GPU management (e.g., Elliott

(2015)) do not even mention the flagship application of modern GPUs: neural networks.

Consider the example in Figure 1.1, which depicts a realistic application (Abodo, Rittmuller, Sumner and

Berthaume 2018) of neural-network-based computer vision: detecting road construction. Clearly, timeliness

is required for an autonomous-driving application. As shown in Figure 1.1b, correctly detecting road work

only helps if the detection is fast enough. At the same time, almost any nontrivial neural network is incapable

of guaranteeing correct results for all possible inputs. As we will discuss in Section 2.3, a neural networks’

behavior is more akin to estimating probabilities. Consider again the actual research that inspired Figure 1.1:

in it, Abodo et al. (2018) design a neural network that only outputs a relative “confidence” value that a

video frame is a road-construction scene. Using neural networks in a safety-critical system invalidates the

assumption that computations always produce logically correct results. Figure 1.1a shows that a system is

not necessarily safe, even if computations complete on time. One may argue that, given slightly more time,

the situation in Figure 1.1a can be rectified; e.g., if the construction is detected on a subsequent video frame.

In fact, this type of application exhibits a fundamental tradeoff between time and logical correctness. Even if

3



we abandon rigorous requirements for perfect logical correctness, this tradeoff exposes a different problem

for the traditional view of real-time systems: it contradicts the assumption that timing and logical correctness

are orthogonal.

Even leaving aside the difficulties with logical correctness, neural-network applications pose a problem

for existing real-time GPU-management approaches simply due to their complexity. Even small neural-

network applications can easily invoke GPU code several hundred times in the course of analyzing a single

image. Applications may also require arbitrary points of synchronization, where the CPU must wait for the

GPU (or vice versa) throughout this process. This behavior may not even be the direct responsibility of the

computer-vision researchers developing the neural networks—complexity also arises due to implementation

details of the high-level software frameworks frequently used to facilitate the neural networks’ development.

In real-time systems, guaranteeing temporal correctness hinges on the ability to understand the interplay

of various hardware and software components. As a system’s complexity increases, developing a sufficient

understanding of the interactions between tasks and hardware becomes increasingly difficult.

While we reserve further discussion of these software frameworks and the changing landscape of GPU

applications for Chapters 2 and 5, they are worth mentioning here to provide another point of motivation

for our research: simplistic models of GPU behavior and restrictive requirements placed on GPU software

are unable to handle modern GPU-accelerated AI. In order to support GPU acceleration for the flagship

application of GPU-augmented real-time systems, we require both detailed models and GPU-management

techniques capable of handling arbitrarily complex software.

1.3 The Monoculture in Real-Time GPU Research

While the battle among chip manufacturers for dominance in the GPU market has raged for years, the

most prominent contenders for at least the past decade have been two companies: NVIDIA and AMD. Of

these, NVIDIA is currently the clear leader, boasting over 80% of the market share for discrete desktop

GPUs as of mid-2021 (Mujtaba 2021). It is difficult to find reliable information about NVIDIA’s share of

the embedded-GPU market, but we are forced to assume that it is even more dominant than their share of

the desktop market—due to the simple fact that NVIDIA produces relatively popular embedded platforms,

such as the “Jetson” line of single-board computers (Otterness, Yang, Rust, Park, Anderson, Smith, Berg

and Wang 2017), whereas AMD apparently offers no off-the-shelf embedded-GPU development platforms at
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all. NVIDIA’s market dominance extends into the research domain, reflected in the near-monopoly its GPUs

have in prior work from the real-time community (Section 2.6).

Much of NVIDIA’s dominance in the area of general-purpose GPU computing can be attributed to the

popularity of CUDA, NVIDIA’s proprietary GPU programming framework (NVIDIA 2022). On top of CUDA

itself, NVIDIA has heavily supported and encouraged the use of its GPUs in the area of artificial intelligence

(AI), as exemplified by its popular CUDA library supporting deep neural networks, cuDNN (NVIDIA 2021).

cuDNN was first released in 2007, and has since been adopted into many prominent deep-learning and

image-processing frameworks such as Caffe (Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama

and Darrell 2014), PyTorch (Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein,

Antiga et al. 2019), and TensorFlow (Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving,

Isard et al. 2016).

In contrast, these popular deep-learning frameworks lacked AMD support for years, causing AMD to

fall behind in research adoption. However, AMD has recently been improving its own response to CUDA

with the ROCm software stack (AMD Corporation 2022), which includes HIP, a GPU programming interface

sporting near-identical features to CUDA (AMD Corporation 2021). The introduction of HIP has allowed

AMD to quickly develop versions of the aforementioned deep-learning and AI frameworks compatible with

its own GPUs. For example, as of May 2018, the official PyTorch repository has shipped with scripts that

allow it to be compiled for AMD GPUs, using ROCm.2 Similarly, AMD maintains a fork of TensorFlow

compatible with its own GPUs.3 Despite AMD’s efforts, however, the dearth of research directed at AMD

GPUs could lead one to question whether a serious competitor to NVIDIA even exists. Our work seeks to

address this deficiency: when designing systems where failure risks human lives, developers should seek the

safest option irrespective of brand loyalty or sales numbers. In short, the real-time GPU research community

should not ignore either side in the NVIDIA-vs.-AMD battle.

1.4 Thesis Statement

The ultimate goal of real-time research is to make systems safer. Improving both the depth and breadth

of knowledge for GPU-augmented platforms serves the same goal: improving safety in GPU-using real-time

2https://github.com/pytorch/pytorch/commit/cd86d4c5548c15e0bc9773565fa4fad73569f948

3https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
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systems. A fair amount of prior real-time GPU research seeks to apply existing high-level concepts to GPU

management, but is held back due to lacking an in-depth view of GPU details. Other prior research seeks

to expose and apply details about GPU behavior, but a larger number of details, often by necessity, end up

underrepresenting a greater breadth of potential platforms such as AMD GPUs.

Additionally, we must work to ensure that existing research remains relevant in the face of increasingly

complex software ecosystems and application designs. Much existing research not only relies on simplifying

assumptions about hardware, but also (sometimes implicit) assumptions about the structure of the entire

software stack. Modern neural-network applications may communicate with a GPU hundreds of times in

a single real-time job and rely on new, under-studied, hardware or software features to maintain sufficient

throughput. In addition, neural-network-based applications break out of the mold required by virtually the

entire history of real-time study due to providing no logical-correctness guarantees.

This dissertation attempts to address these issues hindering the safety of GPU-augmented real-time

systems. In it, we provide details about internal behaviors for both NVIDIA and AMD GPUs, expanding both

the breadth and depth of information available for developers producing GPU-augmented real-time systems.

We also document the many ways that GPU software has grown in complexity in a short amount of time, and

how existing approaches to GPU management may or may not continue to apply. This leads to our thesis

statement:

Guaranteeing safe execution of modern real-time GPU-accelerated applications is only possible

with accurate, sufficiently detailed models of GPU behavior, covering a wide range of hardware and

applications. These models can be applied to produce techniques for managing behavior of GPU

hardware, while remaining aware of the tradeoffs between timing and logical correctness.

1.5 Contributions

In support of this thesis, our work makes the following contributions:

1.5.1 Queueing Behavior for NVIDIA GPUs

Our thesis statement implies the need for more sophisticated models for GPUs used in real-time systems.

Despite their popularity in real-time research (and real-world embedded systems), prior research contains

relatively little information about issues as basic as the order in which jobs will execute when multiple tasks
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share an NVIDIA GPU running unmodified, default software. Naturally, unknown internal behavior implies

unpredictable timing. While it is certainly possible to produce some real-time management techniques

without making any assumptions about such GPU-internal behavior (we discuss some such approaches

in Section 2.6.1), if one’s goal is simply predicting timing behavior, then applying an accurate model of

unmanaged NVIDIA hardware and software is likely both simpler and more efficient. Unfortunately, this is

only possible if such a model is available in the first place.

In order to discern an adequate model of NVIDIA GPU behavior, we constructed a microbenchmarking

framework capable of answering fundamental questions about how pending GPU work is prioritized—posing

insightful questions and developing tools with which to answer them are both key components of a successful

reverse-engineering attempt. In Chapter 3, we discuss our questions, the experiments we ran, and the answers

we obtained.

1.5.2 Scheduling and Hardware Partitioning Behavior for AMD GPUs

While AMD GPUs remain far less popular than their NVIDIA counterparts in real-time or computer-

vision research, they still offer a distinct advantage over their competitors: a fully open-source software

stack. Additionally, even lower-tier AMD GPUs provide an oft-desired feature for real-time management:

hardware-level support for partitioning computational resources—allowing fine-grained control of how much

of the GPU’s processing capacity gets dedicated to each concurrent task. Unfortunately, even with these

apparent benefits, serious barriers still stand in the way of AMD GPUs as a test platform for research. Any

researcher hoping to use AMD GPUs is likely to quickly learn a difficult lesson: “open source” does not

imply “open information.”

Apart from source code, AMD generally offers less public documentation about their GPUs than what

NVIDIA makes available. Source-code availability is certainly not without benefit, though: it changes the

tools available for acquiring information, and gives a first-party, official, way to confirm findings. To use

existing software-engineering terminology, we can use white-box experiments to study AMD GPUs, whereas

the lack of internal information makes only black-box experiments possible on NVIDIA. In the prime example

from this dissertation, we used knowledge of AMD GPU internals, gleaned from source code and other

scant documentation, to design a proof-of-concept experiment that specifically targets weaknesses in AMD’s

hardware-partitioning implementation. In this experiment, we are able to increase an application’s execution
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time by more than tenfold, by increasing its computational-resource allocation. Chapter 4 both describes

this experiment in detail, and more importantly, uses it as a gateway into explaining the full stack of how

computational operations are requested and scheduled throughout AMD’s software and hardware.

1.5.3 Updated Assumptions About Real-time GPU Software

Our thesis statement claims that it is insufficient for proposed real-time GPU-management systems to

make overly simplistic assumptions about the behavior of either GPUs’ behavior or the software they are

running. This claim is largely due to the fact that GPU-accelerated workloads have changed, in a short span

of time, to become dominated by neural networks. The individual algorithms underlying neural networks may

not be particularly complex, but their utility stems less from novel mathematics and more from the manner in

which many operations are composed.

Neural-network tasks are often developed using high-level scripting languages, and may interact with

the GPU hundreds of times per job, amplifying the impact of overhead in any proposed management

techniques. Also, as mentioned multiple times throughout this introduction, neural-network applications are

not even capable of guaranteeing logical correctness, meaning that any claims about “safety” must account

for uncertain logical correctness in tandem with uncertain temporal correctness. The primary contributions of

Chapters 3 and 4 focus on producing or updating models of GPU hardware, but Chapter 5 addresses these

new application-level needs by focusing on updating models of GPU software.

We structure Chapter 5 around our creation of a new benchmark for evaluating real-time GPU man-

agement: an image-processing neural network initially designed for performance-sensitive contexts (Yu

and Huang 2019b). Unlike the microbenchmark-centric evaluation from Chapters 3 and 4, the high-level

frameworks used in neural-network development come with with their own set of performance pitfalls. In

adapting an existing neural network into a suitable benchmark, we encounter, explain, and fix several such

pitfalls. In investigating these pitfalls, we conduct a case study using KUtrace (Sites 2021), a tool for tracing

system-wide CPU activity including the operating system (OS),4 to fully analyze the activity of a single job

of the new benchmark.

4For unfamiliar readers, we discuss operating-system basics in Section 2.4.
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1.5.4 Implement and Reevaluate Prior GPU-Management Approaches

At least as stated, our contributions so far primarily serve to enrich models of GPUs and applications, but

our thesis statement also includes realistic management of GPU hardware—which must involve testing real-

world code. If prior management approaches are wholly insufficient, then we should be able to demonstrate

this is the case, or, more constructively, demonstrate specifically where they fall short and how these

shortcomings may be addressed.

In light of this, we draw on the GPU- and software-related information gained earlier in the dissertation

to form our final contribution: we take multiple GPU-management approaches from existing real-time

literature and implement these techniques on a common platform. With a common baseline, we can use

our implementation to conduct a study: how do these existing management proposals affect both timing

and logical-correctness tradeoffs in a modern neural network? Chapter 6 describes the implementation,

experimental setup, and results of this evaluation.

1.6 Organization

Following this introduction, Chapter 2 provides necessary background material, including information

about GPU programming, computer-vision applications, and real-time systems. Chapter 2, Section 2.6,

contains our discussion of prior related work. Next, Chapters 3 and 4 cover our investigation of NVIDIA

and AMD GPU behavior, respectively. We explore new complexities in modern GPU-using software and

develop a representative benchmark application in Chapter 5. In Chapter 6, we build on the material from

earlier chapters to evaluate GPU-management approaches from prior real-time literature. Finally, we make

our concluding remarks in Chapter 7.
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CHAPTER 2: BACKGROUND AND MOTIVATION

The research covered in this dissertation naturally requires understanding general-purpose GPU pro-

gramming and a general overview of GPU hardware. Additionally, due to the software applications in our

case studies, we cover some basic computer-vision and neural-network fundamentals in Section 2.3. We

assume familiarity with some basic real-time concepts and notation, which we define in Section 2.5. When

discussing practical applications, however, we rely on several concepts related to operating systems, covered

in Section 2.4. Finally, Section 2.6 of this chapter considers prior related work.

2.1 GPU Programming

It is usually easiest to introduce GPU programming from the top down, by following the high-level life

cycle of a GPU-using application. For practical purposes, we assume that any code being executed by the

GPU is running at the request of a CPU program. CPU programs almost always issue requests to the GPU

using higher-level APIs (application programming interfaces). For example, OpenGL (Khronos Group 2021)

and Vulkan (Khronos Vulkan Working Group 2022) are APIs designed to leverage GPUs’ original purpose:

rendering graphics. It may come as a surprise, then, that we almost never refer to these APIs in a dissertation

about GPUs—in fact, we focus very little on graphics at all. Instead, we primarily concern ourselves with the

frameworks designed for non-graphical general-purpose GPU (GPGPU) computations: CUDA for NVIDIA

GPUs, and HIP for AMD GPUs.1

2.1.1 An Example GPU Program

In their basic form, both CUDA and HIP programs follow a similar pattern when offloading work to the

GPU: copy data to GPU memory, invoke some GPU code to process data, and copy results back to CPU

memory. Figure 2.1 shows an example of such a program, using the HIP API to offload the addition of two

1 While both “CUDA” and “HIP” began as acronyms, the meaning of both abbreviations is rarely intended, even in official
documentation. We, likewise, use these terms only as names of the respective GPU-programming frameworks, and do not intend to
imply further meaning behind the acronyms.
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vectors of floating-point numbers to the GPU. The following steps give a more detailed explanation of the

activity carried out by Figure 2.1:

1. Allocate buffers in GPU memory, both to hold input data and to receive results. This is carried out

by calls to the hipMalloc function shortly after the start of main in Figure 2.1. Note that Figure 2.1

does not explicitly define the vector size variable—in real code, vector size would need to

be set to the size of vectors a, b, and c, in bytes. Additionally, Figure 2.1 does not include code for

allocating or initializing the contents of the vectors in CPU memory, but this can be accomplished

using standard C library functions such as malloc, mmap, fread, etc.

2. Create a “stream:” a queue to hold GPU operations. This is accomplished in Figure 2.1 using the

hipStreamCreate function. For this example, we only need to think of streams as FIFO (first-in-

first-out) queues that hold operations to be carried out on the GPU. Put another way, each successive

operation enqueued in a stream only begins executing on the GPU after all previous operations in the

same stream have completed. Streams can be useful for purposes beyond ordering requests, but we

save these additional details for Section 2.1.2.

3. Enqueue several operations in the stream. The stream created in the previous step ensures that the

following operations execute in FIFO order:

(a) Copy input data from CPU memory to GPU memory. The code in Figure 2.1 issues two

hipMemcpyAsync calls, specifying the stream into which they should be enqueued. Each of

these two operations is responsible for copying the content of one input vector in CPU memory

to the corresponding buffer in GPU memory.

(b) Invoke a piece of GPU code, called a kernel. As is common throughout GPU literature, we

use the term “kernel” to refer to a section of code that runs on the GPU. When it is necessary to

refer instead to the operating-system notion of “kernel code,” we use alternate terminology such

as “driver code” or “Linux kernel code” (see Section 2.4). Programs using the HIP API call the

hipLaunchKernelGGL function to launch kernels. This function takes several arguments:

• The kernel to launch. This has the appearance of a standard C-style function pointer,

specifying the VectorAdd kernel. In source code, GPU kernels such as VectorAdd are
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nearly identical to standard C or C++ functions, but are annotated with the global

keyword. This indicates to the compiler that the function’s code is to be run on the GPU.

• The block count and thread count arguments, which control the number of par-

allel GPU threads with which to run the kernel. We discuss these arguments further in

Section 2.1.2.

• The size of a shared buffer allocated from GPU scratchpad memory. The simple code in

Figure 2.1 sets this to 0 because it does not need any such memory. More sophisticated

kernels may request shared memory for communication between concurrent GPU threads.

• The stream into which the kernel-launch request is enqueued.

• The “normal” arguments to the kernel. VectorAdd requires pointers to the three buffers in

GPU memory holding the input and result vectors, and we provide these as the final three

arguments to hipLaunchKernelGGL.

(c) Copy the resulting data from GPU memory to CPU memory. This is accomplished by the

final call to hipMemcpyAsync in Figure 2.1. Recall that enqueueing this operation after the

kernel launch ensures that it will execute only after the kernel has completed.

4. Wait for all operations in the stream to complete. Even though the operations enqueued in the

stream execute sequentially with respect to one another, they execute asynchronously with respect

to the CPU. In order to wait for all of the enqueued GPU operations to complete, the program calls

hipStreamSynchronize, which blocks the calling CPU thread until the last operation in the

given stream has finished executing.

5. Further processing and cleanup. While we omit any further code from Figure 2.1, most GPU-

using applications continue to process the data obtained from the GPU (displaying or storing results,

etc.). Applications may also free any GPU memory for other uses, using other functions from the

GPU-programming API.

Remarks on HIP and the CUDA APIs. Our choice to provide a detailed explanation of the HIP

example in Figure 2.1 was arbitrary; our explanation could have just as easily been based on the CUDA

API. In fact, the code in Figure 2.1 barely changes at all when translated into a program using CUDA; we

give equivalent CUDA code in Figure 2.2. When comparing these two figures, we see that the code in the

12



__global__ void VectorAdd(int *a, int *b, int *c) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  c[i] = a[i] + b[i];
}

int main() {
  float *a, *b, *c;
  // Allocate vectors a, b, and c in GPU memory.
  hipMalloc(&a, vector_size);
  hipMalloc(&b, vector_size);
  hipMalloc(&c, vector_size);

  float *a_cpu, *b_cpu, *c_cpu;
  // [Omitted for space: allocating and initializing vectors
  // a, b, and c in CPU memory.]

  // Create a stream
  hipStream_t stream;
  hipStreamCreate(&stream);

  // Copy input data to the GPU. [Omitted: initializing the
  // content of the vectors a_cpu and b_cpu in CPU memory.]
  hipMemcpyAsync(a, a_cpu, vector_size, hipMemcpyHostToDevice,
    stream);
  hipMemcpyAsync(b, b_cpu, vector_size, hipMemcpyHostToDevice,
    stream);

  // Launch the kernel. [Omitted: setting block_count and
  // thread_count to match the number of vector elements.]
  hipLaunchKernelGGL(VectorAdd, block_count, thread_count,
    0, stream, a, b, c);

  // Copy results from the GPU back to CPU memory.
  hipMemcpyAsync(c_cpu, c, vector_size, hipMemcpyDeviceToHost,
    stream);

  // Wait for operations enqueued in the stream to complete.
  hipStreamSynchronize(stream);
  
  // [Omitted: Cleanup, etc.]
}

Figure 2.1: Code using AMD’s HIP API to define and launch a GPU kernel.

VectorAdd kernel does not need to change at all, and most API function names only require replacing hip

with cuda. The most noticable difference between Figures 2.1 and 2.2 is the syntax for launching a kernel.

In CUDA, kernels are launched using a special syntax involving the <<<...>>> characters, whereas HIP

opts for standard C syntax: calling the hipLaunchKernelGGL function.

HIP and CUDA programs are unfortunately not entirely interchangeable—for example, some GPU-

specific inline assembly instructions may exist for NVIDIA GPUs but not AMD, or vice versa. In general,
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__global__ void VectorAdd(int *a, int *b, int *c) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  c[i] = a[i] + b[i];
}

int main() {
  float *a, *b, *c;
  // Allocate vectors a, b, and c in GPU memory.
  cudaMalloc(&a, vector_size);
  cudaMalloc(&b, vector_size);
  cudaMalloc(&c, vector_size);

  // ...

  // Create a stream
  cudaStream_t stream;
  cudaStreamCreate(&stream);

  // Copy input data to the GPU.
  cudaMemcpyAsync(a, a_cpu, vector_size, cudaMemcpyHostToDevice,
    stream);
  cudaMemcpyAsync(b, b_cpu, vector_size, cudaMemcpyHostToDevice,
    stream);

  // Launch the kernel.
  VectorAdd<<<block_count, thread_count, 0, stream>>>(a, b, c);

  // Copy results from the GPU back to CPU memory.
  cudaMemcpyAsync(c_cpu, c, vector_size, cudaMemcpyDeviceToHost,
    stream);

  // Wait for operations enqueued in the stream to complete.
  cudaStreamSynchronize(stream);
  // ...
}

Figure 2.2: Code using NVIDIA’s CUDA API to define and launch a GPU kernel.

though, the difference between CUDA and HIP code is minimal enough that AMD provides an open-source

tool, hipify,2 capable of automatically transforming most CUDA code into HIP code compatible with

AMD GPUs. Porting code in the opposite direction is arguably even easier, as HIP code typically supports

NVIDIA GPUs without modification. This is due to AMD providing a set of C header files3 that use thin

wrapper functions and C macros to implement the HIP API on top of the CUDA API.

2https://github.com/ROCm-Developer-Tools/HIPIFY

3https://github.com/ROCm-Developer-Tools/hipamd/tree/develop/include/hip/nvidia detail
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2.1.2 Controlling Parallel Execution of GPU Code

Threads and blocks. In GPU programming, the term thread refers to a single logical thread of

computation on the GPU. As mentioned already, when invoking a kernel, the (CPU) program specifies the

number of parallel GPU threads with which to execute the kernel code. Each individual thread executes

identical kernel code, but is able to maintain local variables and operate on separate pieces of data. In truth,

GPU threads are a convenient abstraction designed to simplify writing software that takes advantage of the

GPU’s parallel-processing hardware in the same way one may write a multi-threaded CPU application. The

underlying hardware responsible for thread execution, however, is quite different from what one would see in

a typical CPU core. In AMD GPU hardware, for example, each thread will be executed using a single lane in

one of the GPU’s SIMD (single instruction, multiple data) vector-processing units (AMD Corporation 2011).

Both Figures 2.1 and 2.2 illustrate the concepts of threads, blocks,4 and streams as used in real applications.

The beginning of the code in both figures defines a kernel for setting vector c to the sum of input vectors

a and b. The main function later launches the kernel, using either hipLaunchKernelGGL or CUDA’s

special kernel-launch syntax to enqueue a kernel-launch request in a stream. Of particular interest are

the block count and thread count arguments when issuing this kernel-launch request: these two

arguments control the number of parallel threads created to execute the kernel code. A thread block, or simply

block consists of up to 1,024 parallel threads (specified by thread count), all of which execute the same

kernel code. The number of threads in a block is limited to 1,024 by both NVIDIA and AMD hardware, but

billions of blocks may be requested per kernel—effectively an unlimited quantity for practical applications.

The total number of GPU threads is given by multiplying the number of blocks by the number of threads per

block.

As shown in Figures 2.1 and 2.2, threads in the VectorAdd kernel are able to use the special blockIdx

and threadIdx variables to access their per-thread block and thread indices, meaning that threads and

blocks serve the essential purpose of distinguishing between GPU threads within a running kernel. In the

example kernel, each thread uses this information to compute a unique index into the vectors. However,

thread blocks also play another role: they serve as schedulable entities when dispatching work to the GPU’s

4After shifting to a heavier focus on the HIP API, AMD seems to have adopted CUDA terminology, likely to reduce mismatched
terms in cross-platform code. In material pertaining to APIs other than HIP, such as OpenCL or the lower-level HSA runtime (HSA
Foundation 2018b), AMD typically uses the term work item to refer to a single GPU thread and workgroup to refer to a thread block.
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computation hardware. We cover this role in greater detail in the relevant chapters: Chapter 3 for NVIDIA,

and Chapter 4 for AMD GPUs.

Additional uses for streams. As discussed, the stream argument is also present when launching a

kernel. We already covered one important aspect of using HIP or CUDA streams: ensuring that operations,

such as memory transfers or kernel launches, occur in FIFO order. Explicitly creating and specifying a stream

in source code is actually optional; both kernel launches and memory-transfer operations default to being

enqueued in a special “null stream” if the user chooses not to create and provide a stream argument to the

corresponding function calls. Since Figures 2.1 and 2.2 only require simplistic in-order execution within a

single thread, omitting the stream variable from them entirely would still result in valid code, and the code

would even produce identical results; each operation would execute sequentially in the null stream.

Nonetheless, our usage of a user-created stream in Figures 2.1 and 2.2 serves an intentional illustrative

purpose. Using the null stream ends up being a poor choice in many sufficiently complex GPU-using

applications, namely any application issuing GPU work from multiple concurrent CPU threads. This is

due to a guarantee made by both the CUDA and HIP APIs: using the null stream intentionally prevents

parallel execution with other kernels, potentially preventing full use of available hardware.5 By contrast,

kernels submitted to separate user-defined streams can at least be potentially6 scheduled concurrently on GPU

hardware. Unintentional loss of parallelism due to careless use of the CUDA or HIP API is an easy pitfall for

real-time applications to fall into, and we cover a couple examples of this in Section 3.5. In the meantime,

manually creating and specifying a stream is simply a good practice, which we adopt in Figures 2.1 and 2.2.

2.2 GPU Hardware

Broadly speaking, GPUs manufactured by both NVIDIA and AMD share some basic design similarities.

Refer to Figure 2.3 as an introductory example, which contains a high-level block diagram of the compute

hardware in AMD’s Radeon VII GPU. The bulk of the Radeon VII’s compute power comes from its collection

of compute units, abbreviated as CUs. Each CU contains an independent L1 cache, a scalar unit used for

logical and control-flow operations, and several SIMD vector processing units responsible for carrying out

5This behavior is documented at https://rocmdocs.amd.com/en/latest/ROCm API References/HIP API/Str
eam-Management.html for HIP and https://docs.nvidia.com/cuda/cuda-c-programming-guide/inde
x.html#implicit-synchronization for CUDA.

6See Chapters 3 and 4 for details.
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Figure 2.3: Overview of hardware in an AMD Radeon VII GPU.

the parallel computations. CUs are themselves organized within higher-level hardware units known as shader

engines. As shown in Figure 2.3, the Radeon VII GPU contains four shader engines and 60 CUs in total. The

60 CUs are divided evenly among the four shader engines, meaning that each shader engine contains 15 CUs.

All CUs in the entire GPU share four megabytes of L2 cache, and sixteen gigabytes of HBM2 DRAM.

While internal details certainly differ, a block diagram for an NVIDIA GPU has some visually similar

structure to that of an AMD GPU. Figure 2.4 shows the high-level architecture for NVIDIA’s H100 GPU,

which was released in March 2022 and is NVIDIA’s most powerful off-the-shelf GPU at the time of writing.

In NVIDIA GPUs, streaming multiprocessors (SMs) are most directly analogous to CUs in AMD GPUs.

In a similar fashion to how the Radeon VII’s CUs are grouped into shader engines, the SMs in NVIDIA’s

H100 are grouped into texture processing clusters (TPCs), which are in turn grouped into graphics processing

clusters (GPCs). Lower-end NVIDIA GPUs may contain fewer GPCs, or a reduced number of TPCs per

GPC.

We include Figure 2.4 for two purposes. First, it allows us to draw the comparison between NVIDIA’s SM

terminology vs. AMD’s CUs, but it also serves as an illustration of the current state of top-end GPU hardware.

Despite the H100’s superior performance, the “modest” GPUs used in this dissertation’s experiments retain

one major advantage over the H100: cost. With a price speculated to exceed 36,000 dollars,7 the H100 is

simply cost-prohibitive as a platform for timing-related research.

7https://www.tomshardware.com/news/nvidia-hopper-h100-80gb-price-revealed
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Figure 2.4: Overview of hardware in an NVIDIA H100 GPU.

Compute hardware and kernel execution. CUs and SMs occupy more than similar positions in our

block diagrams: they serve analogous roles when executing kernels. Recall from Section 2.1.2 that a program

requests a number of thread blocks when launching a kernel. GPU hardware assigns these thread blocks to

CUs or SMs. In this respect, both NVIDIA and AMD hardware treats blocks similarly: threads from a single

block are never divided across multiple CUs or SMs, and never migrate between CUs or SMs. Both CUs and

SMs are capable of hosting a total of 2,048 in-flight threads at a time (Otterness and Anderson 2020). Note

that the limit of 2,048 threads per CU or SM will always be sufficient for at least two concurrent blocks: as

we stated in Section 2.1.2, each block contains at most 1,024 threads. In Chapters 3 and 4 we revisit this

topic in detail, by asking fundamental questions about how thread blocks are mapped to SMs and CUs.

While up to 2,048 threads may be assigned to a CU or SM, only a smaller subset of these will actually be

“executing” at once. Each SM on NVIDIA GPUs contains four warp schedulers, each of which is responsible

for selecting a warp of threads to execute. Warps are simply groups of 32 threads from within a block, and all

threads in a warp execute in lockstep. At first, it may sound inefficient to only run four warps of 32 threads

when up to 2,048 threads are assigned to an SM, but doing so enables latency hiding: if any warp stalls,

e.g., in order to wait for memory or a shared hardware unit, the warp scheduler can immediately switch to a

different warp from among the SM’s threads. Latency hiding attempts to maintain consistent throughput by
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ensuring that at least some threads are always making progress, even if a large number of other threads have

stalled.

The story is very similar on AMD, albeit with different terminology. AMD’s documentation uses the

term wavefront anaologously to NVIDIA’s “warp.” Similarly to NVIDIA, the CUs in AMD GPUs also can

schedule up to four wavefronts at a time, but unlike warps, AMD’s wavefronts may not always contain 32

threads. AMD’s published specifications technically allow for any wavefront size that is a power of 2 (HSA

Foundation 2018b), and the Radeon VII, for example, uses 64-thread wavefronts (AMD Corporation 2011).

Discrete and integrated GPUs. Both example GPUs shown so far, AMD’s Radeon VII and NVIDIA’s

H100, are discrete GPUs, meaning that they are on separate chips from the system’s CPU. Discrete GPUs must

interact with other hardware over a communication bus, such as PCIe or proprietary alternatives like NVlink

(mentioned in Figure 2.4). Alternate buses like NVlink may offer higher bandwidth, but are usually only

available for higher-end GPUs using manufacturer-specific hardware. For these reasons, we limited ourselves

to the PCIe bus in our experiments involving discrete GPUs. This does not mean that we ignore different

communication methods between the CPU and GPU altogether—our work also covers some integrated

GPUs.

Unlike discrete GPUs, integrated GPUs typically share hardware, such as DRAM, with the CPU.

Integrated GPUs are actually quite prevalent in day-to-day life, mostly in systems like smartphones or

lightweight laptops—where powerful GPUs are either unneeded or unwanted. When producing CPUs

for these systems, hardware manufacturers package GPU functionality into their chips to provide basic

acceleration for graphical displays. While laptops and smartphones are more common in real life (or at

least, more visible), we do not explicitly consider such systems in this dissertation, due to our focus on

safety-critical AI and computer vision. Our focus allows us to narrow the scope of the integrated-GPU

systems we consider: if safety-critical computations are being carried out using an integrated GPU, then the

GPU is likely to be part of an embedded system. This assumption is justified by a simple fact: non-embedded

safety-critical contexts, with fewer restrictions on size and electricity, would be better served by discrete

GPUs, as discrete GPUs can offer vastly more computational power and greater cost effectiveness.

Further narrowing the scope of hardware platforms, there are actually very few integrated GPUs designed

for embedded applications. In fact, we are only aware of one off-the-shelf set of platforms meeting this
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Figure 2.5: Overview of hardware in an NVIDIA Jetson TX2 system-on-chip.

requirement: NVIDIA’s “Jetson” line of single-board computers.8 Figure 2.5 shows the hardware available in

one of these systems used in our work, the Jetson TX2.

Figure 2.5 illustrates the main property we expect from an integrated-GPU system-on-chip: its Pascal-

architecture GPU shares eight gigabytes of DRAM with all of the CPU cores. Leaving aside the integrated

GPU for now, the Jetson TX2 is also notable for its heterogeneity. Its six CPU cores are divided between two

64-bit ARM CPUs: a four-core ARM Cortex A57 CPU and a two-core NVIDIA “Denver” architecture CPU

with higher single-threaded performance (Franklin 2017). While the CPUs and GPUs share main memory,

Figure 2.5 illustrates the fact that the TX2’s CPUs and GPU each have separate L2 caches.

As for the GPU, the TX2 is similar to many integrated GPUs in that it is incredibly impoverished

compared to its discrete counterparts. The most striking comparison is in the number of SMs available: the

discrete H100 from Figure 2.4 contains 144 SMs, while the integrated TX2 offers only two. Granted, this

is not an entirely direct comparison: the internal SM architecture differs, and the TX2 is about five years

older than the H100. We can offer some closer comparisons, however. NVIDIA’s Titan X Pascal discrete

GPU was released shortly after the Jetson TX2, used the same basic GPU architecture, and contained 30 SMs.

Alternatively, we can consider a modern integrated GPU rather than an older discrete GPU. NVIDIA’s Jetson

AGX Orin platform, released in 2022, contains 16 SMs (Karumbunathan 2022)—vastly beyond the TX2’s

two SMs, but still a far cry from the power available on a modern discrete GPU.

8https://developer.nvidia.com/embedded-computing. NVIDIA offers other embedded-GPU systems such as its
DRIVE platform, but these tend not to be “off-the-shelf” and harder to obtain.
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The changing landscape of GPU hardware. This brief introduction of GPU hardware has already

mentioned several GPUs released over the course of about six years:

• The NVIDIA Jetson TX2 (Figure 2.5), an integrated GPU containing two SMs and released in late

2016. Approximate cost at launch: 600 dollars.

• The NVIDIA Titan X Pascal, a discrete GPU containing 30 SMs and released in 2017. Approximate

cost at launch: 1,200 dollars.

• The AMD Radeon VII (Figure 2.3), a discrete GPU containing 60 CUs and released in 2019. Approxi-

mate cost at launch: 700 dollars.

• The NVIDIA Jetson AGX Orin, an integrated GPU containing 16 SMs and released in 2022. Approxi-

mate cost at launch: 2,000 dollars.

• The NVIDIA H100 (Figure 2.4), a discrete GPU containing 144 SMs and released in 2022. Approxi-

mate cost at launch: 36,000 dollars.

One pattern is already clear from this short list: the computational power available in both integrated and

discrete GPUs is growing rapidly. Like all processors, GPUs’ performance has continually increased since

they first became available. However, computational power is not the only interesting story contained in this

small list of GPUs: the implication behind the noticable jumps in monetary cost is equally relevant to this

dissertation.

To this day, a large portion of GPUs sold by both AMD and NVIDIA still go towards applications where

fast graphics are paramount; NVIDIA reports that slightly over half of their revenue in 2021 came from

video-game and visualization-related markets (Reiff 2022). Nonetheless, NVIDIA’s customers are certainly

not spending 36,000 dollars on an H100 GPU in order to play video games. NVIDIA’s whitepaper (NVIDIA

Corporation 2022d) about the H100 GPU states:

Note that the H100 GPUs are primarily built for executing datacenter and edge compute work-

loads for AI, HPC, and data analytics, but not graphics processing. Only two TPCs in both the

SXM5 and PCIe H100 GPUs are graphics-capable...
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Similar changes are taking place within the embedded-GPU domain. A review written shortly after the

TX2’s release (Benchoff 2017) calls the Jetson TX2 “high end” and concludes with some lines that, in light

of the 2,000 dollar Jetson AGX Orin, already seem comically out of date:

This [the Jetson TX2] is not a toy. This is an engineering tool. This is a module that will power

a self-driving car, or a selfie-capturing quadcopter. These are hard engineering problems that

demand fast processing with a low power budget.

There’s a reason the TX2 Developer Kit is expensive. The market for a device like this is tiny...

There are three relevant points to draw from these small examples. First, they offer clear support for our

assertions in Chapter 1: the evolution of GPUs is characterized not just by increasing computational power,

but also by tailoring new hardware towards general-purpose applications. Second, the rapid pace of change in

GPU architecture keeps real-time GPU research in a perpetual state of immaturity. This immaturity is not

just due to numbers of SMs or CUs: each successive generation of GPUs also reflects internal architectural

overhauls. We have only mentioned one AMD GPU so far, but as we discuss in Chapter 4, AMD is equally

involved with reorienting their GPU and software architectures to meet new demands. The third and final

point from this list is that GPUs are valued higher than ever before. Contrary to the TX2 review quoted

above, it is unlikely that NVIDIA would increase the costs of their embedded GPUs by a factor of four if they

were having trouble selling Jetson TX2s for 600 dollars. If anything, the Jetson AGX Orin indicates that the

niche occupied by embedded GPUs is expanding.

2.3 Deep Learning and Computer Vision

A full account of computer-vision research is not required for understanding this dissertation, but some

knowledge of current applications provides helpful context about the evaluation methods and the role of

GPUs as an enabling technology.

The application of GPUs to machine learning has led to advancements in the past decade that can scarcely

be overstated. The introduction of the AlexNet image-classification system in 2012 (Krizhevsky, Sutskever

and Hinton 2012) is frequently cited as the start of this paradigm shift. Image classification is a fundamental

problem in computer vision: as depicted in Figure 2.6, an image-classification system attempts to assign the

correct “class” to an input image, where the class is one of a finite set of possible labels representing the
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"pedestrian"

"cyclist"

Figure 2.6: Computer vision’s “classification” task.

image’s subject (e.g., “dog”, “car”, etc.). AlexNet was remarkable not only due to the fact that it exhibited a

10% improvement in accuracy over prior image-classification algorithms, but also due to how it achieved

such an improvement. At the core of AlexNet’s approach was, in the words of the authors, “a very efficient

GPU implementation,” making use of two GPUs to accelerate the training process by which a convolutional

neural network (CNN) “learns” to classify images.

A neural network is a sequence of functions or transformations that map some input data (e.g., an image)

to a desired output (e.g., a label). A neural network is composed of many small processing units, known as

neurons, which individually carry out small, fast, mathematical operations. Neurons are typically organized

into sequential layers, in which neurons are arranged into specific structures to carry out different operations.

A CNN is simply a type of neural network that includes convolution layers. In convolution layers, neurons

are configured to perform convolution operations on small regions of neighboring pixels, making them

particularly powerful at identifying recurring small features (i.e., small shapes such as corners or edges) at

different locations in an input image. Even though neural networks were introduced in data-analysis contexts

as early as the 1960s, the recent success of CNNs and GPUs in systems like AlexNet has led to a major surge

in their popularity (Schmidhuber 2015).

2.3.1 Adaptable Neural Networks

Given our desire to evaluate some of the tradeoffs between logical and temporal correctness in real-time

GPU usage, it is worth noting that computer-vision research often explores similar tradeoffs between accuracy

and computational cost. This is especially true for recent adaptable neural network architectures, such as

Kim, Ahn and Oh (2018), Vu, Eder, Price and Frahm (2020), Yu and Huang (2019b), and Yu, Yang, Xu, Yang

and Huang (2019). However, computer-vision publications typically choose to view tradeoffs in terms of
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accuracy and required compute power, i.e., floating-point operations (FLOPs), which is subtly different from

our evaluation in Chapter 5. While the approach favored in computer-vision domains allows researchers to

present results in a manner agnostic to underlying platforms, it fails to capture the notion that timeliness is

required in real systems, which depends on more than raw power.

2.3.2 Deep-Learning Programming Frameworks

Most modern computer-vision research (or any other neural-network-based research) relies on software

frameworks to simplify the process of designing, implementing, training, and evaluating increasingly complex

neural-network architectures. While a handful of such frameworks exist, PyTorch (Paszke et al. 2019) and ten-

sorflow (Abadi et al. 2016) are the most popular by far. Of these two, PyTorch currently dominates academic

computer-vision research (He 2019), and serves as a key component of our studies in Chapter 5. Unlike

many traditional real-time applications, PyTorch applications are typically written in the high-level Python

programming language and, to simplify development, involve many layers of software abstraction before

requesting any GPU computations. We devote much of Chapter 5 to these application-level implementation

details.

2.4 Operating Systems

Though different definitions exist, for our purposes an operating system (OS) is the piece of software

responsible for a variety of essential services across an entire computer. Among the operating system’s

foremost responsibilities is managing shared hardware: determining which applications have access to which

CPU cores, managing DRAM allocation, arbitrating access to peripheral devices, etc. This is possible due

to hardware support: the OS is able to execute privileged code, which is allowed to access special CPU

instructions and registers with which the rest of the system can be managed.

“Kernel” and “user” in an OS context. When discussing operating systems, one typically uses the

term kernel to refer to the aforementioned portion of privileged code ultimately responsible for managing

system hardware. Other, unprivileged code, including the applications running on the system, is referred to as

user code. (Depending on definitions, many consider a full operating system to not just include the kernel,

but also some essential utilities consisting of unprivileged user code.) One frequently encounters terms like

kernelspace in reference to code or data that is used only within privileged contexts, or, respectively the term
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userspace in reference to unprivileged code or data. In this dissertation, we attempt to avoid using the typical

“kernel” terminology (without additional clarification) in the context of operating systems, in order to avoid

confusion with its other meaning in the context of GPU programming.

Mediating between applications and devices. This introductory material on operating systems

becomes especially important in Section 4.2, where we discuss some of the code in the Linux operating

system: Linux’s device driver for AMD GPUs. While certainly important, we are unable to investigate

NVIDIA’s driver code in as much detail, as significant portions of it are closed source.9 A device driver (or

simply a driver) is a portion of operating-system code responsible for interacting with a particular hardware

device. Privileged code is almost always required for at least some stages of hardware configuration, but

ultimately the goal of a device driver is to provide an interface with which userspace applications can access

the device. Therefore, the entire code path with which applications control GPU hardware involves both

unprivileged “userspace” code and privileged “kernelspace” code running within the operating system’s GPU

driver.

2.5 Real-Time Systems

In this dissertation, we sometimes use notation and definitions conventionally used throughout the study

of real-time systems. A real-time system is characterized by a task set, usually denoted τ , comprised of n

tasks: τ = {τ1, τ2, ..., τn}. Each task executes a series of jobs. In formal notation, jobs are conventionally

denoted with a J , with subscripts indicating the task that released the job, as well as the job’s number. For

example, job J2,4 would indicate the fourth job released by task τ2.

Tasks are characterized by several parameters. First, is the period of a task, which is usually denoted

with a T ; Ti is the period of task τi. The period determines the rate at which the task releases jobs. Under the

periodic task model, Ti denotes the exact amount of time between subsequent job releases of τi (Liu and

Layland 1973). Under the sporadic task model, Ti instead denotes the minimum amount of time separating

the release of two subsequent jobs of τi (Mok 1983).

9While not particularly well advertised, NVIDIA does provide source code for its embedded systems such as the Jetson TX2.
NVIDIA also eventually released source code for a Linux driver supporting its most recent discrete GPUs, but this unfortunately
arrived while this dissertation was being written. This timing meant we did not use this open-source driver in our research, though it
will certainly be a good resource for future work.
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Second, each task requires a deadline, usually denoted D. A task’s deadline falls into one of the following

categories, ranging from least to most restrictive: arbitrary, constrained, or implicit. As the name implies,

an arbitrary deadline can be anything, regardless of a task’s period. If task τi has a constrained deadline,

then Di ≤ Ti. Finally, if a task has an implicit deadline then Di = Ti. The parameter Di itself is a relative

deadline, meaning that every job Ji of τi must complete Di time units from its release. Sometimes, however,

we also use the term absolute deadline to refer to a concrete point in time by which a specific given job

must complete. In order for a task system to be temporally correct, all jobs must complete by their absolute

deadlines.

The task parameter that is likely the most difficult to obtain is its cost, usually denoted C. Task τi’s cost,

Ci, indicates the maximum amount of time that a job of τi requires in order to complete execution. The term

worst-case execution time (WCET) is often used to refer to a task’s cost. It is often useful to compute a

task’s utilization, u, using the task’s cost and period: ui = Ci/Ti. One can think of task τi’s utilization as the

maximum fraction of a processor’s time that is required in order to complete all jobs of τi by their deadlines.

This can be combined into the total utilization, U , of an entire task system: U =
∑n

i=1 ui.

Once we have established each task’s deadline, cost, and period, we can define a real-time task system:

τ = {τ1, ..., τn}, where τi = {ϕi, Ti, Ci, Di}. The one parameter we have yet to describe is each task’s

phase, denoted ϕi, indicating the absolute time at which the first job of τi is released. We may simplify

task-system definitions when certain parameters are not important. For example, we can omit ϕ if all tasks

start releasing jobs at the same time, or we can omit D if a task uses implicit deadlines.

Scheduling and schedulability. When executing a real-time task system in practice, a scheduling

algorithm is responsible for determining when each job (or set of jobs) is allowed to execute on available

hardware. Scheduling algorithms can be broadly classified into two groups: fixed priority and dynamic

priority. A fixed-priority scheduler makes decisions based on task parameters: period, deadline, arbitrary

user-specified priorities, etc. For example, the well-known rate-monotonic scheduler always prioritizes

jobs from tasks with shorter periods over jobs from tasks with longer periods (Liu and Layland 1973).

Dynamic-priority scheduling, by contrast, prioritizes jobs based on factors that may change at runtime.

The earliest-deadline-first (EDF) algorithm is perhaps the most prominent example of a dynamic-priority

scheduler: as its name implies, it prioritizes whichever job that has the nearest deadline, regardless of periods,

costs, or other factors.
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The goal when defining task systems is to be able to make formal guarantees about timing constraints.

Part of this process is known as schedulability analysis: given a task system, a platform, and a scheduling

algorithm, a schedulability test determines whether all of the jobs in the task system are guaranteed to be

able to meet their deadlines. A particularly famous example within real-time literature is the schedulability

test for the EDF scheduler on a platform with a single processor. In this case, the task system with implicit

deadlines is schedulable if and only if U ≤ 1. While this dissertation pertains more to tangential hardware-

and software-related issues than it does to formal schedulability analysis, the terminology is still essential in

order to understand the existing body of traditional real-time work and subsequent attempts to integrate GPU

usage into this legacy.

2.6 Prior Work

For convenience, we break our list of relevant GPU-management research into different categories, based

on how each work prevents or reduces the harmful side effects of GPU sharing.

2.6.1 Enforcement of Exclusive GPU Access

Early GPU-management approaches sought to prevent the issue of unpredictable interference by prevent-

ing concurrent GPU access in the first place. Perhaps the first example in real-time literature comes from

Kato, Lakshmanan, Rajkumar and Ishikawa (2011), who modified Linux’s Nouveau GPU driver code10 to

provide additional prioritization and scheduling mechanisms for graphical GPU-using applications. Shortly

thereafter, the same group published a follow-up work providing similar control over general-purpose GPU

applications, albeit requiring a now-defunct third-party CUDA implementation (Kato, Lakshmanan, Kumar,

Kelkar, Ishikawa and Rajkumar 2011).

Other groups extended these exclusive-access models to apply to multiple GPUs, including Verner,

Schuster, Silberstein and Mendelson (2012), Verner, Mendelson and Schuster (2014b) and Verner, Mendelson

and Schuster (2014a). However, like the preceding work by Kato et al., these subsequent publications from

Verner et al. still treated GPU access as a scheduling problem. Elliott, Ward and Anderson (2013) took a

different approach. While still supporting multi-GPU systems, Elliott et al. managed GPUs using locking,

10The nouveau driver is an open-source driver for NVIDIA GPUs, and is based on extensive research and reverse-engineering efforts.
While reasonably stable for graphical applications running on older GPUs, nouveau is often unstable for newer GPUs and notably
lacks CUDA support.
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treating GPUs as resources that individual tasks must request (exclusive) access to. In the work of Elliott et

al., the key question is not about when to run GPU tasks, but instead a question of how to prioritize tasks’

GPU-access requests.

While these approaches are all effective at preventing unpredictable interference, they do not adequately

address the needs of embedded systems like autonomous vehicles. Notwithstanding big-budget research

prototypes, size, weight, power, and monetary cost constraints all serve to discourage the use of multi-GPU

supercomputers in vehicles intended for widespread public use. Instead, based on current devices aimed at

autonomous vehicles, such systems are likely to share a one or two, possibly less-powerful, GPUs among

all applications.11 In this resource-constrained case, requiring exclusive access to the GPU can result in

unacceptable capacity loss, when an application that does not require full use of the GPU nonetheless

prevents other applications from running. Granted, this limitation is known, even within research that still

proposes solutions mandating exclusive GPU access. For example, Kim, Patel, Wang and Rajkumar (2017)

developed a server-based system that grants tasks GPU access while loosening some of the strict lock-based

requirements in prior work such as Elliott et al. This, however, serves to reduce symptoms without addressing

the underlying cause of capacity loss: limiting GPU access to a single task in the first place.

2.6.2 Spatially Partitioning GPU Hardware

Perhaps one of the most obvious solutions to the capacity-loss problem on shared GPUs is spatial

partitioning, where a single GPU’s hardware components are divided into two or more partitions, such that

accessing resources in one partition causes little or no unpredictable interference with the other partitions.

Recall that the GPU’s SMs (or CUs, on AMD GPUs) contain the bulk of the computational resources, as

well as independent L1 caches, so forcing independent applications to execute on non-overlapping sets of

CUs or SMs has been a popular method for partitioning GPUs. Several prior publications instrument GPU

kernel code in order to implement SM partitioning on NVIDIA GPUs despite a lack of dedicated hardware

support. To our knowledge, the first example of such an approach comes from Janzén, Black-Schaffer and

Hugo (2016), who proposed a simple but apparently effective implementation. Janzén et al.’s approach

modifies the start of GPU kernel code to make each thread block check its SM assignment at runtime. If

11For example, NVIDIA’s Drive AGX Pegasus system, which NVIDIA claims is “built for Level 4 and Level 5 autonomous systems,”
contains a single discrete GPU and a single integrated GPU: https://developer.nvidia.com/drive/drive-hyper
ion#section-2.
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any thread block detects that it is executing on a SM that is not part of the kernel’s partition, then the block

exits immediately. This approach is not without drawbacks: it depends on the ability to modify kernel source

code, it requires launching a larger number of blocks than otherwise necessary to account for the number of

badly-assigned blocks that exit immediately, and a tiny amount of code may unavoidably execute outside of a

kernel’s intended partition (for each block to test its SM assignment).

Despite the shortcomings, Janzén et al.’s approach has remained popular in real-time literature due to

its conceptual simplicity and the fact that it runs on off-the-shelf NVIDIA hardware. Saha (2018) applied

the technique in combination with other resource-allocation algorithms in order to assign SMs to tasks on

both discrete and embedded GPUs. Jain, Baek, Wang and Rajkumar (2019) not only adapted the Janzén et al.

approach to partition SMs in certain discrete NVIDIA GPUs, but also successfully partitioned the L2 cache

and DRAM banks in order to reduce possible hardware interference even further.

Not all real-time GPU hardware-partitioning research uses Janzén et al.’s technique. In Chapter 4, we

document our experiences with partitioning CUs using the hardware support available in AMD GPUs. Others

have investigated GPU cache partitioning using simulation to avoid the implementation difficulties using real

closed-source hardware and software (Wang, Li and Yang 2016, Liang, Li and Xie 2017).

2.6.3 Temporally Partitioning GPU Access

GPU access can also be managed using temporal partitioning: dividing GPU access into blocks of

time. In a sense, the exclusive locking or scheduling techniques from Section 2.6.1 are a coarse-grained

form of temporal partitioning. The issue that continues to hamper temporal partitioning attempts is the

fact that GPUs have traditionally been non-preemptive: after starting to execute, a GPU kernel does not

relinquish resources until it completes. The assumption that GPUs are non-preemptive is slightly outdated:

In 2016, NVIDIA first added hardware support for preempting kernels at an instruction-level granularity to

its then-new “Pascal” GPU architecture. However, to this day there is no documented user-facing API for

controlling this behavior. This has not prevented Capodieci, Cavicchioli, Bertogna and Paramakuru (2018)

from making use of this functionality, albeit in collaboration with NVIDIA. In their 2018 work, Capodieci et

al. implemented preemptive scheduling on NVIDIA’s embedded-oriented DRIVE platform, including an

EDF scheduler for GPU operations. While impressive, it is difficult for other research groups to expand on
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this effort without assistance from NVIDIA insiders, and a fully open-source real-time GPU-management

system making use of fine-grained hardware preemption has yet to be produced.

Absent hardware support, several papers from the real-time and high-performance computing communi-

ties propose subdividing large, long-running GPU kernels into multiple smaller chunks in order to reduce

the amount of non-preemptive blocking. Basaran and Kang (2012) were among the first to attempt this for

real-time GPU usage, subdividing larger kernels into what they termed “subkernels.” In practice, Basaran and

Kang implemented their “subkernels” by dividing a single kernel-launch command into multiple commands,

each of which launch a smaller number of thread blocks. The overhead due to the larger number of underlying

kernel launches quickly increased, becoming as high as 340% for certain kernels. For most of the kernels

investigated by Basaran and Kang, overheads only remained in negligible ranges when subdivided into four

or fewer subkernels. While any amount of kernel subdivision can certainly reduce worst-case nonpreemptive

blocking times, Basaran and Kang’s description of their 2012 approach as “fine-grained preemption” seems

outdated by modern standards.

Fine-grained or not, subdividing large GPU kernels into multiple, “smaller” kernel launches has remained

popular in real-time literature. While focused more on throughput than traditional real-time requirements,

Zhong and He (2013) extended the tactics used by Basaran and Kang, allowing subkernels originating from

entirely different kernels to execute on the GPU concurrently. A few years later, Zhou, Tong and Liu (2015)

implemented another system using an approach highly similar to Basaran and Kang (2012), though Zhou

et al. provided a more streamlined, lower-overhead implementation, wrapping parts of the CUDA API

and involving support from the operating system. In another application of the same idea targeted towards

embedded GPUs, Lee and Al Faruque (2016) proposed a system for dynamically adjusting subkernel sizes at

runtime.

Despite the popularity of subdividing kernels based on thread blocks, it is not the only approach towards

greater control over GPU kernels in time. Chen, Zhao, Shen and Zhou (2017) instead proposed a voluntary

preemption system, in which kernel source code transformations enable exiting a kernel early if a preemption

is needed, and resuming it in a subsequent launch. In a rare example of a non-NVIDIA-based work, Lee, Roh

and Seo (2018) implemented a system for transactional kernels using the OpenCL API (Khronos Group 2020),

allowing terminating the execution of low-priority non-real-time kernels without undesired side effects.
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2.6.4 Mitigating Memory Interference

In addition to contending for compute resources, GPUs have limited bandwidth for transferring data or

accessing memory (to differing degrees, depending on whether the GPU is discrete or integrated). Particular

attention has been paid to managing memory contention on integrated GPUs, where GPU activity can

potentially interfere with the CPU’s ability to access memory. Some of this work expects GPU workloads

to adhere to the PREM (PRedictable Execution Model) structure, which requires programs to be divided

into memory-intensive and compute-intensive phases for the sake of scheduling (Pellizzoni, Betti, Bak, Yao,

Criswell, Caccamo and Kegley 2011). Forsberg, Marongiu and Benini (2017) proposed a system to extend

PREM-like protections to include GPU tasks. They did so by combining the PREM model with concepts

from an older CPU-focused work called MemGuard (Yun, Yao, Pellizzoni, Caccamo and Sha 2013), using

hardware performance counters to detect and throttle memory-heavy tasks.

Capodieci, Cavicchioli, Valente and Bertogna (2017) also applied the PREM model to tasks running

on an embedded, integrated GPU. In this work, Capodieci et al. designed a server that arbitrates when

memory-intensive portions of GPU tasks are allowed to execute, in order to reduce interfere with CPU tasks’

memory accesses.

Other works favor a model more akin to locking, where applications must notify the operating system

about ongoing GPU work, either to acquire a lock for a discrete GPU’s data-transfer hardware (Elliott, Ward

and Anderson 2013) or to enable a bandwidth-throttling mechanism when needed (Ali and Yun 2018). As

with kernel execution, prior work typically considers copying data to discrete-GPU memory to be non-

preemptive, meaning that a long data-transfer operation may block other work. Some prior works (Basaran

and Kang 2012) (Kato, Lakshmanan, Kumar, Kelkar, Ishikawa and Rajkumar 2011) (Kato, McThrow,

Maltzahn and Brandt 2012) (Zhou, Tong and Liu 2015) attempted to alleviate this issue by subdividing long

memory transfers into multiple, shorter chunks—a similar approach to the one discussed in Section 2.6.3 for

dealing with long-running kernels.

2.6.5 Exposing Black-Box GPU Behavior

Some publications seek to determine what may happen if one forgoes additional GPU management,

sharing a GPU between multiple tasks under the “default” hardware and software behavior. Put another way,
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this type of research seeks to establish an accurate model of GPU behavior, as discussed in Section 1. Much

of our own work falls into this category, discussed in Chapters 3 and 4 of this dissertation.

Several papers from outside of the real-time community provide useful information about GPU-internal

behavior. In 2013, Peres used reverse engineering to infer power-management controls for NVIDIA GPUs.

Later that year, Fujii, Azumi, Nishio and Kato (2013) reverse engineered and modified the microcontroller

firmware for the NVIDIA GTX 480 to improve response times for some workloads. Mei and Chu (2016)

used microbenchmark experiments to infer the cache and memory layout for several generations of NVIDIA

GPUs. Later, Jia et al. published successive papers using microbenchmarking to infer instruction-set details

about both NVIDIA’s Volta (Jia, Maggioni, Staiger and Scarpazza 2018) and Turing (Jia, Maggioni, Smith

and Scarpazza 2019) GPU architectures.12

While potentially applicable in a real-time setting, the papers mentioned in the previous paragraph

all focuses on aspects of performance other than predictable timing. Apart from our own contributions,

Capodieci et al. (2018), mentioned already in Section 2.6.3, serves as a rich source of information about

scheduling behavior of some embedded NVIDIA GPUs due to the authors’ collaboration with NVIDIA. In

Section 2.6.2, we mentioned Jain et al. (2019) in the context of GPU partitioning, though the work deserves

another mention here. Using thorough black-box reverse engineering efforts, Jain et al. discovered and

published the formulas used by certain NVIDIA GPUs to map memory addresses to DRAM banks and L2

cache lines.

To our knowledge, the most recent real-time paper focused on GPU scheduling internals comes from

Olmedo, Capodieci, Martı́nez, Marongiu and Bertogna (2020). In their paper, Olmedo et al. provide new

details regarding the assignment of thread blocks to SMs in NVIDIA GPUs. Olmedo et al. specifically refute

some simplistic round-robin scheduling models assumed in a handful of prior papers, demonstrating the

importance of accurate information when developing GPU scheduling models.

2.6.6 Orienting Our Contributions Within the Wider Field

In summary, prior real-time research has explored a variety of tactics for GPU management: mediating

GPU access, temporal and spatial partitioning, and revealing details of GPU behavior. The study of GPUs in

real-time systems is still quite active, and our own research is necessarily interwoven with several of these

12We list and discuss NVIDIA GPU architectures in Section 3.1.1.

32



topics, as other GPU-oriented research groups conducted their studies at the same time as our own. To the

point, our work was among the first to focus on producing information sufficient for building a model of

GPU behavior, being conducted prior to the other real-time-oriented papers listed in Section 2.6.5. Our

second major contribution lies in our efforts to expand the available research platforms to include a more

open option: AMD GPUs. This is particularly unique in our field, as all but one paper we mention in

Section 2.6 uses NVIDIA GPUs. Finally, while several of the papers in this section contain case studies

of varying size and complexity, few attempt to address the particular difficulties that arise with modern

neural-network applications, despite such applications easily being the largest motivation for inclusion of

GPUs in safety-critical systems. Our own work, discussed in Chapter 5, attempts to illuminate the challenges

posed by these applications.

2.7 Summary of this Chapter

We began this chapter with an overview of general-purpose programming for both NVIDIA and AMD

GPUs, and their respective CUDA and HIP programming frameworks. Next, in Section 2.2, we discussed the

high-level architecture of several different GPUs, including discrete NVIDIA and AMD GPUs along with an

integrated NVIDIA GPU. We concluded the section by discussing how the demand for GPUs continues to

increase apace with continual increases to GPUs’ computational capabilities—providing a moving target for

the still-immature field of real-time GPU management.

We next switched topics to the main applications that we care about accelerating using GPUs: AI,

and especially neural networks, in the service of computer vision. In Sections 2.4 and 2.5, we provided

some key background information used throughout the rest of this dissertation: an overview of operating

systems and some basic definitions and notation used in real-time literature. Finally, we discussed a variety

of prior real-time GPU-management publications, roughly divided into five categories based on the how each

approach addresses the challenge associated with GPU sharing.
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CHAPTER 3: NVIDIA GPUS1

Our goal, as mentioned, is modeling GPU behavior: discovering sets of rules with which we can predict

GPU behavior. Models of GPU behavior can include as much or as little detail as desired, with differing

results: the predictive power of insufficiently detailed models is likely unreliable or lacking, but a model with

too much detail may be impractical or impossible to apply to complex workloads.

The spectrum of possible models is directly reflected in the various approaches taken in prior real-time

GPU-management proposals. In an example of an overly sophisticated model, one prior paper claimed to

produce upper bounds on the response time for an approximation of GPU code by exhaustively exploring all

possible interactions between every concurrent GPU thread (Berezovskyi, Bletsas and Petters 2013). Not

only was this approach computationally intensive due to relying on integer linear programming, its timing

predictions were incredibly pessimistic, and it could not be applied to anything remotely resembling a real

workload: the paper only reports results for sequences of at most five instructions running on fewer than ten

warps on a single SM. Rather than attempting to improve the performance or applicability of such exhaustive

models, many approaches follow the opposite path: modeling the GPU as an exclusively accessed black box,

handling one request at a time. Notable examples include locking (Elliott, Ward and Anderson 2013) or

server-based GPU management techniques (Kim, Patel, Wang and Rajkumar 2017), which, as discussed, are

limited by their inability to avoid losing some of the GPU’s computational capacity.

1Contents of this chapter previously appeared in the following papers:

Otterness, Miller, Yang, Anderson and Smith (2016). GPU Sharing for Image Processing in Embedded Real-Time Systems.
Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT).

Otterness, Yang, Rust, Park, Anderson, Smith, Berg and Wang (2017). An Evaluation of the NVIDIA TX1 for Supporting Real-Time
Computer-Vision Workloads. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

Otterness, Yang, Amert, Anderson and Smith (2017). Inferring the Scheduling Policies of an Embedded CUDA GPU. Workshop on
Operating Systems Platforms for Embedded Real-Time Applications (OSPERT).

Amert, Otterness, Anderson and Smith (2017). GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. IEEE Real-Time
Systems Symposium (RTSS).

Yang, Otterness, Amert, Bakita, Anderson and Smith (2018). Avoiding Pitfalls when using NVIDIA GPUs for Real-Time Tasks in
Autonomous Systems. Euromicro Conference on Real-Time Systems (ECRTS).
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Our own work on NVIDIA GPUs attempts to develop, or at least enable, a model that falls into neither

modeling extreme. We do not wish to lose computational capacity or risk safety by ignoring GPU internals,

but we also understand that real GPU software, with millions of instructions and concurrent threads, is far too

complex to properly analyze by exhaustively simulating clock cycles on a thread-by-thread basis. Instead

our goal is pragmatism: autonomous-vehicle manufacturers have already started putting NVIDIA GPUs

into safety-critical systems2—so what can we do to produce models capable of making them safer and more

predictable without sacrificing efficiency?

Among other topics, the primary sections of this chapter give three different answers to this question.

In Section 3.2, we show evidence that basic GPU sharing, termed co-scheduling, is capable of improving

throughput without disproportionate impacts on predictability, for computer-vision microbenchmarks running

on an embedded GPU. Using tools described in Section 3.3, Section 3.4 outlines underlying rules governing

NVIDIA’s GPU sharing, along with the techniques we used to discover them. These rules allow us to produce

predictive models about GPU behavior, without requiring additional modifications to NVIDIA’s default

software. Finally, Section 3.5 lists several pitfalls that can lead to particularly devastating timing behavior for

co-scheduled kernels on NVIDIA GPUs, and how they may be avoided.

3.1 Overview of NVIDIA GPUs

The details we provided in Sections 2.1, 2.1.2 and 2.2 are foundational for understanding GPU program-

ming in general, but there are some remaining details that apply specifically to NVIDIA GPUs.

3.1.1 NVIDIA GPU Architectures

There are many important architectural distinctions even between GPUs from a single manufacturer.

While GPU architecture changes frequently impact raw performance, power usage, memory capacity, etc., we

care mostly about architectural differences that affect timing and co-scheduling. We provide the scheduling-

related details we consider important in the following list of NVIDIA GPU architectures, starting with the

first architecture in which co-scheduling is even relevant:

2Tesla’s “Model S” electric car is one such example: https://electrek.co/2017/05/22/tesla-nvidia-supercom
puter-self-driving-autopilot/
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• The Kepler GPU architecture. NVIDIA’s Kepler architecture was first released in 2012. The Kepler

architecture is a notable milestone for GPU-sharing research such as ours. With Kepler, NVIDIA

introduced what it terms Hyper-Q: the ability to launch kernels from multiple streams concurrently.

Prior to Kepler GPUs, even separate streams within a single process ultimately had their contents

multiplexed onto a single hardware queue (NVIDIA Corporation 2014). Kepler-architecture discrete

GPUs include models such as the GTX 770 and GTX 780, though a particular integrated GPU is a

greater landmark in our own research: the Kepler-architecture Tegra K1 GPU is used in the Jetson TK1,

the first of NVIDIA’s embedded-oriented Jetson systems.

• The Maxwell GPU architecture. NVIDIA’s Maxwell architecture was first released in 2014. The

Maxwell architecture introduced fewer notable changes to high-level behavior, instead focusing on

power efficiency in a bid to make further inroads in mobile and embedded domains (Smith and

T. S. 2014). Maxwell GPUs include discrete models such as the GTX 970 and GTX 980, as well as

integrated models such as the Tegra X1, used in the Jetson TX1 embedded platform.

• The Pascal GPU architecture. NVIDIA’s Pascal GPU architecture was first released in 2016, and

introduced several features that are significant to our work. Most importantly, Pascal-architecture

GPUs were the first to support instruction-level preemption. As we shall see in Section 3.2, prior to

Pascal, ongoing computations on NVIDIA GPUs could only be time-sliced at thread-block boundaries:

long-running blocks could delay the GPU from switching to different tasks. Additionally, Pascal

introduced support for unified memory in discrete GPUs: allowing automatic data transfers between

CPU and GPU memory during kernel execution. Notable Pascal-architecture GPUs include the GTX

1070 and 1080, as well as the integrated Tegra X2, used in the embedded Jetson TX2 system.

• The Volta GPU architecture. NVIDIA’s Volta architecture was released in 2017, and was ultimately

only used in a small number of GPU models. Nonetheless, Volta is relevant to us due to its introduction

of enhanced quality-of-service capabilities for NVIDIA’s multi-process service (MPS), a tool facilitating

GPU sharing that we discuss further in Section 3.1.2. The Volta architecture only appears in a small

number of discrete GPUs, such as the Titan V, but it still makes an appearance in an embedded platform:

the Jetson AGX Xavier.
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• The Turing GPU architecture. NVIDIA’s Turing architecture was first released in 2018. Unlike Volta,

Turing GPUs tended to be more consumer-oriented, and the architecture introduced several features

relevant to graphics, though nothing with an obvious application for real-time GPU sharing. To our

knowledge, NVIDIA’s Turing architecture does not appear in any embedded-oriented integrated GPU,

though it is used in several discrete GPUs, such as the RTX 2070 or RTX 2080.

• The Ampere GPU architecture. NVIDIA’s Ampere architecture was first released in 2020. One of the

most interesting features introduced with Ampere hardware was NVIDIA’s multi-instance GPU (MIG)

system. MIG offers enhanced hardware partitioning, allowing a single Ampere GPU to be subdivided

into several sub-GPUs (called instances in documentation), each of which uses separate compute units,

L2 cache, and DRAM regions (NVIDIA Corporation 2020c). The introduction of MIG indicates that

NVIDIA places increasingly high importance on GPU sharing, and a MIG-capable GPU would be a

desirable platform for researching shared-hardware interference. Unfortunately, MIG is only available

in top-end, expensive GPUs. To our knowledge, the only Ampere GPUs to support MIG are the A100

and A30, costing around 10,000 and 5,000 US dollars respectively. The Ampere architecture is also

used, without MIG support, in a wide number of less expensive consumer GPUs, such as the RTX

3070 or RTX 3080. Additionally, the most recent Jetson platform, the Jetson AGX Orin, features an

Ampere-architecture GPU.

• The Hopper GPU architecture. NVIDIA’s Hopper architecture was first announced in 2022, and, at

the time of writing, it still remains unclear whether any Hopper-architecture GPUs are even available for

purchase by the general public (especially with the price speculation discussed in Chapter 2). Official

publications indicate a continued emphasis on GPU sharing in Hopper GPUs, which support additional

enhancements to MIG such as encrypted memory on a per-instance basis (NVIDIA Corporation

2022d). So far, the only Hopper-architecture GPU seems to be the high-end H100 model; NVIDIA’s

documentation indicates that other variants of the H100 exist (NVIDIA Corporation 2022d), but it is

unclear at the time of writing if these other models are available for purchase, or whether they even go

by the same name.

In summary, like our list in Section 2.2, the points we chose to highlight about each GPU architecture

hint at a story. Certainly, each GPU generation continues to become more powerful than its predecessor, but
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different themes emerge as GPUs become more established in new, non-graphical domains. For example,

the improvements made with the Volta and Hopper architectures make it clear that these entire architectural

revisions are targeted at producing GPUs for artificial-intelligence or data-processing workloads rather

than graphics. At the same time, NVIDIA remains aware of the strong desire for greater amounts of GPU

sharing, in progression mirroring research goals in the real-time field: the whitepaper describing the Kepler

architecture (NVIDIA Corporation 2014) uses capacity loss as a direct motivation for its Hyper-Q hardware,

while the whitepaper for the Volta architecture explicitly states that its enhanced MPS feature “reduces

average latency and jitter” in a shared-GPU system (NVIDIA Corporation 2017, page 31). Eventually, this

develops into the introduction of full partitioning support in some Ampere GPUs, specifically to address the

hardware interference that remained possible when sharing a Volta GPU (NVIDIA Corporation 2020b, pages

44-45).

3.1.2 CUDA Details

A large portion of our work with NVIDIA GPUs, specifically that described in Section 3.5, deals with

the CUDA API used for programming NVIDIA GPUs. CUDA as a whole is more accurately described

as a framework, of which the API is only one component. In truth, CUDA entails a collection of software,

encompassing the API with which programmers request GPU work, the compiler capable of converting C

or C++ kernel code into GPU-compatible bytecode, a collection of userspace libraries required to support

the API, and even the kernelspace driver responsible for communicating with the hardware. (We note that

NVIDIA’s official “CUDA” installer will install all of these components.)

CUDA’s “driver” and “runtime” APIs. CUDA’s API is actually divided into two layers: the higher-

level runtime API with which most applications are developed, and the lower-level driver API, which is

available for advanced users desiring more explicit control.

Despite the name, CUDA’s “driver API” is not part of the operating system, and is accessible to ordinary

userspace programs. It consists of a C-language interface for managing GPU code and memory, and in several

cases exposes control over operations that cannot be directly managed using the runtime API alone, such

as loading kernel code onto the GPU. Most application developers do not use the driver API directly, as it

leads to CUDA programs that are more verbose and inconvenient to develop. Nonetheless, the runtime API is

actually implemented on top of the driver API. The fact that the driver API exists below the runtime API and
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exposes some additional controls has led a handful of prior GPU-management works to implement additional

real-time controls by intercepting driver-API calls. For example, Zhou, Tong and Liu (2015), mentioned in

Section 2.6, intercepted the CUDA driver API to implement their kernel subdivision in a manner transparent

to higher-level code.

Most CUDA developers are likely to be far more familiar with the runtime API, which transparently

handles many “boilerplate” aspects of GPU programming, such as managing connections to the GPU and

loading kernel code. Our example from Chapter 2, Figure 2.2, uses the runtime API.

Our work focuses exclusively on CUDA’s runtime API. While the driver API’s lower-level access may

sound better for real-time GPU management, for our purposes, the additional degree of control is largely

superficial, while being significantly harder to use. For example, we have no need to create multiple CUDA

contexts (discussed in the next paragraph) within a single Linux process, as this feature is mostly intended for

applications using multiple GPUs. We also had no need to intercept or modify the behavior of the CUDA API,

though our work does hint at cases where doing so could be useful. Finally, we sought to use benchmarks

based on real-world applications as much as possible, where appearances of the driver API are quite rare.

The role of CUDA contexts. The CUDA userspace runtime libraries store state opaquely, in a structure

known as the CUDA context. The CUDA driver API allows users to manually create new CUDA contexts

and to change the current “primary” context that is used by runtime-API functionality. However, without

manual intervention using the driver API, the CUDA runtime API will transparently create a single context

when users first attempt to interact with the GPU. A CUDA context is associated with exactly one GPU, so in

real-world applications manual context management is typically only used in order to access multiple GPUs

from within a single process.

CUDA contexts, however, do play an important role in GPU scheduling. As we shall demonstrate with

experiments in Section 3.2, CUDA only allows a single context to access the GPU at once, and switches

between active contexts using time slicing (this is quite different from the behavior of AMD GPUs, discussed

in Section 4.2). In order for “true” GPU sharing, in which separate kernels actually run on the GPU at the

same time, the kernels must be launched from the same context. Ordinarily, it would impossible to share

a single context between separate system processes, but NVIDIA provides a tool for working around this

limitation.
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Multi-process service. NVIDIA’s multi-process service (MPS) is middleware produced by NVIDIA

intended to reduce the capacity loss associated with GPU sharing (NVIDIA Corporation 2020a). MPS

only supports the Linux operating system and discrete GPUs, and takes the form of a Linux service: a

long-running, persistent process intended to run non-interactively. When launching a CUDA application, the

CUDA runtime will automatically detect the presence of an active MPS instance on the system, and interact

with MPS using standard inter-process communication (IPC) mechanisms.

On GPUs using Pascal and earlier architectures, MPS works by creating a single CUDA context and

requiring client processes to request all GPU operations via IPC. This has the downside of increased overheads

and lack of isolation between client virtual address spaces, i.e., one MPS-connected client process can corrupt

memory buffers used by another MPS client process (NVIDIA Corporation 2020a). In Volta and later

architectures, additional hardware support allows MPS clients to maintain separate virtual address spaces,

and to directly interact with GPU hardware, though it is not immediately clear from available documentation

how NVIDIA allows this newer version of MPS to avoid the time-slicing behavior.

Unfortunately, MPS remains exclusively available for Linux, and additionally only supports discrete

GPUs. We find the lack of availability on embedded platforms to be more of a limitation than being restricted

to Linux, at least in real-time research. Unfortunately, the lack of MPS on embedded platforms, such as the

“Jetson” systems, forces us to structure GPU-sharing workloads as a single Linux process in order to enable

true concurrent GPU usage. We explore some of our efforts to conduct meaningful experiments despite this

limitation in Section 3.3.2.

3.2 GPU Co-Scheduling

In this section, we revisit an old assumption: namely, that GPU co-scheduling must be avoided due to

unpredictable interference effects.

3.2.1 What is GPU Co-Scheduling?

We use the term GPU co-scehduling to make a careful distinction: in our work, co-scheduling implies

nothing more than the phrase’s literal meaning: more than one application is scheduled on (i.e., allowed to

access) the GPU at a time. We employ this phrase in our work to merely indicate what we allow. This notion

establishes two useful points of contrast to which we must draw attention. First, it sets our work apart from
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Figure 3.1: Simplified depiction of the relation between CPU, kernel, and block times in co-scheduled CUDA
applications in the Kepler and Maxwell architectures.

prior approaches that intentionally forbid concurrent GPU access. Second, it allows us to make a careful

distinction: co-scheduling does not necessarily imply “true” concurrency.

Consider Figure 3.1, which represents the activity that may be carried out by two hypothetical tasks that

have been co-scheduled on a GPU. Even though this figure is based on a now-dated GPU architecture, it still

provides a useful illustration of the hierarchy between a GPU-using application, the GPU kernels used by

the application, and the thread blocks executed on behalf of the kernels. It also provides a visual definition

for three different spans of time, to which we frequently refer throughout Section 3.2. Finally, Figure 3.1

presents a useful illustration of what we mean by distinguishing co-scheduling from “true concurrency.”

Clearly, the two applications depicted in Figure 3.1 are running concurrently on separate cores in a

multicore-CPU system. Additionally, we can see that they are co-scheduled on the GPU: for example, the

second kernel launched by “CUDA Program 1” overlaps entirely with the execution of the single kernel

launched by “CUDA Program 2.” However, when we consider the actual thread blocks responsible for

carrying out the GPU computations, we see that they do not execute concurrently; the thread blocks for the

first program’s kernels never overlap with the blocks for the second kernel (this behavior arises because two

programs use separate CUDA contexts). We only consider GPU operations to be truly concurrent when the
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GPU is actively carrying out computations on behalf of more than one independent task. Even so, a lack of

true concurrency does not necessarily mean that co-scheduling is useless—as we shall see in the following

experiments.

3.2.2 Co-Scheduling Experiments on Embedded Platforms

Our foray into embedded GPUs must begin by revisiting a key motivation behind all of our research,

discussed in Chapter 1: autonomous vehicles. The size, weight, and power (SWaP) constraints present in

autonomous vehicles, along with manufacturers’ desires to reduce monetary cost, serve as downward pressure

on the computational power available to carry out such vehicles’ safety-critical processing. Under these

constraints, autonomous vehicles clearly must rely on the presence of computational accelerators such as

GPUs, but manufacturers (as well as eventual customers) are likely to balk at the size, power, and monetary

costs of large server-grade systems with multiple GPUs (e.g., those used by Elliott, Ward and Anderson

(2013)).

GPU manufacturers such as NVIDIA certainly took notice of this need, as evidenced by the emergence

of embedded platforms such as the Jetson TK1 (launched in late 2014) and Jetson TX1 (launched in early

2015). In fact, NVIDIA’s marketing material at the time even referred to the Jetson TX1 as the embedded

platform for autonomous everything.3 While solving SWaP concerns, the shift to low-power embedded

hardware platforms gives rise to new dilemmas for prior GPU-management approaches: when using a single,

less-capable GPU, any waste of the GPU’s capacity becomes untenable.

Experimental objectives. Despite the “embedded everything” slogan, there were few or no published

studies (at least at the time of the TX1’s release) that expressly evaluated the effectiveness of the TX1,

or any other comparable energy-efficient embedded-GPU platform, in hosting safety-critical real-time

workloads. This provides us with two opportunities: we can examine the impact of GPU co-scheduling

while simulataneously conducting a high-level study of the embedded platforms’ capabilities to host the

computer-vision workloads essential to autonomous vehicles. Specifically, we seek to gauge the behavior of

co-scheduled GPU workloads, and the extent to which the workloads experience shared-hardware interference

due to uncontrolled co-scheduling.

3This no longer appears in NVIDIA’s marketing, even for the far-more-capable Jetson AGX Orin, but remains visible in archived
versions of NVIDIA’s embedded-systems website: https://web.archive.org/web/20170103045909/http:
//www.nvidia.com/object/embedded-systems.html.
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3.2.2.1 Observed Co-Scheduling Behavior on the Jetson TX1

We chose to study the Jetson TX1’s behavior under unmanaged co-scheduling by executing one or more

instances of certain microbenchmark programs on the system. Here, we consider one such set of experiments,

and the effects of co-scheduling on the total times, kernel times, and block times depicted in Figure 3.1.

The stereo disparity microbenchmark. For this set of experiments, we used the stereo disparity (SD)

microbenchmark as an exemplar of a computer-vision application. We adapted SD from NVIDIA’s official

CUDA samples, and the source code for our experiment is available online.4 SD continually runs iterations

in which it extracts 3D depth information from 2D images taken with a stereo camera. The inputs to SD

are 640× 533 color images corrseponding to the left and right frames from the camera, and the output is a

640× 533 grayscale image, where the brightness of each pixel corresponds to the estimated depth in the 3D

scene.

Experimental structure. Our experiment consisted of launching up to four concurrent instances of

SD, each of which was allowed unrestricted access to the TX1’s GPU. In our experiments, we launched each

instance of SD as separate Linux processes, which we pinned to separate CPU cores (the Jetson TX1’s ARM

Cortex-A57 CPU has four CPU cores). We allowed each instance of the microbenchmark to run for ten

minutes, during which we recorded timing measurements. We used the same pair of images for each instance

of SD, and pre-loaded the input image data into memory before beginning measurements. We also disabled

graphics on the system, and used an NVIDIA-provided script5 to disable the GPU’s dynamic frequency

scaling. These experiments used CUDA version 8.0.

Impact of co-scheduling on SD’s total time. As stated, this experiment was devised to evaluate how

much of a benefit GPU co-scheduling can produce on the Jetson TX1. Each instance of SD executed as

many iterations as possible for 10 minutes. To begin, we measured each iteration’s total time (as defined in

Figure 3.1), in order to capture all possible benefits due to co-scheduling.

Observation 3.1 GPU co-scheduling can lead to reduced total time, compared to sequentially executing

the co-scheduled tasks.

4https://github.com/yalue/PeriodicTaskReleaser

5https://github.com/yalue/PeriodicTaskReleaser/blob/master/Benchmark/TX-max perf.sh
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Figure 3.2: CDFs of total times for SD with up to four co-scheduled SD instances. The maximum value for
the “4 * isolation” curve is 110 ms.

Observation 3.2 Total times with GPU co-scheduling are still significantly longer than total times in

isolation.

These observations are supported by Figure 3.2, which plots the cumulative distribution functions (CDFs)

of the recorded total times for a single instance of SD executing alongside a varying number of identical SD

competitors.

The “In isolation” curve of Figure 3.2 corresponds to the case in which no competitors exist, and the

subsequent curves correspond to cases where one, two, or three competitors exist. The “4 * isolation” curve

is not a real measurement, but was obtained by scaling up the isolation curve by a factor of four. We include

it to provide a rough estimate of the time necessary to complete four instances if all four benchmarks were

forced to run sequentially.

In the co-scheduling case, the distribution of total times necessary for four instances to complete is

represented by the “vs. 3 instances” curve, which includes measurements of the time a single instance takes to

complete when running concurrently with three competitors. The difference in median times between these

two curves leads to Observation 3.1: we can save approximately 10 milliseconds on average by co-scheduling.

The measured worst-case execution time (WCET) shows an even greater benefit due to co-scheduling:

approximately 70 milliseconds can be saved.
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Figure 3.3: CDFs of kernel times with up to four co-scheduled SD instances.

On the other hand, as stated in Observation 3.2, total times appear to scale almost linearly on average,

with the median total time increasing by about 7 milliseconds with each additional competing instance. This

implies that there is still a significant amount of resource contention between co-scheduled workloads, but

further experimentation is needed to determine exactly which resources are a source of contention.

Impact of co-scheduling on SD’s kernel time. The results in the prior paragraphs establish that

co-scheduling can be beneficial in some cases, but give little indication of the root cause for the increasing

total times during co-scheduling. The next step in our examination involved measuring kernel times in the

presence of co-scheduling. We recorded kernel times in our experiments using the nvprof utility, which

NVIDIA provides as part of the default CUDA installation.

Observation 3.3 Co-scheduling affects kernel times similarly to total times.

Observation 3.4 A majority of SD’s total time is spent executing kernels.

Observation 3.3 is supported by the kernel-time CDFs shown in Figure 3.3. Like total times, kernel times

still expanded in the presence of co-scheduling, but not to the point where any benefit of co-scheduling no

longer exists. The kernel-time CDFs are less distinct and more noisy than the total-time CDFs, which, as we

shall see in subsequent paragraphs, is likely a result of block-scheduling behavior.

Comparing Figure 3.2 with Figure 3.3 allows us to infer Observation 3.4. This comparison is clearest

when viewing SD in isolation: the “In isolation” curve in Figure 3.2 indicates that SD has a median total time

of slightly over 10 ms, while the “In isolation” curve from Figure 3.3 shows that slightly over 9 ms of this
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Figure 3.4: CDFs of block times with up to four co-scheduled SD instances.

time were spent executing kernels. Recall from Section 2.1.1 that this does not necessarily mean that SD only

spends one millisecond executing on the CPU: kernels are launched asynchronously, enabling SD to carry

out CPU computations while kernels are executing on the GPU.

Impact of co-scheduling on SD’s block times. In the final step of our experiment, we measured the

time of every thread block launched on behalf of SD’s kernel (SD launches only a single kernel per iteration).

Unfortunately, tools such as nvprof do not directly enable block-time measurements, meaning that we

had to modify SD’s kernel code to carry out this part of our experiments. Our modifications ended up being

small: we instrumented one thread from each block to use inline assembly to read the GPU’s globaltimer

register, which is shared between all SMs and maintains a count of nanoseconds. The designated GPU thread

records a timestamp both at the start and end of the kernel code, writing the times into a buffer in GPU

memory. After the kernel completes, we copy the buffer of timestamps back to CPU memory, where we can

compute block times and produce CDFs plots like we did for kernel and total time. Figure 3.4 shows these

results.

Observation 3.5 Block times are minimally affected by co-scheduling.

Observation 3.5 is supported by the block-time CDFs given in Figure 3.4. This figure shows that block

times are virtually unaffected by co-scheduling. Especially striking is the fact that the median block time,

approximately 70 microseconds, was indistinguishable regardless of whether one or four instances of SD

were running. The complete lack of interference between block times serves as a striking testament to the
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Figure 3.5: Timeline of when blocks from four co-scheduled SD instances ran on the Jetson TX1’s GPU.

efficacy of NVIDIA’s time-slicing approach between different CUDA contexts. Since block times do not

change under co-scheduling, we can only conclude that the majority of the slowdown due to co-scheduling is

due to inter-block scheduling behavior. We further verify this conclusion by visualizing our block-time data

in a different way.

Using the block start and end times we already recorded in order to produce Figure 3.4, we are also

able to generate Figure 3.5. Figure 3.5 shows a snippet of a timeline of the number of thread blocks being

executed by each of four concurrent SD processes. We used nvprof to confirm that the timespan depicted

in Figure 3.5 only includes a single kernel per process, rather than multiple kernels beginning and ending.

From this figure, it is clear that the Maxwell-architecture GPU on the Jetson TX1 executes blocks on behalf

of one context for a certain time span before switching to executing blocks from a different context.

Remarks on the TX1’s performance. Our full suite of experiments included more than just the SD

microbenchmark. For example, we also attempted co-scheduling various applications alongside the CaffeNet

neural network, which implements the AlexNet (Krizhevsky, Sutskever and Hinton 2012) image-classification

network using the Caffe (Jia et al. 2014) programming framework. While we do not include full results from

our CaffeNet experiment here (its complexity and slower performance yielded few interesting insights about

co-scheduling), we found that CaffeNet on the TX1 could only perform approximately 30 classifications per

second, even when running in isolation. While this is likely adequate for hobbyist drones or self-driving R/C
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cars, it would undoubtedly be inadequate in a truly safety-critical system such as an autonomous car, where

image classification would only be one of many stages in multiple computer-vision pipelines.

3.2.2.2 Objections to Co-Scheduling: Well-Founded?

Co-scheduling in the manner of Section 3.2.2.1 should not be particularly susceptible to unpredictable

interference, as NVIDIA GPUs already perform some variant of time-slicing to prevent true concurrency

between separate CUDA contexts (i.e., separate Linux processes, as MPS is unavailable on the TX1). The

block-level time-slicing may certainly be a cause for concern in a system where one block may take a very

long time, but, in later experiments, we verified that even this potential co-scheduling pitfall goes away

with the Pascal GPU architecture, which switches from time slicing at the block granularity to finer-grained

preemption.

On the other hand, our initial goal with co-scheduling was not to prove it had low interference—the

entire point was to increase hardware utilization. While the results in Figure 3.2 show that co-scheduling is

beneficial, Figures 3.4 and 3.5 indicate that the performance improvement is due to overlapping CPU activity

(in addition to pontentially using internal GPU queueing hardware more efficiently); GPU computations are

not being carried out at the same time. Can we do better by enabling “true” concurrency by switching to

a single CUDA context? If so, will we still be able to establish some clear boundaries on when hardware

contention may occur?

3.3 Developing a Microbenchmarking Framework for Investigating GPU-Sharing Behavior

Our experiments from Section 3.2 focused on the co-scheduling of multiple independent CUDA contexts,

and concluded that this type of co-scheduling is unlikely to cause problems with respect to unpredictable

interference, at the expense of making it impossible to fully claim the GPU’s computational capacity. We

next push our investigation farther by using a single CUDA context to enable true concurrency. Unfortunately,

doing so may re-open the door to destructive shared-hardware interference, in addition to posing some

software-engineering challenges. While MPS is available on discrete GPUs, we care the most about recouping

lost capacity on embedded platforms where the only way to share a CUDA context is to also share a single

system process.
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It is at this point that we must reemphasize our goal of developing a model for NVIDIA GPU behavior.

Assuming we can overcome the software-engineering hurdle of restructuring independent GPU applications

into a single process, we still need a way to predict how they can interact. Our next set of experiments

attempts to address this need. As is often the case with NVIDIA GPUs, we lack detailed information about

internal details regarding GPU behavior, or even details about CUDA’s runtime-library software, so we are

forced to rely on black-box testing.

Black-box testing. Black-box testing refers to the practice of developing tests or experiments to evaluate

a system for which internal details are unknown—contained in a “black box.” We begin our experiments

with only a limited set of presuppositions about NVIDIA GPU behavior. We can already safely assume that

NVIDIA GPUs manage shared-GPU access via some hierarchy of queues, as the CUDA documentation

guarantees that streams are FIFO queues. The question remains of how NVIDIA GPUs arbitrate between

kernel-launch requests from multiple, independent, streams. CUDA documentation only notes that kernels

from seprate streams can execute concurrently (NVIDIA Corporation 2022a, Section 10.5), which gives little

information about whether kernels will execute concurrently, and if not, the order in which they run.

3.3.1 GPU Microbenchmarking Framework Requirements

Effective black-box experiments always seek to answer specific questions. Examples of such questions

could be “Will the GPU reassign resources from a kernel that is already executing to a newly launched

kernel?” or “Can an ongoing memory-transfer operation prevent a kernel from executing?” The more such

questions we can answer, the better our understanding of GPU behavior will be.

A microbenchmarking framework allows answering questions like these in far less time. In its most

fundamental form, a microbenchmarking framework is simply a piece of software that simplifies setting

up microbenchmark experiments. To see why this can be useful, consider again the fact that black-box

experiments are designed to answer specific questions—in our experience, specific questions almost always

imply an experiment. For example, the previous paragraph asks “Can an ongoing memory-transfer operation

prevent a kernel from executing?” While not entirely specific (there are many missing details, e.g., kernel

size, memory-transfer direction, etc.), this question certainly implies an experiment:

1. Launch a lengthy memory-transfer operation in one stream.

2. Immediately afterwards, launch a kernel from a separate stream.
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3. Observe whether the kernel begins execution immediately, or whether it only begins execution after the

memory transfer completes.

In this contrived example, the three experimental steps illustrate different operations that a microbench-

marking framework can carry out. For the first two steps, it could execute two microbenchmarks: one

that invokes a lengthy memory-transfer operation of some arbitrary data, and another that launches some

arbitrary kernel. The third step requires making detailed observations—an error-prone, nuanced task that

becomes especially cumbersome when microbenchmarks use separate, ad-hoc code for making and recording

measurements. If the framework handles as much of this step as possible, a large portion of measurement

code becomes easier to reuse and scrutinize for errors.

We developed a GPU-specific microbenchmarking framework that addresses these needs among several

others. The key software-engineering principles upon which we based our framework were:

• Modularity: Microbenchmarks are structured as interchangeable plugins, configured through a

common interface and producing output in a standard format.

• Reusability: Asking most “questions” should usually require reconfiguring existing microbenchmarks

rather than writing new ones.

• Programmability: It is possible to use additional programs to automatically configure a large number

of experiments and process their results.

3.3.2 Framework Operation

Figure 3.6 gives an overview of the basic steps carried out by our microbenchmarking framework.

Step ❶: configuration. When launched, our microbenchmarking framework requires a JSON-format

configuration file, marked with a ❶ in Figure 3.6. This configuration file specifies which microbenchmarks

to run along with many other parameters. We provide Figure 3.7 as an example used by one of our actual

experiments.

While several of the lines in Figure 3.7 only make sense in later steps, we already have sufficient back-

ground to explain a large portion of it. The bulk of the configuration consists of the list of microbenchmarks

to run, listed in a JSON array starting with the line containing the "benchmarks" label. In the entries

of this array, the microbenchmark to run is determined by the "filename" field, which gives a path
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Figure 3.6: Flowchart of actions carried out by our microbenchmarking framework.

to a shared-library plugin containing the microbenchmark’s code. In Figure 3.7, all three entries use the

timer spin.so microbenchmark: a synthetic microbenchmark that launches a single kernel in which each

GPU thread executes a busy loop polling the globaltimer register until a certain number of nanoseconds

have elapsed.

The configuration requires specifying the number of blocks and the number of threads per block for each

microbenchmark. These settings are contained in the "block count" and "thread count" fields,

respectively, though microbenchmarks with less-flexible kernel code may ignore one or both of these settings.

Next, the "additional info" setting is an arbitrary JSON object containing microbenchmark-specific

parameters; in Figure 3.7 it is simply a number containing the number of nanoseconds for which each iteration

of the timer spin instance is supposed to spin. Finally, we specify a "label" that will simply be copied

to the output file for each microbenchmark. The remaining settings in Figure 3.7 are more easily understood

in the context of later steps of the framework’s execution.

Step ❷: spawn processes or threads. Our framework requires each microbenchmark to be capable

of executing either as independent Linux processes or as separate threads within a single process. This
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{

"name": "Cutting ahead test",

"max_iterations": 1,

"max_time": 0,

"use_processes": false,

"benchmarks": [

{

"filename": "./bin/timer_spin.so",

"log_name": "cutahead_1.json",

"label": "Released first",

"thread_count": 512,

"block_count": 7,

"additional_info": 1000000000

},

{

"filename": "./bin/timer_spin.so",

"log_name": "cutahead_2.json",

"label": "Released second",

"thread_count": 1024,

"block_count": 2,

"additional_info": 500000000,

"release_time": 0.25

},

{

"filename": "./bin/timer_spin.so",

"log_name": "cutahead_3.json",

"label": "Released 3rd, could cut ahead",

"thread_count": 256,

"block_count": 1,

"additional_info": 500000000,

"release_time": 0.5

}

]

}

Figure 3.7: An example JSON configuration file for launching three timer spin microbenchmarks.
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behavior is determined by the "use processes¨ configuration option seen near the top of Figure 3.7, and

is reflected in Figure 3.6 by Step ❷.

When first envisioning this framework, one of our key goals was to contrast the scheduling behavior

of multiple CUDA contexts vs. multiple CUDA streams within a single context. As we also need to support

NVIDIA’s embedded platforms, we are unable to rely on MPS. Instead, if we wish to examine intra-CUDA-

context scheduling behavior, we are forced to run all of our microbenchmarks from a single Linux process.

This puts some restrictions on our microbenchmarks: they must not rely on global state, and they must launch

all GPU operations from separate CUDA streams.6

In fact, it may be more helpful think of separate microbenchmarks as instances of a microbenchmark.

These instances may execute identical code and even share an address space (when running as threads rather

than processes), but each instance can be configured with different settings, and must be able to operate

independently.

Step ❸: load and initialize plugins. It is only in the context of a child process or thread that our

framework actually attempts to load each microbenchmark plugin’s shared library, indicated by step ❸ in

Figure 3.6. In a purely thread-based model, it would likely be equally effective to load the shared libraries

prior to spawning threads, but in order to support child processes, we must avoid initializing a CUDA context

from within our host process. The problem is that CUDA forbids copying contexts between processes. If the

parent process issues a fork system call to spawn a child process after initializing a CUDA context, then

the operating system will copy the parent’s CUDA context to the newly created child—violating the “no

copying” rule and likely resulting in errors or crashes. This limitation means that we must only load and run

our microbenchmark shared-library plugins within child processes, and for simplicity the framework follows

the same procedure even when configured to use multiple threads rather than processes.

Step ❹: execute microbenchmark iterations. We use Step ❹ in Figure 3.6 to indicate the repeated

iterations executed by each microbenchmark. In practice, the framework divides a single iteration into three

“phases” corresponding to the typical execution pattern of GPU-accelerated applications: transfer data to the

GPU, process the data, and copy results back to the CPU (see steps 3(a) through 4 listed in Section 2.1.1).

The shared-library plugins for each microbenchmark expose these phases as three functions:

6For example, if any microbenchmark issues operations to the NULL stream (described in Section 2.1.2) when running in a thread,
then those operations will block kernel launches from all other microbenchmarks until completion. We discuss the NULL stream’s
behavior more in Section 3.5.
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1. copy in: The framework begins each iteration begins by calling each plugin’s copy in function,

prompting microbenchmarks to transfer any input data held in CPU memory to the GPU. Microbench-

marks also may use this function to reset any bookkeeping data from prior iterations, in preparation for

new measurements.

2. execute: Next, the framework invokes the microbenchmark’s execute function, which is expected

to launch any kernels (and CPU computations in some cases) and wait for the kernels to complete.

Each microbenchmark is responsible for conducting its own finer-grained timing measurements during

this function.

3. copy out: At the end of each iteration, the framework calls the microbenchmark’s copy out

function, during which the microbenchmark is expected to copy resulting data from the GPU to the

CPU. In addition, it is during the copy out function that the framework requires each microbenchmark

to report detailed timing information (e.g., individual block times) gathered during its most recent

execution.

Naturally, not all GPU-using applications can divide their execution neatly among these three phases.

For example, microbenchmarks requiring both CPU and GPU computations may need to intersperse kernel

launches with data-copy operations. This does not pose a problem for our framework; the three phases are

primarily used for rough time estimations, which we can choose to use or ignore as we see fit in later analysis.

The only hard requirement is that the microbenchmark must complete all execution prior to returning timing

information from the copy out function.

Step ❺: optionally synchronize between iterations. After parsing the configuration and spawning the

processes or threads responsible for running the microbenchmarks, the host process is typically uninvolved in

actual execution. However, occasionally we may wish to synchronize all of the microbenchmarks prior to

each iteration, e.g., to cause more interference by forcing more overlap in their execution. The point at which

this occurs is annotated as Step ❺ in Figure 3.6. In order to support this, the main process of the framework

allocates a shared-memory buffer through which the microbenchmark processes or threads may carry out

spin-based barrier synchronization, based on the approach developed by Mellor-Crummey and Scott (1991).

Step ❻: record output files. Timing information from each microbenchmark is recorded to a separate

JSON-format output file (this is specified by the "log name" lines visible in Figure 3.7). As mentioned in

54



{

"scenario_name": "Cutting ahead test",

"benchmark_name": "Timer Spin",

"label": "Released second",

"release_time": 0.25,

"times": [

{

"copy_in_times": [0.340182176, 0.340182432],

"execute_times": [0.340182528, 1.590260352],

"copy_out_times": [1.590260832, 1.590398464]

},

{

"kernel_name": "GPUSpin",

"block_count": 2,

"thread_count": 1024,

"cuda_launch_times": [

0.340182816,

0.340254688,

1.590259712

],

"block_times": [

1.090255109, 1.590273405,

1.090255109, 1.590273405

],

"block_smids": [

0,

1

]

}

]

}

Figure 3.8: An slightly abbreviated JSON result file, produced by the the second of the three microbenchmarks
configured in Figure 3.7.

Step ❹, one of the responsibilities of each microbenchmark plugin is to populate a data structure with timing

information during its copy out function. Common framework code serializes this data into the JSON

format and writes it to the log file.

Figure 3.8 shows an abbreviated example of one of these output files, resulting from running the

configuration file shown in Figure 3.7 on a real Jetson TX2 system. To produce Figure 3.8, we only modified

the resulting JSON file to have a more human-readable layout, and to remove lines containing irrelevant

bookkeeping. For every iteration, the output file contains the CPU times at the start and end of the three stages

described in Step ❹, in addition to per-kernel timing measurements made by the microbenchmark plugin.

(The microbenchmark instance that produced Figure 3.8 only ran for a single iteration; more iterations would

simply append more entries to the "times" array.) The output file also includes the block and thread counts
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used by the kernels, as well as the list of the start and end timestamps for each thread block and a list of

the SM IDs to which each block was assigned. A kernel’s "cuda launch times" entry contains three

CPU timestamps: prior to launching the kernel, immediately after the kernel-launch invocation ends (we use

this to detect whether the kernel launch was blocked on the CPU), and immediately after the return of the

cudaStreamSynchronize call indicating the kernel’s completion.

Summary of microbenchmarking framework capabilities. Using only different configuration files,

our microbenchmark framework is capable of:

• Running an arbitrary number of microbenchmarks

• in either one or multiple CUDA contexts,

• with configurable GPU-resource requirements,

• starting at arbitrary offsets in time,

• for an arbitrary number of iterations or amount of time,

• while recording detailed per-microbenchmark timing information for each iteration.

Note that this does not cover the full list of settings we support, not to mention a large number of varied

microbenchmarks with their own specific settings. Furthermore, our choice to use the JSON format for

the framework’s configuration enables automating sets of experiments with arbitrary complexity: nearly all

modern programming and scripting languages have mature support for parsing or producing JSON data,

allowing us to write scripts capable of generating configurations and processing results.

3.4 NVIDIA GPUs’ Intra-Context GPU-Sharing Behavior

With a suitable microbenchmarking framework, we can return to the topic of how one designs black-box

experiments in order to build a model of GPU scheduling. At the start of Section 3.3, we stated our desire

to build an understanding of GPU co-scheduling within a single context: official documentation tells us

that kernels launched from different streams can run concurrently, but we wish to know when they will run

concurrently. In line with the black-box approach discussed at the start of Section 3.3.2, our goal is to ask

specific questions about GPU sharing until we can distill a set of consistent rules with which we can predict

yet-to-be-observed behavior: a model.
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3.4.1 Initial Foray Into Black-Box Experiments: Can CUDA Kernels “Cut Ahead?”

We start our investigation with an important question about whether NVIDIA GPUs can reorder pending

work in order to maximize hardware usage. Obviously, the title of this subsection already states the question

in brief, but the specific formulation, implying the requisite black-box experiment, requires introducing

another concept: GPU occupancy.

Understanding GPU occupancy. Occupancy is a term frequently used in GPU literature to refer to

the fundamental constraints on the number of blocks that may execute per SM, limited by factors such as

the number of threads per block, the number of registers required, or the amount of shared memory used.

NVIDIA’s official definition of occupancy is “the ratio of active warps to the maximum number of warps

supported on a multiprocessor [SM] of the GPU” (NVIDIA Corporation 2022c).

If this is still unclear, consider a simple example. As discussed in Section 2.2, each SM on a GPU

only supports up to 2,048 concurrent GPU threads.7 If a kernel is launched with an arbitrary number of

768-thread blocks, each SM on the GPU is only able to support a maximum of two concurrent blocks (together

totalling 1,536 threads), because the SM’s 2,048-thread capacity is insufficient for a third block of 768 threads.

Assuming threads are the only limiting factor, this kernel using 768-thread blocks achieves an occupancy of

1536/2048 = 0.75. If a similar kernel were to use 512-thread blocks instead, it would achieve the highest

possible occupancy of 1.0: each SM could fill its entire 2,048-thread capacity with four 512-thread blocks.

In our research, we rarely (if ever) discuss occupancy ratios, and NVIDIA mostly uses the concept

when providing guidance on how to optimize GPU-using software. Our focus is not on developing the

GPU-using software, but examining the extent to which capacity loss occurs in existing software, and whether

it can be avoided. Therefore, even though we do not use occupancy ratios, we still often adopt “occupancy”

phraseology, usually to explain why capacity loss may occur.

Posing a specific question. With an understanding of occupancy and the limits on per-SM resource

usage, we can return to the topic at hand and finally pose a specific question:

7For convenience, we choose to focus on the number of threads per SM as the limiting factor on occupancy. We did carry out many
experiments focusing on other resources (e.g., shared memory), and observed that the GPU behaves the same (with respect to
queueing, cutting ahead, etc.), regardless of which occupancy metric was a limiting factor. We choose to only report results using
threads simply because the thread limit applies to all GPU architectures, including even to AMD GPUs, whereas limits on per-SM
registers and shared memory change from GPU to GPU and can be harder to manipulate during experiments.
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Imagine that two kernels, A and B, are launched from different streams, with kernel A being

launched slightly before B. Meanwhile, preexisting work is occupying most, but not all, of the

resources on the GPU. If there is insufficient capacity for a block from A to start running, but

sufficient capacity for a block from B, will the GPU allow B to start executing? In other words,

will B be allowed to “cut ahead” of A?

As we would hope, our question is now detailed enough to imply an experiment:

1. Ensure that the GPU resources are sufficiently occupied so that every SM only has sufficient capacity

for a “small” thread block.

2. Launch kernel A, using “large” thread blocks that cannot start executing immediately.

3. Using a separate stream, launch kernel B using “small” thread blocks that could start executing

immediately if the GPU allows cutting ahead.

4. Observe whether blocks of B are allowed to start executing immediately, or whether they must wait

until after A starts executing.

If blocks from B start executing before blocks from A, then we conclusively know that the GPU allowed

B to cut ahead. If not, we can conclude that, at least in this situation, the GPU does not allow cutting ahead.

Setting up a black-box experiment. We can use our microbenchmarking framework to carry out steps

one through four listed above. In fact, we have already provided the exact configuration file required to

carry out these steps: Figure 3.7. Returning to Figure 3.7 with a new understanding of the experiment it was

designed to conduct allows us to move beyond the definition of each configuration line, and into the intent

behind them.

The configuration launches three microbenchmark instances, each using the same timer spin plugin.

The timer spin microbenchmark is appropriate, since we only care about occupying GPU resources and

not specific computations. The configuration in Figure 3.7 is intended to run on the Jetson TX2, which has

exactly two SMs, and the first microbenchmark instance it requests (with a “Released first” label) launches

seven blocks of 512 threads. Since four blocks of 512 threads occupy an entire SM, we know that these seven

blocks will entirely occupy one SM, and only leave 512 threads’ worth of available capacity on the TX2’s

second SM. This satisfies the conditions required by step one of our experiment.
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Second, Figure 3.7 launches another timer spin instance, this time requesting two blocks of 1,024

threads. The order in which the framework launches microbenchmark instances is not determined by their

ordering in the "benchmarks" list in the configuration file (even though they appear in the correct order in

Figure 3.7), but instead by their "release time" setting: a floating-point number of seconds the child

process or thread sleeps before carrying out the first microbenchmark iteration.8 As established by the

previous paragraph, the GPU will only have 512 threads’ worth of capacity remaining, so neither of these two

1,024-thread blocks will be able to start executing until after one or two blocks of the first kernel complete.

This satisfies the conditions required by step two of our experiment.

Third, Figure 3.7 requests the framework to launch a final timer spin instance, this time requiring

only a single block of 256 threads. Clearly, if allowed to cut ahead, this block could occupy part of the

remaining 512-thread capacity and begin execution. However, we configured its release time to be a full 0.25

seconds after the second kernel’s release. (Note: the first kernel is configured to spin on the GPU for a full

second, so it will not have completed execution even by the time the third kernel is launched.) This satisfies

the conditions required by step three of our experiment.

Observing the experiment’s results. The fourth and final step in our “cutting ahead” black-box

experiment is to observe the microbenchmarks’ actual behavior. After the framework completes execution,

we can observe the results using a script we developed that consumes the output JSON files produced by the

framework (such as Figure 3.8), and visualizes the assignment of each thread block to each SM on a timeline.

Figure 3.9 contains the plot we obtained from this process.

In Figure 3.9, each thread block is represented by a shaded rectangle. Rectangles are labeled with the

block index and name of the kernel they are executing, and are shaded according to the stream to which

the kernel was submitted (in Figure 3.9 this is less relevant, as all three kernels were submitted to separate

streams). Each rectangle’s height is determined by the number of threads in the block, and its width is

determined by how long it executed: the left and right edges of a rectangle correspond to the times at which

the block began and ended execution. The vertical axis of the plot is subdivided into regions corresponding to

each of the GPU’s SMs (the TX2 only has two SMs), and the rectangle for each thread block is placed in the

8Enforcing order in this way simplifies structuring our microbenchmarks as independent processes or threads. This is less of a
limitation than it may seem at first glance. Transient scheduling “jitter” is never the subject of our experiments, and if, for some
reason, Linux’s scheduler mis-orders the releases despite a full quarter-second difference in sleep times, our visualization scripts
would make the mishap easy to detect.
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Figure 3.9: Scheduling of blocks on the Jetson TX2 in our “cutting ahead” microbenchmark experiment.

section corresponding to the SM on which it was executed. Finally, the colored arrows below the plot mark

the times at which each kernel was launched.

Observation 3.6 CUDA kernels do not cut ahead.

Observation 3.6 is clearly consistent with the behavior shown in Figure 3.9: the seven blocks of the first

kernel leave 512 threads available, but the third kernel (shaded in blue) does not start executing before the

second kernel (shown in yellow), even though it was released slightly before the 0.6-second mark (the blue

arrow). Naturally, Figure 3.9 is only one situation, so we also conducted many variants of this experiment

with different block sizes, kernel orderings, etc., but all of our experiments behaved consistently: CUDA

kernels did not cut ahead.9

Given the simplicity of the experiment and its consistency across multiple variations, it is reasonable to

assume that our conclusion about cutting ahead is correct. At the same time, it is not possible to make the

leap from a single rule to a model without many more experiments: we only have a model once we can move

from answering questions to making predictions.

9Lest any readers happen to think that this behavior is obvious and our experiments are unnecessary: we shall see an interesting
contrast when discussing AMD’s behavior in Chapter 4.
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3.4.2 NVIDIA GPU Scheduling Rules

Recall the driving question behind all of these experiments: resolve the ambiguity in NVIDIA’s docu-

mentation by figuring out when kernels submitted to separate streams will execute concurrently. Answering

our initial “cutting-ahead” question is part of the solution—it demonstrated a situation when kernels will

not execute concurrently despite being launched from separate streams and having sufficient computational

resources. In order to progress beyond basic observations, we must discover underlying mechanisms, capable

of explaining the lack of cutting ahead as well as being consistent with all other scheduling behavior we

happen to observe.

Rather than explaining every single black-box experiment in detail as we did in Section 3.4.1, we

choose here instead to start with our final result: the queueing rules for CUDA kernels launched within a

single context. After explaining the rules, we give the result of corroborating black-box experiments, which

exhibited the behavior on real hardware.

Intra-context kernel scheduling rules. For our set of rules, the GPU scheduler consists of one FIFO

primary queue10 per CUDA context, and one FIFO queue per CUDA stream.11 This layout is depicted in

Figure 3.10, which we explain in detail after presenting the rules below.

According to our observations of simple workloads being submitted from a single CUDA context, the

following rules dictate the order in which kernels execute on the GPU, and whether two or more kernels will

execute on the GPU concurrently:

A. A CUDA kernel is inserted into the primary queue when it arrives at the head of its stream.

B. A CUDA kernel can begin execution on the GPU if both of the following are true:

B1. The kernel is at the head of the primary queue.

B2. Sufficient GPU resources are available for at least one block of the kernel.

C. A CUDA kernel is dequeued from the head of the primary queue if all of its remaining blocks have

either completed execution or are currently executing.

D.
10Subsequent work from Olmedo et al. (2020), indicates that our notion of a “primary queue” does not necessarily correspond to a

separate queue of operations in GPU hardware. Instead, Olmedo et al. state that operations from separate streams are arbitrated by
a mechanism called a stream scheduler. However, the ultimate outcome of this is that operations from separate streams behave
exactly as described by our rules, so we continue to use our notion of a primary queue—this should not change a model of queueing
behavior.

11This structure becomes more complex if more hardware or CUDA features (e.g., copies or stream priorities) are considered.
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Figure 3.10: Flow of CUDA kernels through streams and the “primary queue.”

A CUDA kernel is dequeued from the head of its stream if all of its blocks have completed execution.

In this paper, we only show experimental results supporting these rules that we obtained using a Jetson

TX2, but we validated our conclusions on a wide variety of platforms. We found this set of rules to be

consistent across all of the integrated and discrete NVIDIA GPUs we tested, including GPUs using the

Maxwell, Pascal, and Volta architectures.

Explanation of GPU scheduling rules. Rules A and D restate the property of streams given in

Section 2.1: operations submitted to a single stream always complete in FIFO order. Rules A and B1 imply

that kernels submitted from multiple streams will run on the GPU in the same order that they arrived at the

heads of their streams. (Rule B1 is also what prevented the “cutting ahead” we tested in Section 3.4.1.) Rule

C is the rule that allows concurrent execution of multiple kernels on the GPU. In particular, the clause stating

that a kernel is removed from the head of the primary queue if it has no remaining incomplete or unassigned

blocks means that a second kernel can reach the head of the primary queue while the previous kernel is still

executing. Lastly, Rule B2 determines whether a kernel at the head of the primary queue can begin execution.

Figure 3.10, which we next describe in detail, serves as a visual example of these rules’ applications.
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Queueing rules: an example. In Figure 3.10, two concurrent CPU threads, T0 and T1 share a single

CUDA context. (We label these as “tasks” rather than “threads” in the figure to avoid the ambiguity with

GPU threads.) T0 and T1 create two streams each. In total, these two tasks submit five kernels in order,

labeled K1 through K5. Each kernel may have multiple blocks, so kernel K1’s ith block is labeled K1:i,

and so on. (K3 only has a single block: K3:0.) In this example, all blocks of K1 and K3 (with shaded boxes)

are currently assigned to the GPU. K1 and K3 have therefore been removed from the primary queue (Rule C),

but are still present at the heads of their streams. Kernels K4 and K5 are at the heads of their streams, so they

have been added to the primary queue (Rule A). Even so, neither is able to begin executing because K5 is not

at the head of the primary queue (Rule B1), and insufficient GPU resources exist for a block of K4 (Rule B2).

When K1 completes, it will be dequeued from the head of its stream (Rule D), and K2 will reach the head of

its stream and be added to the primary queue (Rule A).

3.4.2.1 Corroborating Evidence for Rules B1, B2, and C.

The first of our microbenchmark experiments simply demonstrate that co-scheduling can occur when

multiple kernels are submitted from different streams in a single CUDA context, and that kernels become

eligible to run as soon as sufficient resources are available. These experiments only required submitting one

kernel per stream, so the per-stream processing given by Rules A and D is trivial in these cases. Results of

this first set of experiments are represented in Figures 3.11 and 3.12.

Of these first two experiments, Figure 3.11 represents the simplest, optimal co-scheduling situation in

which we released Kernels 1 and 2 at time t = 0s and Kernels 3 and 4 at time t = 0.25s. Each kernel was

launched in a separate stream, configured to run for the same amount of time, and required two blocks of

1,024 threads. The kernels that were released first, 1 and 2, were co-scheduled due to Rule B2—each kernel

only required half of the available thread resources. This meant that whichever kernel came first was fully

assigned to SMs and dequeued from the primary queue. Kernels 3 and 4 could not commence execution until

one of the first two kernels completed, freeing thread resources.

The second experiment, depicted in Figure 3.12, illustrates the greedy behavior implied by Rule C.

Kernel 1 was released at time t = 0s and required executing 18 blocks of 512 threads, which exceeded the

GPU’s capacity. Kernel 2, requiring fewer threads, was released at time t = 0.25s, but the scheduler did not

allow it to execute until Kernel 1 had no blocks left to assign to the GPU. In accordance with Rule C, Kernel
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Figure 3.11: Basic concurrent kernel execution using multiple streams.

2 was able to reach the head of the primary queue and begin executing while the final block two blocks of the

first kernel were still completing.

3.4.2.2 Corroborating Evidence for Rules A and D

Our set of experiments in Section 3.4.2.1 supported our observations about the ordering of kernels

between multiple streams, but did not include situations that can occur when multiple kernels are submitted

to a single stream. Our next set of tests illustrates the rules pertaining to intra- and inter-stream ordering of

kernels, and therefore focuses on the additional constraints given in Rules A and D. Situations arising due to

these rules are illustrated in Figures 3.13 and 3.14.

Figure 3.13 contains an example of how kernels within a single stream are executed in FIFO order. In

this figure, Kernels 2 and 3 (shaded pink) were issued to a single stream, and, in accordance with Rules A and

D, Kernel 3 did not begin execution until after Kernel 2 completed. Furthermore, Kernel 2 required too many

resources to execute concurrently with Kernel 1 (shaded blue), even though Kernel 1 was issued in a different

stream. This is in line with earlier observations, but it still serves as an illustration where a kernel with very

low resource requirements is blocked not only by a predecessor in its own stream, but also transitively by

another kernel from a different stream.
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Figure 3.12: “Greedy” scheduling behavior.

Figure 3.13: FIFO ordering within a single stream.
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Figure 3.14: FIFO ordering within the primary queue.

We provide Figure 3.14 as a second illustration of Rules A and D. Unlike in Figure 3.13, the kernels in

Figure 3.14 were executed in a different order from that in which they were issued. Kernels 1 and 2 (shaded

blue) were issued back-to-back at time t = 0s into the same stream, and Kernel 3 (shaded pink) was issued

into a separate stream at time t = 0.25s. Even though Kernel 2 was issued earlier, Kernel 3 executed before

Kernel 2 because Rule D prevented Kernel 2 from reaching the head of its stream until Kernel 1 completed.

Kernel 3, on the other hand, reached the head of its stream and entered the primary queue as soon as it was

submitted.

3.4.2.3 The Interplay Between Scheduling Rules and Resource Constraints

Having presented (some of) our corroborating evidence for all of the scheduling rules given in Sec-

tion 3.4.2, we still cannot neglect the amount of complexity packed into Rule B2, which requires “sufficient

GPU resources.” Only Rules B2 and D are capable of preventing concurrency, but of these two, Rule B2

appears to rely on a factor outside the programmer’s control: the hardware’s computational capacity. If the

GPU is fully occupied, there is indeed little reason for a programmer to pay further attention to Rule B2.

However, fully occupied hardware, by definition, is not experiencing capacity loss, the original motivation

for our GPU-sharing investigation.
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Figure 3.15: A kernel-launch ordering preventing kernel concurrency.

When considering scenarios where not all GPU hardware is occupied, we can demonstrate situations

where Rule B2 plays a pivotal role in determining kernels’ response times. We illustrate one such example by

contrasting two highly similar experiments.

We present the first of the two related experiments in Figure 3.15. In this figure, the first kernel to be

launched required 6 blocks of 512 threads. Since nothing else was currently executing, the GPU scheduler

evenly distributed the six blocks across the TX2’s two SMs,12 leaving only 512 unassigned threads remaining

on each SM. This meant that when the second kernel, requiring a single block of 1,024 threads, was launched

at time t = 0.25s, it had to wait because neither SM could hold 1,024 threads.

Figure 3.16 contains the same two kernels as Figure 3.15, but with the two kernels released in the

opposite order. Here, the single 1,024-thread block was assigned to SM 0, and the GPU scheduler distributed

K1’s six blocks to fill up all remaining thread resources—nearly halving the overall response time for the

two kernels together. While this may not be a surprising result, it illustrates a situation in which reordering

kernels could improve GPU utilization and reduce overall execution time. Without perfect clairvoyance, it

is likely impossible to automatically reorder kernels to ensure maximal occupancy, but this still serves to

12For a detailed discussion about how NVIDIA GPUs assign blocks to SMs, see Olmedo et al. (2020).
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Figure 3.16: A kernel-launch ordering allowing kernel concurrency.

illustrate the deceptive depth of Rule B2—a slight change in the timing between two independent streams

can have an outsized impact on the GPU’s resource allocations.

3.4.3 Towards a Model of a Shared CUDA Context

The scheduling rules in this section generally only apply in two situations: when a kernel is first launched,

and when a kernel’s last few blocks begin completing, freeing GPU resources. This is due to Rule C—the

kernel remains at the head of the primary queue, preventing other kernels from starting to execute (“cutting

ahead”), so long as it still has more blocks to dispatch. In other words, long-running kernels that launch many

blocks will almost certainly become the sole running kernel on the GPU at some point in their execution.

This means that the longest-running kernels are unlikely to either cause or experience unpredictable

hardware contention during the bulk of their execution times, as even without external intervention they

are likely to wind up executing “in isolation.” The remaining factors in a kernel’s response time are solely

determined by its position in its stream, its position in the primary queue, and the blocks from other kernels it

may need to contend with near the start and end of its execution. The restrictions that we discovered were

successfully applied in subsequent works to produce models capable of predicting response-time bounds

for GPU-sharing kernels (Yang, Amert, Yang, Otterness, Anderson, Smith and Wang 2018). However, this
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follow-up work was mostly conducted by another member of our group, to whose dissertation we direct

interested readers (Yang 2020).

3.5 Timing Pitfalls Pitfalls With NVIDIA GPUs

So far in this chapter, we have discussed two non-intrusive approaches for improving timing predictabil-

ity on NVIDIA GPUs: co-scheduling (Section 3.2), which improves throughput without undue costs on

predictability, and understanding queueing behavior (Section 3.4), which makes GPU concurrency less

unpredictable in the first place. Still, we can apply the tools developed in Section 3.3 for another purpose:

identifying and investigating aspects of the CUDA API that, when used naı̈vely, result in extremely degraded

worst-case timing behavior.

In this section, we identify several such pitfalls, including both causes and effects. We separate them

broadly into two categories: synchronization-related pitfalls, discussed in Sections 3.5.1 and 3.5.2, and CUDA

API pitfalls, discussed in Section 3.5.3.

3.5.1 Synchronization-Related Pitfalls

We have already discussed GPU synchronization in one context, i.e., calling cudaStreamSyn-

chronize to wait until a kernel completes. Synchronization inherently requires blocking CPU computations,

but, unlike explicit calls to cudaStreamSynchronize, not all of the causes of synchronization in a

GPU-using application are necessarily obvious. Some forms of synchronization occur due to seemingly

non-synchronization-related CUDA API functions, and may cause blocking in unrelated CPU and GPU code.

In this section, we construct experiments that clearly illustrate these synchronization effects, along with a list

of associated pitfalls timing-cognisant CUDA programmers likely wish to avoid.

In Section 3.4, we focused only on a limited context where kernel launches were the only active GPU

operations.13 Clearly, this will not be the case in virtually any sophisticated real-world CUDA software, where

programmers will likely encounter (both intentionally and unintentionally) the need for synchronization

between CPU and GPU operations.

13Our full set of experiments also considered memory copies, see Amert et al. (2017).
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For this section, we continue to limit our attention to CPU threads that share a single CUDA context

and submit kernels or other operations to separate streams, meaning that any sets of kernels described in this

section’s experiments could run concurrently were it not for synchronization-related effects.

3.5.1.1 Overview of GPU Synchronization

Most developers are familiar with the concepts of synchronization in a CPU-only context where two or

more processes must communicate or coordinate their actions. Synchronization becomes more complicated

when a CPU process must coordinate with code executed on the GPU. Commonly, this occurs when the CPU

process must determine when data in GPU memory is safe to access (e.g., kernel code is not accessing the

same memory). This is accomplished by waiting for the GPU to complete outstanding work and reach a

point in time when the data access can safely occur. For convenience, we refer to such a point in time as a

synchronization point.

In CUDA, there are multiple ways to achieve GPU synchronization. They fall into two categories: explicit

synchronization, which is always programmer-requested, and implicit synchronization, which can occur as

a side effect of CUDA API functions intended for purposes other than synchronization. Our research has

uncovered some pitfalls relating to both categories of synchronization, many of which result in unnecessary

additional blocking. While the pitfalls we discuss should not change logical correctness, ignoring them would

be perilous in a safety-critical system where all forms of blocking must be anticipated and accounted for.

3.5.1.2 Explicit Synchronization

Explicit synchronization refers to synchronization points that a CUDA program explicitly requests

using CUDA API functions such as cudaStreamSynchronize. Programs typically invoke explicit-

synchronization functions after launching one or more asynchronous CUDA kernels or memory-transfer

operations, in order to wait for the operations to complete. In contrast to implicit synchronization, the sole

purpose of explicit-synchronization functions is to block the calling CPU code until the GPU reaches a

synchronization point.

The CUDA documentation states that explicit synchronization will block the calling process until “all

preceding commands” have completed (NVIDIA Corporation 2022b, Section 3.2.6.5.3). For example,

when invoking cudaDeviceSynchronize, “preceding commands” encompasses all commands issued
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Figure 3.17: Explicit synchronization requested before K3, observed on the Jetson TX2.

to the device from all streams within the CUDA context. Other explicit-synchronization options, including

cudaStreamSynchronize, will only block until preceding commands from a specified stream have

completed.

We investigated the behavior of explicit synchronization using a Jetson TX2, running the same mi-

crobenchmarking framework described introduced in Section 3.3. Figure 3.17 shows the behavior of explicit

synchronization we observed in one experiment. Figure 3.17 uses the same format as the figures used in

Section 3.4, but we annotated it with additional information.

To produce Figure 3.17, we configured our framework to launch four microbenchmark instances that

share a single CUDA context. Each microbenchmark instance launches one kernel in a separate stream,

separated by a small amount of time. Each kernel requires two blocks of 512 threads, and the figure shows that

the GPU hardware assigned one block from each kernel to each SM. All four kernels use the timer spin

code described in Section 3.3.2 to perform a busy loop for a set amount of time.

With minor modifications to our microbenchmarking code, we caused the CPU thread responsible

for launching Kernel K3 in Figure 3.17 to launch an explicit-synchronization command, cudaDevice-

Synchronize, at time (a). Calling this function caused the CPU thread to be blocked until the prior GPU

commands, Kernels K1 and K2, completed at time (c), after which it carried out its original behavior: sleep

for 0.2 seconds and launch Kernel K3. This behavior is exactly what one would expect, given the description
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of explicit synchronization from official documentation. However, this experiments also uncovered Pitfall 3.1

for the unwary:

Pitfall 3.1 Explicit synchronization does not block future commands issued by other CPU threads.

The fact that the launch of K4 by its CPU task was not blocked at time (b) is an example of this pitfall.

Logically, this does not violate the semantics of cudaDeviceSynchronize, which only pertains to

preceding commands. It does, however, illustrate that the CUDA framework takes advantage of this nuance

to improve efficiency—one cannot assume that explicit “device” synchronization guarantees the absence of

any GPU work. Implicit synchronization, which we cover next, presents more serious pitfalls.

3.5.1.3 Implicit Synchronization

Implicit synchronization occurs as a side effect of CUDA API calls that are otherwise unrelated to

synchronization. For example, implicit GPU synchronization may occur due to freeing GPU memory

or launching a kernel to the default stream. Presumably, this is because some modifications to GPU

device state can only occur while no kernels are executing. The CUDA documentation about implicit

synchronization (NVIDIA Corporation 2022b, Section 3.2.6.5.4) states:

Two commands from different streams cannot run concurrently if any one of the following

operations is issued in-between them by the host thread:

• A page-locked host memory allocation

• A device memory allocation

• A device memory set

• A memory copy between two addresses to the same device memory

• Any CUDA command to the NULL stream

Unlike the relatively straightforward documentation about explicit synchronization, our experiments

revealed that this list includes several operations that do not necessarily cause implicit synchronization, and

fails to include some functions that do. We consider this particularly problematic for real-time systems, where

the ability to accurately model blocking is critical.

Pitfall 3.2 Documented sources of implicit synchronization may not occur.
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Figure 3.18: Implicit synchronization caused by launching Kernel K3 in the NULL stream.

Pitfall 3.2 became apparent to us when, in all of our experiments, we never observed implicit synchro-

nization as a result of a device-memory operation, regardless of whether the operation was an allocation,

set, or copy. Neither did we find that a page-locked14 host memory allocation (presumably referring to

the cudaMallocHost API function) caused implicit synchronization. Our experiments covered CUDA

versions 8.0 and 9.0, and the Maxwell, Pascal, and Volta GPU architectures. This, of course, does not prove

that implicit synchronization can never happen under such circumstances (this documentation was likely

written to include the behavior of older GPU architectures), but it does indicate that the documentation’s

statement that “two commands cannot run concurrently” is not a reliable rule. For example, this documen-

tation could mislead a programmer into thinking it adequate to use cudaMallocHost in lieu of explicit

synchronization, when this is not the case. In fact, the only case from the list on Page 72 in which we did

observe implicit synchronization was launching GPU operations in the NULL stream.

Figure 3.18 shows a similar scenario to the one in Figure 3.17, with one key difference: the CPU process

for K3 does not call cudaDeviceSynchronize before launching K3. Instead, it launches K3 in the

NULL stream. The implicit synchronization, and resulting loss of concurrency, is clearly visible in the figure.

Execution of K3 must wait for the first two kernels to complete, and, in contrast to explicit synchronization,

14Page-locked, or pinned, memory refers to CPU memory buffers that the operating system guarantees will remain present at the
same location in physical DRAM.
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Figure 3.19: Implicit synchronization causing additional CPU blocking due to cudaFree.

using the NULL stream even prevents K4 from running concurrently. Even though this loss of concurrency

may be striking, it at least is explicitly documented, and can be avoided (or used, if desired) in a carefully

designed real-time application.

We found, however, a different source of implicit synchronization that is a far more problematic pitfall,

and is not even listed in the documentation on synchronization: freeing device memory.

Pitfall 3.3 The CUDA documentation neglects to list some functions that cause implicit synchronization.

Pitfall 3.4 Some CUDA API functions will block future, unrelated, CUDA tasks on the CPU.

Figure 3.19 shows the results of an experiment identical to the one in Figure 3.17, but this time the call

to cudaDeviceSynchronize at time (a) was replaced with a call to cudaFree, which is used to free

allocations of GPU memory. In this particular experiment, cudaFree freed an arbitrary buffer of GPU

memory that we allocated only for the sake of the experiment, and was never accessed by any kernel code. As

with the previous synchronization experiments, this API call was performed in the CPU thread responsible

for launching kernel K3.

Figure 3.19 includes both Pitfalls 3.3 and 3.4. The fact that this blocked the calling CPU thread until all

prior GPU work had completed at time (c) indicates that cudaFree resulted in implicit synchronization.
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Similar to the NULL-stream behavior, implicit synchronization also prevented subsequent kernels from

starting to execute until cudaFree completed at time (c). We speculate that this behavior by cudaFree is

necessary because alterations to memory-mapping state require a quiescent execution environment. However,

the most surprising effect was not that K4 was blocked, but that K4’s task was blocked on the CPU until

time (c), even though it issued an “asynchronous” kernel launch.15 Pitfall 3.4, resulting from this behavior,

can be particularly harmful for would-be real-time software, as it indicates that CPU threads can experience

blocking from GPU operations launched by other, unrelated, tasks.

3.5.2 Overcoming Synchronization-Related Pitfalls

GPU synchronization has two problematic effects—introducing indeterminate amounts of blocking and

reducing GPU concurrency. This means that programmers who develop real-time systems must understand

the pitfalls inherent in explicit and implicit synchronization. This is especially true if the schedulability of

a real-time task system relies on minimizing blocking or high GPU utilization. Avoiding pitfalls can be

accomplished through careful construction of CUDA programs to, for example, avoid using the NULL stream

or freeing memory outside of certain time intervals.

Our experiments indicate that GPU synchronization does not extend across GPU-using tasks that are

using separate CUDA contexts. We also conducted a limited number of experiments using MPS on discrete

GPUs, resulting in observations that using MPS also removes these sources of implicit synchronization

between separate processes. Even if MPS is unavailable, if synchronization is the dominant limiting factor on

real-time schedulability, it may be desirable to require tasks to use separate CUDA contexts. Even though

this would prevent GPU concurrency between tasks, such an organization may still be beneficial overall if

synchronization-related blocking is a greater limiting factor.

3.5.3 Programming-Related Pitfalls When Using the CUDA API

Our research has necessarily involved writing thousands of lines of code requiring careful use of the

CUDA API. In addition to blocking-related effects, we have identified tangential issues such as simple

documentation errors, version-specific performance changes, and hard-to-detect programming mistakes. We

present a list of these pitfalls along with accompanying experiments in this section.

15As an aside, our decision to record timestamps immediately after a kernel-launch call returns (noted in our discussion of Figure 3.8)
is what enabled us to notice this oddity.
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if (!CheckCUDAError(cudaMemsetAsync(

state->device_block_smids, 0,

data_size))) {

return 0;

}

if (!CheckCUDAError(cudaMemsetAsync(

state->device_block_smids, 0,

data_size, state->stream))) {

return 0;

}

Figure 3.20: Contrasting a code snippet that causes implicit synchronization (on the left) with one that does
not (on the right).

3.5.3.1 Synchronous Defaults

Even though it may be simple for a programmer to just submit GPU operations to a user-defined stream

as opposed to the NULL stream, some simple mistakes in doing so may be easy to miss. This is particularly

true when using the Async versions of CUDA API functions, such as cudaMemsetAsync. For example,

consider the code snippets in Figure 3.20, which present a particular example of Pitfall Pitfall 3.5 below.

Pitfall 3.5 Async CUDA functions use the GPU-synchronous NULL stream by default.

In Figure 3.20 the left-hand snippet’s call to cudaMemsetAsync is missing a final argument specifying

a user-defined stream, which causes the NULL stream to be used by default. Given how the function is

defined in the C++ CUDA API, this is not a syntactic error, so it will not be flagged by the compiler. Neither

is it a logical error, as the memory-set operation still successfully executes on the GPU as expected. The code

remains a timing pitfall, however, and the lack of syntactic or logical errors can make it particularly hard

to catch. As pointed out in Section 3.5.1.3, this usage of the NULL stream will prevent concurrency on the

GPU. We corrected the mistake in the right-hand snippet of Figure 3.20 by supplying a stream argument.

On a personal note, this specific mistake led to months of inconsistent results in our own experiments, despite

our relatively extensive experience examining the subtleties of CUDA behavior (these snippets are parts

of much larger programs). Without additional assistance, would it be reasonable to expect developers of

machine-learning or AI applications to catch all such such errors or appreciate their impact?

Even though the examples in Figure 3.20 only use cudaMemsetAsync, Pitfall 3.5 applies to other

CUDA API functions as well, such as cudaMemcpyAsync. The fact that the CUDA documentation indi-

cates that these functions may cause implicit synchronization in some cases, as discussed in Sections 3.5.1.3

and 3.5.3.2, makes potential programmer errors even harder to notice in cases where synchronization is due

to NULL-stream usage rather than memory operations.
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3.5.3.2 Flawed Documentation

Another substantial danger stems from inaccuracies or omissions in official documentation provided

by NVIDIA. While function signatures and data structures receive accurate (but sometimes sparse) official

documentation, scheduling and synchronization remain under-discussed.

CUDA documentation sources. The most fundamental CUDA documentation comes from two official

sources: the CUDA C++ Programming Guide (NVIDIA Corporation 2022b), which focuses on high-level

concepts related to GPU programming, and the CUDA Runtime API documentation, which lists information

for the individual functions in CUDA’s runtime API (see Section 3.1.2). We refer to both sources in this

section.

Pitfall 3.6 Observed CUDA behavior often diverges from what the documentation states or implies.

Our observation about cudaFree in Pitfall 3.3 is an obvious example of Pitfall 3.6. Both cudaFree

and cudaFreeHost not only cause implicit synchronization, but block other CUDA API calls from other

CPU threads. The CUDA documentation for cudaFree mentions neither of these side effects,16 leaving the

reader to assume that these functions behave similarly to other CUDA functions and have no side effects.

Pitfall 3.2 is a milder example of Pitfall 3.6. Both the CUDA Programming Guide17 and the CUDA

Runtime API documentation18 state, entirely unambiguously, that Async memory-transfer operations such

as cudaMemcpyAsync will behave synchronously when transferring between the GPU and unpinned

regions of CPU memory. Our experiments found that this is simply not the case, regardless of whether the

CPU memory buffer was pinned or not.

3.5.3.3 Unknown Future

Underlying these pitfalls is a single overarching problem: the black-box nature of current GPU-enabled

platforms. Our experiments and attempts to enumerate timing-related pitfalls focus on alleviating some of

16In an update from our original research into the topic (circa 2017), the current description of cudaFree in the CUDA Runtime API
documentation now includes a note about specific circumstances in which the function will not perform implicit synchronization,
albeit without explicitly stating that the function will cause implicit synchronization in most or all other cases. The documentation
still does not differentiate cudaFree from other sources of implicit synchronization by including the function’s ability to block
CUDA API calls from other CPU threads.

17Section 3.2.6.1 in version 11.7.0: “Async memory copies will also be synchronous if they involve host memory that is not
page-locked.”

18Section 2 of version 11.7.0: “For transfers from device memory to pageable host memory, [Async memcpy functions] will return
only once the copy has completed.”
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this problem for the time being, but any work we do is subject to the same drawback faced by virtually all

black-box investigations of systems under active development:

Pitfall 3.7 What we learn about CUDA and GPU behavior may not apply in the future.

Despite the fact that we validated our experimental results on several CUDA versions and GPU archi-

tectures, there is no guarantee that our results will hold after future GPU-architecture or CUDA-version

updates. This applies not only to rules about scheduling or blocking (i.e., Pitfall 3.6), but also may even

apply to performance characteristics like memory-access times. In particular, we encountered an example of

this pitfall in some older experiments, after updating from version CUDA version 7.0 to version 8.0. The

following paragraph provides some additional context.

Pitfall 3.7 example: CUDA-version-dependent memory performance. In our earlier explorations

of embedded GPUs, we attempted to profile the performance of the Jetson TX1’s zero-copy memory, a

feature specific to embedded GPUs that allows CUDA code to directly share memory buffers with CPU

code. We were particularly interested in contrasting zero-copy with unified memory, which is similar

from a programming standpoint but operates by transparently copying data between the CPU and GPU on

demand. We ran two similar microbenchmarks to measure memory-access times using zero-copy, unified,

and “traditional” memory (requiring manual copies). Our two microbenchmarks were:

• Random Memory Walk: This microbenchmark created 64 CUDA threads, grouped into two blocks

of 32 threads each, that accessed 256 MB of GPU memory in a shuffled pattern. Each thread began

at a different offset in the random walk and performed 256,000 reads in a loop. We intended this to

measure memory performance with reduced cache benefits.

• In-Order Memory Walk: This was identical to the random memory walk, but accessed the array of

memory in order, with the different GPU threads accessing elements spread evenly across the array.

In contrast to the random memory walk, we intended this to measure performance with full caching

benefits.

The results of these microbenchmark experiments are shown in Tables 3.1 and 3.2. In order to exclude

overheads due to kernel launches, synchronization, etc., the times in the tables are based on block times

measured on the GPU using the globaltimer register (in an identical manner to Section 3.2.2.1).
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CUDA 7.0 CUDA 8.0
(Times are in milliseconds) (Times are in milliseconds)

Memory type Min Max Mean Std. Dev. Min Max Mean Std. Dev.

Traditional 238.1 411.5 245.1 4.4 671.0 684.7 679.3 3.3
Zero-copy 676.3 677.0 676.5 0.1 671.9 684.7 680.2 3.3

Unified 686.0 702.2 686.2 0.1 671.9 690.6 680.1 3.3

Table 3.1: Best-, worst-, and average-case times for the random memory walk microbenchmark for CUDA
7.0 and 8.0, measured on the Jetson TX1.

CUDA 7.0 CUDA 8.0
(Times are in milliseconds) (Times are in milliseconds)

Memory type Min Max Mean Std. Dev. Min Max Mean Std. Dev.

Traditional 4.4 7.8 4.4 0.06 3.1 3.2 3.1 0.005
Zero-copy 48.1 77.5 75.9 4.8 3.1 3.2 3.2 0.006

Unified 4.4 4.6 4.4 0.005 3.1 3.2 3.2 0.006

Table 3.2: Best-, worst-, and average-case times for the in-order memory walk microbenchmark for CUDA
7.0 and 8.0, measured on the Jetson TX1.

Observation 3.7 Random traditional memory accesses slowed down after updating the Jetson TX1 from

from CUDA 7.0 to CUDA 8.0.

Observation 3.7 is supported by Table 3.1. The most surprising change due to transitioning from CUDA

7.0 to 8.0 was that the newer version of CUDA caused traditional memory to become around three times

slower in the random walk.

Observation 3.8 Under CUDA 8.0, unified and zero-copy memory perform nearly identically, which

was not the case under 7.0.

This observation is supported by Table 3.2. Under CUDA 7.0, unified memory was slower than zero-copy

memory during the random walk, but as fast as traditional memory during the in-order walk. Under CUDA

8.0, in-order zero-copy memory accesses see a significant improvement. Among other factors, we speculate

that the changes in memory performance from CUDA 7.0 to CUDA 8.0 are the result of optimizing for

sequential memory accesses at the expense of some performance degradation for arbitrary access patterns,

but any such speculation is likely impossible to confirm without access to CUDA source code. Regardless,

the point of mentioning both Observations 3.7 and 3.8 is to illustrate that Pitfall 3.7 can even apply to timing

behaviors that users may otherwise (incorrectly) assume is determined entirely by hardware.
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3.5.4 Avoiding CUDA Pitfalls: Closing Words, and an Application

Even though other safety-critical hardware inevitably undergoes changes and updates, future-proof

programs can still be developed against a stable specification. Likewise, the only way to truly mitigate

some pitfalls, like Pitfall 3.7, is for GPU manufacturers to release stable, accurate documentation about

their GPU platforms, along, preferably, with giving developers greater control over GPU scheduling and

synchronization.

In the meantime, spreading awareness of pitfalls is a pragmatic measure for improving timing properties

in GPU applications today. Our brief catalog of pitfalls has already borne fruit in further research carried

out by others in our group: Amert and Anderson (2021) developed a middleware system that intercepts and

flags CUDA-API calls that may result in undesired implicit synchronization. Amert and Anderson applied

their framework to monitor the execution of the HOG image-analysis algorithm from the popular OpenCV

open-source computer-vision library.19 By fixing the problems identified (largely, calls to cudaFree or

NULL-stream usage), they successfully reduced the frequency and magnitudes of HOG’s worst-case response

times.

3.6 Chapter Summary

In this chapter, we explored three methods for improving the safety and predictability of shared-GPU

systems without sacrificing efficiency. First, we investigated co-scheduling: simply allowing separate

processes to access GPUs simultaneously. We found that, so long as real-time tasks use separate CUDA

contexts, CUDA’s time-sliced scheduling of separate contexts keeps unpredictable interference highly unlikely

(barring as-yet unknown interference channels). Next, in an effort to overcome any limits imposed by CUDA’s

time-slicing behavior, we investigated how separate kernels are queued and scheduled on GPU hardware,

inferring a set of rules capable of accurately predicting the order in which kernels will run. Even though

this sort of knowledge may not directly lead to improvements in raw throughput, revealing previously

unknown policies fundamentally makes the behavior of GPU-using real-time tasks more predictable. Finally,

we documented a list of possible pitfalls that may ensnare unwary developers of real-time CUDA code.

Several pitfalls imply “best practices,” e.g., avoiding use of CUDA’s NULL stream, that should be easy

to adopt with no performance sacrifices whatsoever. Furthermore, this work has already been applied to

19https://opencv.org/
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develop an automated system for analyzing and improving the timing performance of sophisticated CUDA

programs (Amert and Anderson 2021).
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published in the years 2016 through 2018.

The content in Section 3.2 as well as the memory-performance experiment discussed in Section 3.5.3.3

came from two publications: Otterness et al. (2016) and Otterness, Yang, Rust, Park, Anderson, Smith, Berg

and Wang (2017). In the 2016 paper, Otterness and Miller collaborated on the microbenchmark experiments,

which Otterness continued to expand and maintain for the follow-up publication in 2017.20 The memory-

access microbenchmarks presented in Section 3.5.3.3 were developed in collaboration between Otterness

and Rust.21 Yang was responsible for designing and conducting the experiments using CaffeNet, which we

briefly mention in Section 3.2.2.1.

The microbenchmarking framework described in Section 3.3 was primarily developed by Otterness, prior

to the publication of Otterness, Yang, Amert, Anderson and Smith (2017).22 Otterness was responsible for

initial “cutting ahead” experiment of Section 3.4.1, as well as the experiments and formulation resulting in

the scheduling rules of Section 3.4.2. However, Amert and Yang conducted many additional experiments to

discern NULL-stream behavior, behavior of CUDA streams with different priorities, occupancy limits due to

shared memory, and memory-copy scheduling. These details are included in Amert et al. (2017). We are also

particularly indebted to Amert’s development of the visualization script, used to produce many figures in the

aforementioned papers as well as Figures 3.9, 3.11, and many other similarly styled figures throughout this

chapter.

Finally, the material in Section 3.5 was primarily from Yang, Otterness, Amert, Bakita, Anderson and

Smith (2018). In this collaboration, investigation of CUDA documentation was primarily conducted by

Bakita. As before, Amert contributed greatly to plots and visualizations. In the original publication, Yang

conducted a variety of experiments evaluating the temporal performance of various GPU benchmarks both

with and without using MPS. Otterness collaborated with Yang and Amert on producing code for experiments,

and was responsible for formulating the various “pitfalls” based on accumulated observations.

20Source code is available online: https://github.com/yalue/PeriodicTaskReleaser.
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CHAPTER 4: AMD GPUS1

Given that NVIDIA GPUs are well-established and better-studied, what do AMD GPUs have to offer

real-time programmers? Perhaps unsurprisingly, the answer requires returning to the topic of GPU sharing.

Some features currently unique to AMD GPUs, especially an open-source software stack and broad support

for hardware partitioning,2 have the potential to accelerate and aid the long-term viability of real-time GPU

research.

Ideally, we hope our research may eventually produce unified models of GPU behavior that apply to

NVIDIA, AMD, and GPUs made by any other manufacturer. Whether this is possible depends on how similar

GPUs are, or alternatively, determining how much it would cost to ignore the differences. Unfortunately,

when it comes to timing behavior in AMD and NVIDIA GPUs, we shall see in this chapter that there are

some important differences indeed.

This is not unexpected. Naturally, AMD GPUs also have their own set of drawbacks, some of which

may justifiably warrant continued research on NVIDIA GPUs regardless of the availability of an alternative.

Whether or not AMD GPUs see further adoption in future work, as we argued in Section 1.3, a greater variety

of research platforms can only benefit the field, even if some work is not possible on every alternative. After

all, we do not seek to declare victory for one GPU manufacturer or the other, but to further the development

of safer GPU-accelerated software.

The structure of this chapter follows a similar form to Chapter 3: we begin with an overview of AMD-

specific details in Section 4.1. Next, we cover some of the important aspects of AMD GPU scheduling

1Contents of this chapter previously appeared in the following papers:

Otterness and Anderson (2020). AMD GPUs as an Alternative to NVIDIA for Supporting Real-Time Workloads. Euromicro
Conference on Real-Time Systems (ECRTS).

Otterness and Anderson (2021). Exploring AMD GPU Scheduling Details by Experimenting With “Worst Practices”. International
Conference on Real-Time Networks and Systems (RTNS).

Otterness and Anderson (2022). Exploring AMD GPU Scheduling Details by Experimenting With “Worst
Practices” (extended version for journal publication). Real-Time Systems, Volume 58, Number 2, Pages 105–133. Springer.

2NVIDIA’s MIG partitioning support is only currently available in its top-end, expensive GPUs (see Section 3.1.1), with no indication
as to whether this support will appear in less-expensive devices.
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behavior in Section 4.2. Section 4.3 ends the chapter with a discussion of AMD-specific pitfalls that

developers of GPU-using real-time systems may encounter.

4.1 Overview of AMD GPUs

As with NVIDIA GPUs, AMD GPUs are grouped into several architectures and are programmed using a

specific software stack.

4.1.1 AMD GPU Architectures

Unlike the lengthy list of relevant NVIDIA architectures in Section 3.1.1, AMD generally opts to produce

multiple versions of a single named architecture, only rarely naming new architectures to coincide with

major reorganizations of GPU internals. Our AMD-centric work exclusively uses GPUs from AMD’s GCN

(graphics core next) architecture.

The GCN architecture. AMD first announced its GCN GPU architecture in 2011. One of the stated

goals of the GCN architecture was an increased focus on general-purpose GPU computing, reflected in

hardware by a transition away from the VLIW (very long instruction word) processors used by AMD’s

previous GPUs to a SIMD model more conducive to general-purpose computations (AMD Corporation 2011).

The GCN architecture remained in use for many years, being progressively updated through five versions.

The Radeon VII GPU (shown in Figure 2.3) uses the fifth version of the GCN architecture.

The RDNA architecture. While we do not study any AMD GPUs from non-GCN architectures in this

dissertation, AMD started producing GPUs using the RDNA (Radeon3 DNA) architecture in 2019. According

to a whitepaper published by AMD, the RDNA architecture maintains backwards compatibility with the

GCN architecture, with an increased focus on scalability. Perhaps of greater interest to our experiments in

Section 4.2 would be the fact that the RDNA architecture reorganizes CUs within shader engines, adding

an additional level of hierarchy to that displayed in Figure 2.3. RDNA introduces “adjacent compute unit

cooperation,” in which pairs of compute units can cooperate to execute a warp (“wave” in AMD terminology)

of 64 threads rather than 32 threads (AMD Corporation 2019). Unfortunately, practical limitations on GPU

availability and support prevented our research from exploring the impact this restructuring has (if any) on

CU masking or partitioning.

3Radeon is the name of a computer-hardware brand, which was acquired by AMD in 2006.
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Why study only a single AMD GPU architecture? From the length of this section alone, it should

be clear that our research involved far fewer unique types of AMD GPUs than NVIDIA GPUs. In a clear

divergence from NVIDIA’s widespread CUDA support, AMD’s ROCm (Radeon Open Compute) software

only supports a very small number of GPUs. For almost the entire duration of our research, ROCm only

supported GPUs using the later revisions of the GCN architecture. We consider this a major drawback of

conducting research using the AMD GPU ecosystem, so we save most of our discussion of this issue for

Section 4.3, about pitfalls of AMD-targeted GPU research.

Even though we only used AMD’s GCN architecture, we still tested more than one AMD GPU. We

carried out some of our earlier AMD GPU experiments using the AMD RX 570 GPU, which uses the fourth

generation of the GCN architecture. At the time of its release, the RX 570 was intended as a mid-range

GPU, featuring 32 CUs and either four or eight GB of DRAM. However, in our experiments we noticed few

practical differences between the RX 570 and the Radeon VII, beyond the latter’s superior computational

power. Therefore, we used the Radeon VII, with 60 CUs and sixteen GB of DRAM, for all of the AMD GPU

experiments and results we report in this dissertation.

4.1.2 AMD GPU Software

For most of our AMD GPU experiments, we used version 4.2 of the ROCm (Radeon Open Compute)

software stack. Aside from the obvious difference of supporting only AMD GPUs, ROCm is highly analogous

to CUDA in terms of function. Like CUDA (see Section 3.1.2), ROCm encapsulates the full suite of software

required to compile and run GPU applications, including the GPU-programming compiler, API specification,

runtime libraries, and driver. On the other hand, unlike CUDA, ROCm’s open-source nature means that

the internal distinctions between ROCm’s components are entirely visible to end users. Figure 4.1 shows

the primary stack of components involved in ROCm. The top user-facing component is typically the HIP

API, which is nearly identical to CUDA, with the main practical difference only being the names of the API

functions. (We refer readers back to our example HIP-code snippet in Figure 2.1, and its CUDA equivalent

in Figure 2.2.) GPU kernel code in HIP programs such as the VectorAdd function from Figure 2.1, are

compiled using the LLVM compiler’s AMDGPU backend.4 Next, HIP is implemented using ROCclr (ROCm

4The LLVM documentation for this backend serves as a rich source of information about the instruction-set architecture and binary
formats used by AMD GPUs: https://www.llvm.org/docs/AMDGPUUsage.html.
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Heterogeneous-Compute Interface for Portability (HIP)

LLVM + ROCm Common Language Runtime (ROCclr)

Heterogeneous System Architecture (HSA) API and Runtime

Linux amdgpu driver

User program

Figure 4.1: Components of the ROCm software stack.

Common Language Runtime), which provides an ostensibly5 cross-platform API for managing AMD GPUs.

At least on Linux, ROCclr is implemented on top of a lower-level userspace library implementing the HSA

(Heterogeneous System Architecture) API,6 which creates and manages the memory-mapped queues and

commands that interface with the driver and hardware. Finally, the HSA runtime library interacts with the

Linux kernel’s amdgpu driver.

The importance of openness. The appeal of a software stack like ROCm hinges on the answer to one

question: why should developers care that ROCm is open source? Fortunately, the potential benefit of an

open-source stack can be easily demonstrated by revisiting the implementation approaches taken by the

authors of the prior real-time GPU-management work from Section 2.6.

TimeGraph (Kato, Lakshmanan, Rajkumar and Ishikawa 2011) and GPES (Zhou, Tong and Liu 2015)

require using the third-party open-source “Nouveau” driver for NVIDIA GPUs, which does not support

CUDA. RGEM (Kato, Lakshmanan, Kumar, Kelkar, Ishikawa and Rajkumar 2011) uses a third-party CUDA

implementation by PathScale, which has by now been discontinued for several years.7 Papers that rely on

reverse engineering, including our own work from Section 3.4 and others such as Jain et al. (2019) or Olmedo

et al. (2020), require re-validation after every hardware or software change. Other works, that intercept driver

communication like GPUSync (Elliott, Ward and Anderson 2013), are subject to a stable interface between

the CUDA runtime libraries and the underlying device driver, but NVIDIA makes no such stability guarantees

5See our discussion of Pitfall 4.6 in Section 4.3.
6The HSA API is defined by the HSA Specification, of which AMD is a member. The HSA foundation seeks to publish sets of
standards for interacting with computational accelerators: http://hsafoundation.com/.

7According to the PathScale website: https://www.pathscale.com/.
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for these non-public implementation details. The key point here is that, when using NVIDIA GPUs, working

around the lack of source-code access is a prerequisite for meaningful research.8

Other prior work demonstrates what is possible with a greater amount of access to internal GPU details.

For example, working in collaboration with NVIDIA enabled Capodieci et al. (2018) to implement the popular

preemptive EDF real-time scheduler for GPU workloads. In a second example, Jain et al. (2019) needed

to conduct a major reverse-engineering effort to gather information for their memory and SM-partitioning

system. Even though these two papers also needed to work around the lack of public source-code access or

hardware details, their strong results illustrate an additional conclusion: improved access to GPU internals

enables fundamentally more powerful management paradigms.

The ROCm stack means that AMD GPUs are subject to almost none of these software-based limitations.

Developers can modify the underlying device drivers and user-level libraries, removing the need to use

less-supported libraries or to enter non-disclosure agreements simply to add more functionality to existing

code. Additionally, intercepting API calls or transforming application-level code can be rendered unnecessary

by the ability to directly modify HIP, the LLVM compiler, or the ROCclr library. All of this means that

a GPU-management system targeting AMD GPUs using the ROCm stack should not only be easier to

implement, but also easier to use and easier for third parties (i.e., other researchers) to validate.

What’s there to study in an open-source system? Given our extensive black-box efforts to study

NVIDIA GPUs and the points from the prior paragraph, one may think that an open-source platform, like

AMD’s ROCm software, would be in an unrivaled position of prominence within real-time GPU research.

Unfortunately, mere source-code access is far from an ideal solution to the information difficulties discussed

above. By some counts, AMD’s open-source code base contains upwards of millions of lines of code—the

source code for AMD’s GPU driver for Linux exceeds 2.1 million lines (though much of this is due to

auto-generated C header files) (Larabel 2020). Driver code aside, the userspace portions of the ROCm stack

require hundreds of thousands of additional lines. We performed a basic line count on the source code for the

non-driver components of Figure 4.1, for version 4.2 of ROCm:

• HIP: Contains about 56,000 lines of source and header files, not including sample or test code.

8In a recent development, NVIDIA released an open-source version of their GPU driver for Linux systems. While this is an
encouraging stride forward, it unfortunately arrived too late for us to consider, and only supports their Turing architecture and
later. Additionally, we remind readers that CUDA as a whole consists of far more than the driver, and there is no indication that
NVIDIA plans to release source code for their userspace libraries. In summary, NVIDIA’s open-source driver is a highly welcome
development, but ROCm still maintains a distinct advantage over CUDA in terms of openness.
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• ROCclr: Contains about 111,000 lines of source and header files.

• HSA API and Runtime: Contains about 110,000 lines of source and header files.

This code is accompanied by strikingly little public documentation about the behavior and design of the

software itself, likely due to the fact that contribution and maintenance comes almost exclusively from AMD

insiders. The sheer line count means that ROCm’s source code can certainly be a rich source of information,

but without external documentation AMD’s public repositories are a set of encyclopedias without an index:

mostly useful to those who already know where to look.

The following section therefore fills an information gap for AMD GPUs that is similar to that filled by

our work on NVIDIA GPUs in Chapter 3. Unlike in Chapter 3, however, we do not rely on black-box tests or

reverse engineering in our study of AMD GPUs. Instead, we collected the details in Section 4.2 from several

sources, including public presentations, white papers, and specific source code references.9

4.2 Discovering the Behavior of AMD GPUs

We use a different methodology to study AMD GPUs than we did for NVIDIA—the availability of

an open-source software stack means that we can study AMD GPU behavior using white box experiments:

examples designed to exercise specific aspects or corner cases of AMD GPU behavior that we already have

reasons to expect. Our investigation is particularly focused on AMD GPUs’ compute-unit masking feature,

which allows partitioning GPU-sharing tasks to specific sets of compute units within the GPU. Doing so is

entirely in line with our goal of discovering AMD GPU scheduling behavior in general, as compute-unit

masking is inextricably linked with AMD’s internal hardware-scheduling policies.

Compute-unit masking. As we covered in our discussion of Figure 2.3, CUs play an analogous role

in AMD GPUs to SMs in NVIDIA GPUs. CU masking is a type of spatial partitioning technique, which

has been a common target for prior real-time research on NVIDIA GPUs. Unfortunately, this prior work on

NVIDIA (we give several examples in Section 2.6.2) relies on software “tricks” to assign tasks to SMs, most

commonly requiring GPU kernel code to check SM assignments at runtime and immediately stop executing

blocks that are assigned to incorrect SMs. This type of software workaround is not necessary for AMD GPUs,

because CU masking is fully supported by hardware, and easily made transparent to user applications. We

9We originally learned many of these details in a private conversation with an AMD engineer, to whom we are extremely grateful.
This conversation simplified our search for corresponding information in the publicly available material.
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discuss specific usage of the CU-masking API in Section 4.2.3.1, but for now it is sufficient to know that an

arbitrary CU mask can be associated with each HIP stream, and that any kernel submitted to the stream will

be required to execute only on the set of CUs enabled by the mask.

4.2.1 Motivating Experiments

With foreknowledge of AMD GPU behavior, we can craft workloads that intentionally trigger highly

destructive interference between competing tasks. Doing so serves a dual purpose: first, the challenge of

explaining degenerate cases gives structure to our subsequent explanation of scheduling behavior. Second, the

experiments concretely illustrate the magnitude of the impact scheduling behavior can have on response times.

In this case, we intentionally apply “worst practices” in contrived scenarios, but the lack of documentation

mentioned in Section 4.1 means that there is almost no relevant guidance from AMD on how to properly

design GPU-sharing workloads. In other words, a naı̈ve developer, not knowing to avoid these practices, may

stumble into the same mistakes.

Microbenchmarking framework for AMD GPUs. To conduct our experiments, we dedicated

considerable effort to porting our microbenchmarking framework described in Section 3.3 from CUDA to

HIP.10 Our HIP port of the microbenchmarking framework operates in a near-identical manner to the original

CUDA version, but the transition to HIP unfortunately removes some useful features present in CUDA.

For example, AMD GPU kernel code is unable to determine its own CU assignment at runtime, unlike

CUDA kernel code, which can read the special smid register to determine its SM assignment. Additionally,

AMD GPUs do not expose a globaltimer register, which we used in our CUDA-based experiments (e.g.,

Figure 3.4) to measure block times in nanoseconds. In combination, these factors prevent us from generating

the detailed visualizations of block-CU assignments in the manner of Figures 3.9, 3.11, and others from

Chapter 3. While this is an unfortunate limitation on how we can present AMD GPU scheduling results, our

HIP version of the framework does include one hardware-specific advantage over its CUDA counterpart:

namely, the ability to specify a compute-unit mask for each microbenchmark instance. With this feature, our

microbenchmarking framework was entirely sufficient for quickly configuring and running the experiments

we conducted in this section.

10The source code for this HIP version of our test framework is available online at https://github.com/yalue/hip plu
gin framework.
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4.2.1.1 Experimental Setup

All of the experiments in this section measure response times of matrix-multiply microbenchmarks. All

tasks multiply two 1,024x1,024 square matrices, writing the output into a third matrix of the same size. Each

GPU thread is responsible for computing one element in the results matrix (i.e., each thread computes the dot

product between a row from the first matrix and a column from the second matrix). All elements of each

matrix are 32-bit floating-point numbers, randomly initialized to values between 0 and 1.

We chose to use a matrix-multiply workload for several reasons. First, each matrix multiplication

requires a constant amount of computation and memory accesses, ideally resulting in low variability between

kernel invocations. Second, matrix multiply is a relevant and common operation in many AI and graphics

applications. Third, it is easy to design matrix-multiplication kernels that use differing thread block sizes

without affecting the total amount of GPU computation required. To exploit this flexibility in our experiments,

we designed a matrix-multiply plugin for our microbenchmarking framework that enabled us to easily

configure different block sizes for each matrix-multiply instance.

Choice of competing tasks. Even though all of our tasks carry out multiplication of 1,024x1,024

matricies, we use the flexibility with respect to block size to define two different tasks:

• MM1024: Uses blocks of 1,024 threads (specifically, 2D blocks with dimensions of 32x32 threads).

Since the matrix contains 1,024x1,024 elements, this task launches exactly 1,024 blocks.

• MM256: Uses blocks of 256 threads (in this case, 16x16 2D blocks). Covering the complete matrix

therefore requires 4,096 blocks.

Once again, we stress that both MM1024 and MM256 carry out an identical number of floating-point

computations, just under slightly different configurations. Most of our experiments consist of running a

measured task and a single competitor at the same time on the GPU. We measure the response times of the

measured task while it contends with the competitor for GPU resources.

We took several additional steps when launching experiments. We disabled graphics on the host

system, to prevent graphics processing from affecting our measurements. In order to amplify contention

for compute resources (as opposed to memory), we configured our tests to copy the input matrices to

the GPU only once, at initialization time. Tasks using CU masking created their streams using HIP’s

hipExtStreamCreateWithCUMask function. At runtime, we configured competing tasks to run as
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many multiplication iterations as possible within 60 seconds, as opposed to using a fixed number of iterations.

(This is why the number of samples in Table 4.1 differs between tasks.) A fixed number of samples would

require estimating a number of iterations for each competing task, risking outliers if the competitor ends too

early.

4.2.1.2 “Anomalous” Results

Table 4.1 contains the results of all of our experiments, showing the response times for each possible

measured task against each possible competitor. Table 4.1 also includes three partitioning configurations for

each combination of measured task and competitor:

• Full GPU Sharing: Both the measured task and the competitor have unrestricted access to all CUs on

the GPU.

• Even Partitioning: Both the measured task and the competitor were restricted to separate non-

overlapping partitions containing half of the GPU’s CUs.

• Uneven Semi-Partitioning: CU partitions were identical to the “Even Partitioning” case, but the

measured task was allowed access to one additional CU in the competitor’s partition.

Without an understanding of AMD scheduling internals, these results likely contain several surprises.

Observation 4.1 Competing against MM256 adversely affects MM1024’s performance more than any

other configuration.

Observation 4.1 is illustrated by comparing the “MM1024 (vs. MM256)” section of Table 4.1 with the

corresponding values in any other section. In particular, the “Full GPU Sharing” results, shown in bold, are

the slowest under this configuration, with average-case response times more than double those against an

identical MM1024 competitor, and five times that of MM1024 in isolation. We can check that this has almost

no impact from MM256’s perspective by checking the “MM256 (vs. MM1024)” portion of the table. Not only
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Scenario Partitioning # Samples Min Max Median Arith. Mean Std. Dev.
Isolated MM1024 N/A 18258 3.094 3.631 3.203 3.201 0.018
Isolated MM256 N/A 11712 4.499 5.588 5.034 5.034 0.100

MM1024 (vs. MM1024)
Full GPU Sharing 9179 5.915 7.292 6.421 6.447 0.144
Even Partitioning 8482 6.774 8.254 6.973 6.988 0.082
Uneven Semi-Partitioning 789 61.986 98.380 73.402 76.011 5.888

MM1024 (vs. MM256)
Full GPU Sharing 3811 12.214 19.578 15.503 15.652 1.114
Even Partitioning 8477 6.784 7.630 6.944 6.991 0.133
Uneven Semi-Partitioning 711 64.873 101.531 84.047 84.362 4.381

MM256 (vs. MM256)
Full GPU Sharing 10383 5.115 7.932 5.552 5.687 0.367
Even Partitioning 9269 6.126 7.031 6.316 6.386 0.182
Uneven Semi-Partitioning 1064 55.535 56.928 56.311 56.310 0.171

MM256 (vs. MM1024)
Full GPU Sharing 15539 3.240 6.923 3.564 3.770 0.557
Even Partitioning 9361 6.085 7.610 6.256 6.318 0.167
Uneven Semi-Partitioning 1079 55.137 56.028 55.549 55.550 0.114

All times are in milliseconds.

Table 4.1: Table of experimental results.

does MM1024 not harm MM256’s performance, it slightly improves MM256’s response times over MM256 in

isolation.11

Observation 4.2 Even partitioning protects MM1024 against MM256, but otherwise moderately in-

creases response times.

Observation 4.2 is made evident by comparing the “Even Partitioning” lines in Table 4.1 against the

“Full GPU Sharing” lines. In all cases except for MM1024 vs. MM256 (and the worst-case time of MM256

vs. MM256), the response times when the full GPU is shared are at least one millisecond faster than the

times when the competitors are partitioned. This is not particularly surprising for the common case; it makes

sense that it will be faster to allow a kernel to occupy any CU as it becomes available across the entire

GPU. However, partitioning’s ability to protect a workload against an “evil” competitor is obvious when

observing MM1024’s partitioned performance against MM256, where the improvement in the observed worst

case is nearly 12 milliseconds. So, Observation 4.2 is not particularly surprising, and a classic example of a

“real-time” tradeoff between overhead and predictability.

Observation 4.3 Poor partitioning causes abysmal performance.

11The material in Section 4.2.2 does not entirely explain this particular anomaly, but the improvement likely is due to a competitor’s
presence improving the performance of block-dispatching hardware. Two factors support this assumption. MM256 launches
four times the number of blocks as MM1024, meaning that speeding up block launches provides a stronger benefit to MM256.
For example, the presence of the MM1024 competitor may help keep some hardware components active, but, as we shall see in
Section 4.2.2, it will cause minimal additional contention for resources against MM256. Second, even though MM256’s times
are faster in this case than in isolation, it still is not as fast as MM1024 in isolation. This indicates that MM1024 still has some
advantage arising from its block configuration, as it is otherwise identical to MM256.
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The most surprising feature of Table 4.1 is undoubtedly the extreme increase in response times of “Uneven

Semi-Partitioning,” regardless of competitor choice (though MM1024 vs. MM256 is still the worst, especially

in the average cases). Under this “partitioning” approach, the measured task still maintains sole ownership

over all of the CUs it was allowed under “Even Partitioning,” but is additionally granted one CU that is shared

with the competitor’s partition. In other words, one additional CU leads to response times around ten times

slower than under full GPU sharing or with equal, non-overlapping partitions.12

Remarks on these results. We clearly demonstrated that a naı̈ve application of CU masking is

dangerous. With such extreme performance degradation, even someone only passingly familiar with GPU

management should suspect that our uneven semi-partitioned setup is a “worst practice.” Nonetheless,

partitioning is also essential, as different combinations of GPU-sharing tasks (i.e., MM1024 vs. MM256)

reveal that asymmetrically destructive interference is a real possibility. The interesting issue is, of course, not

the results themselves, but the underlying causes. Why does simply reducing a kernel’s block dimensions

make it such a fierce competitor? Why can adding a compute unit, even a shared one, lead to a dramatic,

nearly 14-fold increase in worst-case response time? Fortunately, answers to these questions become apparent

with an understanding of AMD GPU scheduling internals.

4.2.2 Scheduling Compute Kernels on AMD GPUs

The effects from Section 4.2.1 turn out to mostly arise from hardware, but we also must explain how a

kernel arrives at the hardware to begin with. This section covers this entire path, beginning with a description

of the queuing structure used to issue kernel-launch commands to AMD GPUs.

4.2.2.1 Queue Handling in Userspace

Following our work on NVIDIA GPUs in Section 3.4, it should not come as a surprise that kernel-launch

requests proceed through a hierarchy of queues before reaching AMD GPU hardware. Figure 4.2 depicts the

paths this request may take. To help reduce the complexity of our later explanations (and to provide an easier

introduction than Figure 4.2), we begin with a high-level outline of the steps involved:

1. A user program calls the hipLaunchKernelGGL API function to launch a kernel (i.e., Figure 2.1).

12The competitor’s response times are barely impacted by sharing one CU with the measured task. For brevity, we chose to exclude
these measurements from Table 4.1.
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Figure 4.2: Paths through ROCm’s queuing structure.

2. The HIP runtime inserts a kernel-launch command into a software queue managed by the ROCclr

runtime library.

3. ROCclr converts the kernel-launch command into an AQL (architected queuing language) packet.

4. ROCclr inserts the AQL packet into an HSA queue.

5. In hardware, an asynchronous compute engine (ACE) processes HSA queues, assigning kernels to

compute hardware.

A kernel’s journey to the GPU’s computational hardware begins with the hipLaunchKernelGGL

API call, which is shown at the top of Figure 4.2 and responsible for enqueuing a kernel-launch request.

A programmer’s typical point of contact with the queuing structure is through HIP’s “stream” interface

introduced in Section 2.1. Briefly restated, a HIP stream is one of several arguments a programmer may

specify when calling hipLaunchKernelGGL. Each HIP stream is backed by a software queue managed

by ROCclr,13 the backend runtime library used by HIP (see Figure 4.1). ROCclr stores the arguments to

hipLaunchKernelGGL in a C++ object, then inserts this object into the software queue.

13This is largely defined in platform/commandqueue.hpp in ROCclr’s source code.
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HSA queues. Once a kernel-launch C++ object reaches the head of its software queue, ROCclr converts

it into a kernel-dispatch AQL (Architected Queueing Language) packet. AQL packets are used to request

single GPU operations, such as kernel launches or memory transfers.14 In order to send the AQL packet to

the GPU, ROCclr copies the AQL packet into an HSA queue. HSA queues are ring buffers of AQL packets,

and are directly shared between the GPU and userspace memory. This direct memory sharing allows user

programs to issue GPU commands without system calls (HSA Foundation 2018b, Sec. 2.5).

It may seem like an intuitive choice to back each ROCclr queue with a dedicated HSA queue, but

Figure 4.2 likely already revealed that ROCclr’s behavior is more complicated. ROCclr’s software queues

internally share a pool of HSA queues: one software queue may submit work to multiple different HSA

queues, and each HSA queue may contain work from multiple software queues. Even though sharing HSA

queues may occasionally prevent concurrent kernel launches, it will not break any of the ordering guarantees

behind the top-level “stream” abstraction. ROCm employs a combination of hardware (i.e., “barrier” AQL

packets) and software mechanisms (i.e., ROCclr’s software queues) to enforce the in-order completion of

commands from a single stream.

Figure 4.2 depicts fewer ROCclr software queues than HSA queues, but this is just to save space

in the figure. In practice, using a shared pool of HSA queues is intended to reduce the total number of

HSA queues created by an application; even if there are dozens of HIP streams, ROCclr will still use the

same small pool of HSA queues. In the default configuration of ROCm 4.2, the pool is limited to four

HSA queues.15 Understanding the reason for this limitation, however, requires traveling farther down the

scheduling hierarchy.

4.2.2.2 Assigning Queues to GPU Hardware

As mentioned previously, the contents of HSA queues (i.e. kernel-launch packets) can be directly shared

between user applications and GPU hardware, so driver code is not necessary required when launching

14We do not cover memory-transfer requests further in this section, but they follow the same queuing structure as kernel launches.
Ultimately, memory transfers are dispatched to hardware “DMA engines” (Bauman, Chalmers, Curtis, Freitag, Greathouse, Malaya,
McDougall, Moe, van Oostrum and Wolfe 2019) rather than asynchronous compute engines.

15This, and related behavior can be observed by examining ROCclr’s source code. For example, the acquireQueue function in
https://github.com/ROCm-Developer-Tools/ROCclr/blob/master/device/rocm/rocdevice.cpp
implements the functionality for selecting a single HSA queue from the pool of available queues.
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any single kernel (this is why the driver is not shown in Figure 4.2). Even so, Linux’s amdgpu16 driver

is required when initializing HSA queues and notifying the GPU of their existence. As such, driver code

still maintains control over critical aspects of AMD GPU performance and reveals useful details about GPU

scheduling internals, such as CU-masking specifics, discussed later in Section 4.2.3.1.

For now, though, we are concerned primarily with the functionality required to launch kernels. In the

driver, this begins with the initialization of an HSA queue. Even here, a large portion of queue-creation logic

is handled in ROCm’s userspace code: the HSA API layer shown in Figure 4.1 is actually responsible for

reserving the ring buffer for the HSA queue, setting up OS signals, etc., via mmap and other standard Linux

system calls.17 Nonetheless, the driver must remain responsible for communicating this information to the

hardware. Internally, it does so by populating a data structure called a memory queue descriptor (MQD),

which includes the virtual address of the HSA queue’s buffer, along with other metadata. MQDs are so named

because they are allocated from GPU-accessible regions of CPU memory. In order for the GPU to actually

start running work from the queues, however, MQDs must be assigned to hardware queue descriptors (HQDs)

on the GPU itself.

In the default configuration for our test system, the amdgpu driver notifies the GPU about new queues

by sending a runlist to the GPU—a buffer containing a list of all the MQDs on the system.18 Interestingly,

the act of “sending the runlist” itself requires writing the runlist to a special queue of GPU commands, known

in driver code as the HIQ (HSA interface queue). The driver creates one HIQ for each GPU in the system,

and, unlike HSA queues created in userspace, this queue of commands is mapped into kernelspace memory

and is manually assigned to GPU hardware, allowing it to be initialized without needing to be part of the

runlist itself.

Queues’ arrival in hardware. Figure 4.3 gives a rough representation of the GPU hardware involved

in compute workloads. As shown in Figure 4.2, Asynchronous Compute Engines (ACEs) are the hardware

units responsible for processing the queues of AQL packets. Given its focus on kernels rather than queues,

Figure 4.2 does not include the process by which MQDs are assigned to HQDs in the first place. Much of this

16When ROCm was first introduced, compute-specific code for AMD GPUs was instead in a separate amdkfd driver. It was merged
into the amdgpu driver in of version 4.20 of the Linux kernel. While not particlularly relevant to this chapter’s content, this
distinction may be useful when consulting some of the older reference material we cite.

17For example, the AqlQueue constructor and related functions in the ROCR-Runtime library’s
core/runtime/amd aql queue.cpp source file are responsible for much of this low-level logic.

18As of Linux 5.14.0-rc3, source code for runlist construction is mostly contained in
drivers/gpu/drm/amd/amdkfd/kfd packet manager.c in the Linux source tree.
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Figure 4.3: The Radeon VII’s compute-related components.

process has little influence over the specific results shown in Section 4.2.1, but it still bears some explanation,

as it ultimately illuminates the reason for ROCm’s aforementioned attempt to reduce the number of active

HSA queues.

Potential problem: hardware queue oversubscription. After receiving a runlist from the driver,

firmware in the GPU’s top-level command processor uses hardware scheduling (HWS) to assign MQDs to

HQD “slots” in the ACEs.19 The command processor contains four ACEs, and each ACE can support up to

eight queues.20 Knowing this, we can finally explain why ROCm attempts to limit the number of HSA queues

used by any single application: the GPU hardware only supports up to 32 concurrent queues—eight queues

on each of the four ACEs. Creating queues in excess of this limit leads to the GPU entering “oversubscription”

behavior, which time-slices between the queues mapped to the 32 available slots. During oversubscription,

queues are swapped without any sort of prioritization, meaning that queues with active work may even be

swapped out of an HQD slot in favor of an empty queue.

19This is described in a comment in drivers/gpu/drm/amd/include/kgd kfd interface.h in the Linux 5.14.0-rc3
source tree.

20This can be confirmed in Linux 5.14 sources by observing where num pipe per mec and num queues per pipe are
set in drivers/gpu/drm/amd/amdgpu/gfx v9 0.c. Note that ACEs are typically called “pipes” in AMD’s source
code (“bridgman” 2016).
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Naturally, this can lead to profoundly poor performance. To forestall any premature conclusions,

though, oversubscription is not actually one of the bad practices through which we produced the data

in Table 4.1. Puthoor, Tang, Gross and Beckmann (2018), AMD researchers, have already thoroughly

investigated oversubscription in a prior publication, to which we refer readers interested in more details on

the topic. Unfortunately, even Puthoor et al. resorted to a simulator when implementing alternative, more

intelligent, approaches for multiplexing queues among the 32 HQD slots, leaving little chance that researchers

unaffiliated with AMD could effectively conduct similar research on real hardware. Instead, in a real-time

setting, we would recommend ensuring oversubscription is not a problem by disabling it: the amdgpu driver

can easily be configured to enforce such a policy,21 which will ultimately return errors to userspace if too

many HSA queues are created.

How CU masks affect the queuing hierarchy. Internally, the GPU hardware associates a single CU

mask with each HSA queue. If no mask is explicitly set, HSA queues default to allowing work to execute on

any CU. Recall from before that HIP streams are backed by ROCclr software queues, which in turn submit

work to a shared pool of HSA queues. The HSA queues in this shared pool are all created in the default

configuration, and are therefore not suitable for use by any HIP stream that requires a non-default CU mask.

In order to support CU masking, ROCclr follows a slightly different code path when handling a HIP stream

with a CU mask, shown on the right side of Figure 4.2: it creates a separate HSA queue with the requested

mask,22 and uses the new HSA queue exclusively on behalf of the single stream.

4.2.2.3 Scheduling Thread Blocks

We now describe how a kernel at the head of an HSA queue gets assigned to computing hardware. Recall

that thread blocks are the basic schedulable entity for GPU computations, so when kernel-dispatch AQL

packets reach the heads of their queues, the question becomes how the GPU decides which blocks to run, and

where to run them. Figure 4.4 essentially continues the kernel-launch process after the end of Figure 4.2,

from the perspective of an ACE handling a single HSA queue. To simplify Figure 4.4, we only included

21This is configured by the sched policy parameter to the amdgpu driver, defined in
drivers/gpu/drm/amd/amdgpu/amdgpu drv.c.

22This behavior can be observed in the acquireQueue function defined in ROCclr’s device/rocm/rocdevice.cpp source
file.
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a single HSA queue and a single ACE. If multiple HSA queues are assigned to the same ACE, the ACE

alternates between dispatching packets from the head of each queue in a time-sliced round-robin fashion.

Dispatching blocks to shader engines. One of the more prominent features in Figures 4.3 and 4.4 is

the division of the GPU’s compute resources into four shader engines (SEs). As illustrated in Figure 4.4, the

primary role of an ACE is to dispatch blocks from the kernel at the head of an HSA queue to the SEs. However,

without a prior explanation of the reasons underlying certain design decisions, the ACE’s behavior when

dispatching blocks to SEs may seem bizarre. To forestall such confusion, we first describe a thread-ordering

guarantee made by the HSA specification, which AMD implements in their GPU-compute architecture (HSA

Foundation 2018a, Section 2.13).

The HSA specification states that it must be safe for GPU threads to wait for the completion of any

GPU threads with a lower block index, i.e., the value provided by blockIdx.x in Figure 2.1. Technically,

block indices are three-dimensional tuples, so the HSA specification actually states its guarantee in terms

of a block’s flattened ID, which takes into account the fact that the special blockIdx variable is three-

dimensional. For example, it must be safe for threads in block 1 (specifically, the block with a flattened ID of

1) to wait for threads in block 0 to complete, but it may be unsafe for a threads in block 0 to wait for block 1’s

completion—block 0 could occupy resources needed by block 1, preventing block 1 from ever starting to

execute. A block-ordering guarantee has a practical application: prior work formally proves that it enables

producer-consumer relationships between blocks in a single kernel (Sorensen, Evrard and Donaldson 2018).
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Even though our own experiments do not use such complicated kernel logic, the block-ordering guarantee

plays an important role in scheduling, with significant performance ramifications.

AMD hardware enforces the block ordering when assigning blocks to SEs. The method is simple: ACEs

must assign blocks to SEs in sequential order. For example, an ACE cannot assign block 1 to SE 1 until after

it has assigned block 0 to SE 0.23 Figure 4.5 illustrates this concept as the ACE dispatches four consecutive

blocks to SEs. The cycle depicted in Figure 4.5 continues with block 5 being assigned to SE 0, and only ends

after all blocks in the kernel have been dispatched. To use a metaphor: the block-dispatching behavior can be

likened to a card game where a dealer is dealing cards to four players. As in most real-life card games, even

one slow player may force the dealer to wait, slowing down the entire game! Nonetheless, it would ruin the

game for the dealer to skip the slow player. When applying this to AMD GPUs, the “dealer” is the ACE, the

four “players” correspond to the four SEs, and the “cards”are the blocks of a kernel. But what can cause an

SE, the metaphorical “player,” to be abnormally slow? The answer is intertwined both with CU masking, and

with the behavior of the workload managers.

The role of workload managers. In order for an ACE to assign a block to an SE, the block must be

assigned to a specific CU on that SE. As shown in Figures 4.3 and 4.4, assigning blocks to CUs is the job of

23Our only source for this claim remains private correspondence, which indicated that hardware enforces this rule using a “baton-
passing” mechanism between the SEs. Despite the lack of additional external support for this claim, it is certainly well-supported
by our experiments, i.e., Table 4.1 or Figure 4.9.
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a piece of per-SE hardware called the workload manager (Bauman et al. 2019). Each workload manager

has four dedicated “slots” for staging incoming blocks: one slot dedicated to each of the GPU’s four ACEs.

This design means that activity from one ACE cannot prevent another ACE from accessing the workload

manager. Ideally, workload managers will assign blocks from each of these four slots to CUs in a round-robin

manner, prioritizing assigning a block to a CU from whichever kernel least recently had a block assigned.24

This behavior changes, however, if no CU has sufficient available resources for a block from a particular slot

(the concept of occupancy discussed in Section 3.4 is essentially identical between NVIDIA and AMD). In a

striking contrast with our Section 3.4.1 experiment on NVIDIA GPUs, AMD GPUs’ workload managers

will allow blocks with smaller resource requirements to cut ahead if possible. This finally allows us to

explain why, in Section 4.2.1, MM256 was always more destructive to MM1024’s performance than any other

configuration: each CU only supports a limited number of threads, and the completion of a 256-thread MM256

block does not release enough resources to allow a block of MM1024 to run. Instead, it merely allows another

MM256 block to cut ahead again, causing the problem to continue until no more MM256 blocks remain!

Figures 4.6 and 4.7 illustrate this behavior on real hardware. The timelines correspond to the same

workloads from the “Full GPU Sharing” configurations from the “MM1024 (vs. MM1024)” and “MM1024

(vs. MM256)” portions of Table 4.1. In order to generate the timelines, we instrumented our kernel code

to use the clock64() function to obtain the start and end GPU clock cycle for every block of threads

(sadly, as mentioned, the convenient globaltimer register is not available on AMD GPUs). After a kernel

completes, we copy the block start and end times to the CPU and use them to compute the number of active

threads at each GPU clock cycle. The timelines in Figures 4.6, 4.7a, and 4.7b all cover a single kernel’s

execution for each respective task.

As expected, the kernel running in Figure 4.6 uses the GPU at near-full capacity for its entire duration,

with an obvious plateau at 122,880 active threads corresponding to 2,048 threads running on each of the

GPU’s 60 CUs. The occasional spikes likely coincide with groups of blocks nearing the end of their execution,

as, unlike on NVIDIA (Section 3.4.2), our Radeon VII allows new blocks to start as soon as resources start to

become available, even if the entire preceding block has not yet completed. To avoid the high overhead for

tracking the start and end times of each individual thread, we only record the start of the first thread and end

24Unfortunately, we also learned this from private conversation and, despite being hinted in a presentation from van Oostrum,
Chalmers, McDougall, Bauman, Curtis, Malaya and Wolfe (2019), we were not able to find clear corroborating evidence in
published material. Nonetheless, this claim is supported by the observations in Figure 4.7a.
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Figure 4.6: An isolated MM1024 kernel.

of the last thread in each block. However, we plot timelines as if all of a block’s threads remain active so

long as any thread in the block is active, leading to spikes where active thread or block counts are inaccurate.

Fortunately, the behavior shown in Figure 4.7 is distinctive enough to be obvious even without perfectly

tracking the active-thread count.

The cutting-ahead behavior is apparent when comparing Figures 4.7a and 4.7b. When two identical

MM1024 instances contend for GPU resources, Figure 4.7a shows that GPU computing capacity is divided

evenly for the entire time that the two kernels overlap, corresponding to the workload managers dispatching

blocks evenly from separate ACEs. Additionally, when the kernels do not overlap, the sole running kernel

uses the full capacity. The contrast provided by Figure 4.7b is striking, where MM1024 competes against an

MM256 kernel. Shortly after MM256’s kernel begins, it has taken sole control of virtually all GPU resources,

with MM1024 making practically no progress in the meantime.

4.2.2.4 Explanation of the Worst Practices in Section 4.2.1

“Cutting ahead” explains the destructive interference that MM256 causes against MM1024, but the terrible

performance of “Uneven Semi-Partitioning” in Section 4.2.1 is, perhaps unsurprisingly, better attributed to a

poor choice of CU partitions.

With the prior explanation of block-SE distribution, this behavior is now easier to explain. Recall that

the ACE will always distribute blocks to SEs in sequential order, and will never skip an SE. There is one

exception to this rule: the ACE will skip an SE only if a CU mask disables all CUs on that SE. In other

words, blocks are evenly distributed among the set of SEs for which any CUs are enabled. This approach to

block-ordering enforcement can lead to extreme performance pitfalls: If only one CU is enabled on an SE, it

is far more difficult for an ACE to assign a block to that particular SE, as it must wait for the single CU to be
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Figure 4.7: Comparison between timelines of matrix-multiply thread blocks in different configurations.

available. On top of this, the ACE is also prevented from “skipping” the slow SE and assigning blocks to the

other SEs in the meantime! We exploited this behavior for our Section 4.2.1 experiments, by designing a CU

mask that enables only one CU on an SE. Naturally, performance becomes even worse when the single CU is

shared with a kernel where blocks can cut ahead: this is precisely what happens in Table 4.1 under “Uneven

Semi-Partitioning” when MM1024 competes against MM256.
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Figure 4.8: The mapping of CU mask bits to SEs.

4.2.3 Practical Considerations About AMD GPU Scheduling

In this section we give some guidance for using CU masking in practice.

4.2.3.1 Usage of the CU-Masking API

The primary practical method for using CU masking on AMD GPUs is through the HIP API, so the

relevant HIP API details bear some more explanation. In order to specify a CU mask for a HIP stream,

programmers must use the hipExtStreamCreateWithCUMask function (HIP offers no function to set

a CU mask for an existing stream, due to the HSA-queue multiplexing discussed in Section 4.2.2.1). In HIP,

CU masks are specified as bit vectors using 32-bit integers, where set bits indicate enabled CUs and clear bits

indicate forbidden CUs.

The hardware, however, does not use the same “flat” CU mask that a HIP programmer specifies, and

instead requires a separate CU mask for each SE. In fact, the amdgpu driver is responsible for transforming

the single user-provided CU mask into the per-SE masks. By examining the driver code,25 we can discover

the specific mapping. Figure 4.8 shows how bits in a HIP CU mask relate to shader engines and CUs in the

GPU. The pattern in Figure 4.8 is simple: every fourth bit maps to a different CU in the same SE. In the

example mask in Figure 4.8, the first of every group of four bits is set, defining a partition consisting only of

CUs on SE 0.

Knowing the mapping between HIP’s CU masks and SEs in hardware allows partitioning tasks to specific

SEs, but it is not clear if doing so has benefits over an approach that distributes CUs evenly across SEs. In

order to evaluate the possible benefits and drawbacks of limiting partitions to specific SEs, we contrast two

basic partitioning approaches:

25In the source tree for Linux 5.14.0, this is found in the mqd symmetrically map cu mask function in
drivers/gpu/drm/amd/amdkfd/kfd mqd manager.c.
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Figure 4.9: Performance of CU-masking strategies for varying partition sizes.

• SE-packed: Pack as many of the partition’s CUs as possible into each single SE before starting to

occupy CUs on an additional SE. This uses as few SEs as possible.

• SE-distributed: Distribute the partition’s CUs across all SEs as evenly as possible. This implies that

any partition containing four or more CUs will use all SEs.

Figure 4.9 shows the behavior of these two partitioning approaches when applied to an instance of

MM1024 running in isolation. For the most part, Figure 4.9 seems to show that there is little benefit to

SE-packed partitioning: SE-packed visibly outperforms SE-distributed only for some partition sizes smaller

than 15 CUs. Unsurprisingly, SE-packed performs far worse than SE-distributed when only one CU is

enabled on an SE. The jumps in the SE-packed response times occur where expected: the Radeon VII has 15

CUs per SE, so SE-packed partitions with sizes of 16, 31, or 46 will end up occupying only a single CU on

one of the SEs. Overall, SE-packed partitioning may look inferior in Figure 4.9, but Figure 4.9 is based on

measurements taken without an important factor: contention.

CU partitioning in the presence of a competitor. We carried out a final experiment using an MM1024

measured task facing an MM256 competitor (as this results in the most destructive interference in the absence

of partitioning). This experiment partially reuses data from Section 4.2.1, which used SE-packed partitioning.

The main contribution from the new experiment is the inclusion of SE-distributed partitioning for contrast.

Table 4.2 shows the results of this experiment. For further illustration, Table 4.2 also includes the CU

mask used by both the MM1024 measured task and MM256 competitor. For example, MM1024’s SE-packed
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Description MM1024 CU Mask MM256 CU Mask Min Max Median Arith. Mean Std. Dev.
Full GPU Sharing (Unpartitioned) 1111...1111 1111...1111 12.214 19.578 15.503 15.652 1.114
SE-packed, Equal Partitions 1010...1010 0101...0101 6.784 7.630 6.944 6.991 0.133
SE-packed, Unequal Partitions 1010...1011 0101...0101 64.873 101.531 84.047 84.362 4.381
SE-distributed, Equal Partitions 1111...0000 0000...1111 6.391 9.113 7.250 7.269 0.074
SE-distributed, Unequal Partitions 1111...0001 0000...1111 7.109 7.906 7.288 7.324 0.122

All times are in milliseconds.

Table 4.2: MM1024’s response times in the presence of an MM256 competitor.

CU mask sets every even-numbered bit, starting with bit 0, meaning that MM1024 will occupy every CU on

SEs 0 and 2, whereas MM256’s SE-packed CU mask causes it to occupy every CU on SEs 1 and 3. As we did

in Section 4.2.1, we also include “Unequal Partitions” cases in Table 4.2, produced by adding a single CU to

MM1024’s “Equal Partitions” CU masks.

Observation 4.4 For some partition sizes, SE-packed partitioning is slightly better than SE- distributed

partitioning.

Observation 4.4 is seen when comparing the two “Equal Partitions” rows from Table 4.2. Both partitioning

approaches ensure that MM256 does not share CUs with MM1024, and therefore sufficiently prevent the poor

unpartitioned performance due to MM256 cutting ahead (shown for convenience in Table 4.2’s first row).

However, SE-packed partitioning exhibits slightly better response times than SE-distributed, likely due to

two factors. First, SE-distributed partitioning is actually unable to assign an equal number of CUs to all SEs,

as a 30-CU partition is not evenly divisible among four SEs. Second, SE-packed CU masks may prevent a

small amount of contention for SE-wide resources such as workload managers.

Observation 4.5 SE-distributed partitioning is vastly superior when a partition’s size prevents it from

occupying all CUs in an SE.

Observation 4.5 is supported by comparing the “Unequal Partitions” lines in Table 4.2, where it should

be apparent that it is highly undesirable to use an SE-packed partition containing 31 CUs. While it is hard

to imagine a practical application where a task requires a partition containing exactly 31 CUs, one can

certainly envision applications where greater flexibility in partition sizing could be useful. One such situation

would be a task system requiring prioritization. For example, high-priority work may need a larger partition

than low-priority work, but designating a full additional SE as “high-priority” could cause unacceptable

adverse effects to low-priority performance. Instead, it could be better to allocate 40 CUs to high-priority
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work, while low-priority tasks use the remaining 20 CUs. With these partition sizes, Figure 4.9 indicates

that SE-distributed partitioning would be better than SE-packed partitioning for both high- and low-priority

tasks, with low-priority work seeing a particular benefit given the gap between SE-distributed and SE-packed

performance at 20 CUs.

4.3 Drawbacks and Pitfalls When Using AMD GPUs

As already shown in Section 4.2, AMD GPUs can behave in some counterintuitive ways and, despite

using open-source software, face their own set of documentation woes. In this section, we return to some

of the main pitfalls exposed in Section 4.2, and enumerate other non-behavioral difficulties that researchers

targeting AMD GPUs are likely to face. Our intent in stating and describing pitfalls and workarounds is to

provide guidance for future researchers who may, like us, end up facing questions about research platforms,

or need to diagnose confusing performance characteristics of AMD GPU software.

4.3.1 Hardware-Related Behavioral Pitfalls

The material from Section 4.2 already covered several significant hardware-related pitfalls on AMD

GPUs, but the discussion of each of these pitfalls was brief, as Section 4.2 focused mainly on scheduling

rather than developing real-time software. Second, it is worth revisiting key pitfalls, as they all serve a dual

purpose of highlighting key differences between the ways in which NVIDIA GPUs and AMD GPUs behave.

In fact, the first pitfall we mention may not be particularly dangerous from a timing perspective, but has

interesting implications for how sharing AMD and NVIDIA GPUs may need to be managed differently:

Pitfall 4.1 Creating too many queues on AMD GPUs leads to “oversubscription,” significantly harming

performance.

We mentioned Pitfall 4.1 in Section 4.2.2.2: AMD GPU hardware has only 32 “slots” to which queues of

work may be concurrently assigned. As this did not impact our experiments from that section, we left further

discussion to prior research from a different group (Puthoor et al. 2018), but oversubscription may remain an

important consideration for real-time systems involving a larger number of independent tasks.

Pitfall 4.1 should not be a surprise when it does occur, as oversubscription can simply be disabled by

configuring the amdgpu driver. With the driver configured to return errors rather than allow oversubscribed

hardware, basic tests should quickly reveal oversubscription behavior, making it easy to avoid triggering by
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mistake in deployed safety-critical systems. On the other hand, simply catching the mistake does not mean

the problem is solved, and the limit of 32 queues26 is deceptively small, especially with the default behavior

of allocating a separate queue to each stream requiring a CU mask, and the fact that separate processes are

unable to share queues.27 These circumstances may even serve as motivation for designing multiple GPU

tasks that share a single Linux process on AMD GPUs, similarly to how we structured our experiments using

NVIDIA GPUs in Section 3.4. Ironically, this implies that the motivation for structuring tasks as threads

within a single process may be the exact opposite on NVIDIA and AMD GPUs. On NVIDIA GPUs, multiple

threads within a single process enabled more hardware sharing. On AMD GPUs, however, multiple threads

in a process may be useful for preventing too much sharing.

Pitfall 4.2 Users of CU masking must be cognizant of the mapping between CUs and SEs.

We certainly do not count Pitfall 4.2 as a strike against AMD GPU usage, at least in competition with

NVIDIA, as most consumer-grade NVIDIA GPUs offer no comparable hardware-partitioning support at

all. Nonetheless, the conclusions from Section 4.2.2.4 make Pitfall 4.2 obvious—designing CU partitions

on AMD GPUs can lead to disastrous performance in many circumstances. We also neglected to mention

one complicating factor of Pitfall 4.2 in the previous section: different AMD GPUs may require different

partitioning strategies, particularly as the number of CUs per SE may differ. Fortunately, unless AMD

changes their CU-masking driver code, using SE-distributed partitioning as described in Section 4.2.3.1

makes it easier to avoid severe problems, at the cost of only slight reductions to efficiency in some cases.

Pitfall 4.3 On AMD GPUs, smaller thread blocks can cut ahead of larger thread blocks.

On one hand, AMD’s decision to allow cutting ahead is understandable: it clearly allows greater hardware

utilization in some situations where full utilization may not occur (such as our cutting-ahead experiment on

NVIDIA in Section 3.4.1). On the other hand, the fact that thread blocks with smaller resource requirements

can (and will) cut ahead of other thread blocks on AMD GPUs could easily lead to some tasks consistently

experiencing starvation, as MM1024 did in our Section 4.2.1 experiment. Pitfall 4.3 is made more insidious

by the fact that it is not possible on NVIDIA hardware (Section 3.4.1): without knowing this pitfall, attempts

to port real-time software from NVIDIA to AMD GPUs could easily result in unsafe changes to timing

26The limit on the number of queues may be even smaller in practice, as some queues may be reserved to support graphical operations.
27The amdgpu driver associates the address space of a Linux process with an address space on a GPU. This is required to prevent

one process from corrupting another’s GPU memory.
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characteristics. It has been common practice for AMD to port CUDA software to HIP using automated

tools28 that, at least so far, do not take such concerns into account.

Pitfall 4.4 AMD GPU code launched from separate Linux processes is not temporally isolated.

The ACEs in an AMD GPU’s command processor (shown in Figure 4.3) can and will concurrently

schedule work from independent Linux processes. (As a reminder, our matrix-multiply tasks were independent

processes in Section 4.2.1.) Purely from a hardware-utilization standpoint, this is a benefit—unlike NVIDIA

GPUs, AMD does not require a service like MPS to allow true concurrency. In other circumstances, however,

this behavior certainly qualifies as a pitfall, especially in conjunction with Pitfalls 4.1 and 4.3. For example,

even aside from the cutting-ahead problems, other GPU hardware resources such as memory bandwidth may

be adversely effected by some combinations of competing tasks. NVIDIA’s default time-sliced management

of inter-process GPU sharing avoids such interference, but enforcing similar time-sliced access on AMD

would require additional management. This may even motivate reviving older real-time research targeting

NVIDIA GPUs, such as the approaches listed in Section 2.6.1, to provide temporal isolation for AMD GPU

sharing.

4.3.2 Software-Related Pitfalls

Like their NVIDIA counterparts, research targeting AMD GPUs will inevitably encounter difficulties

stemming from the availability of documentation. However, much more common to AMD are issues

stemming from software stability and available hardware support:

Pitfall 4.5 ROCm only supports a limited number of discrete GPUs.

Pitfall 4.6 ROCm only supports the Linux operating system.

Pitfall 4.5 is likely to be the first difficulty researchers unfamiliar with AMD GPUs are likely to encounter

when using the platform. The ROCm software supports a very small number of GPUs, and support frequently

lags behind the release of new GPUs. For example, the successor architecture to GCN, RDNA, was first

released in 2019, but to this day, only two high-end RDNA GPUs support running ROCm, and ROCm only

28For example, the process for compiling PyTorch on AMD GPUs requires running a script to automatically convert CUDA source
files to HIP: https://github.com/pytorch/pytorch/blob/226a5e87f39564ecd8268c37350942c5129a
e2b0/README.md?plain=1#L231.

108



started supporting these GPUs nearly a year after the first RDNA-architecture GPU was released. At the time

of writing, AMD’s list of ROCm-supported GPUs only states that ten GPUs are “fully supported,” and even

these ten include several GPUs that are no longer in production.29 Along with a lack of embedded offerings,

this support stands in stark contrast with CUDA, which has been supported on virtually all NVIDIA GPUs

from the past decade.

Pitfall 4.6 goes in hand with Pitfall 4.5. While not a barrier to using AMD GPUs as a research platform,

ROCm’s lack of widespread adoption can make it difficult to claim that any AMD-based GPU research is

broadly applicable. Fortunately, Pitfall 4.6 may be somewhat mitigated by the rapid pace at which AMD

publishes major updates to ROCm software, which, through a different lens, may be viewed as a pitfall of its

own.

Pitfall 4.7 ROCm software undergoes frequent, major changes.

One can hardly fault AMD for the fact that ROCm continues to be under active development. The fact

that continually updating the software is desirable for most users does not, however, negate the inconvenience

for researchers. Our work using AMD GPUs started slightly over three years ago, with ROCm version 2.6.

Since that time, our research has weathered multiple major and minor updates to ROCm’s software. Many

minor changes only added support for new hardware or improved stability, but other changes involved major

restructuring. For example, prior to ROCm version 3.5, an entire “layer” of Figure 4.1 was different: rather

than using LLVM and ROCclr to compile and run HIP code, HIP was backed by a separate compiler project,

known as HCC (the Heterogenerous-Compute Compiler). HCC was deprecated in 2019, and entirely removed

from ROCm shortly thereafter. Unsurprisingly, AMD’s decision to replace an entire compiler and runtime

layer of the software stack required reimplementing several of our own experimental modifications.

Eventually, we chose to avoid Pitfall 4.7 in the most straightforward manner: we stopped updating

our ROCm installation. While our earlier efforts involved several versions of ROCm, the material in this

dissertation, including Chapters 4 and 5, use ROCm version 4.2. Though ROCm has yet to undergo any

changes as significant as the removal of HCC between versions 3.3 and 3.5, more large changes are yet to

come. For example, even though ROCm version 5.1 (current at the time of writing) still does not support

29This can be seen by checking AMD’s list of supported GPUs at https://docs.amd.com/bundle/Hardware and Sof
tware Reference Guide/page/Hardware and Software Support.html.

109



Microsoft Windows, AMD’s ongoing changes to some components of the software stack indicate that such

support is under active development.30

4.4 Chapter Summary

In this chapter, we investigated the behavior of AMD GPUs, to establish whether they may serve as a

viable alternative platform to NVIDIA in the context of real-time GPU sharing. In doing so, we provided

information about AMD GPUs using a combination of public (but poorly advertised) information, first-party

source code, and experimental evidence. Our primary goal was to identify situations where AMD GPU

behavior may diverge from NVIDIA, but we also gave guidance on how to properly apply the CU-masking

feature of AMD GPUs.

Establishing the “best” platform for any complex system will always involve a set of tradeoffs and

personal preferences, but it is not necessary to prove that a system is the “best” in order for it to be a viable

research platform. In a research setting, the question is still open as to whether the drawbacks discussed here

for AMD GPUs are an acceptable trade for the benefits offered by an open-source GPU software stack and

control over CU masking.

This chapter provided several clear demonstrations of the practical implications of knowing or failing

to know key aspects of GPU-internal behavior. Without knowing this information, the risks of disastrous

performance pitfalls make developing a reliable real-time system using AMD GPUs virtually impossible.

But, from another view, with knowledge of this information, developers can expect predictable performance

from their systems with a level of confidence that will not be present with a closed-source platform.

Acknowledgements. The material in this chapter was drawn from three papers published in the years

2020 through 2022. The content of Section 4.2 largely appears in two papers: Otterness and Anderson (2021)

and Otterness and Anderson (2022). (The second of these papers is an extended version of the first, for

journal publication.) The material in Section 4.3 and some of Section 4.1 was drawn from Otterness and

Anderson (2020).

30For one of many such examples, this commit adds Windows support to the ROCclr library’s compilation scripts: https:
//github.com/ROCm-Developer-Tools/ROCclr/commit/df1449608e92c.
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CHAPTER 5: DEVELOPING SOFTWARE FOR REALISTIC REAL-TIME GPU EVALUATION

Much GPU-management research implicitly adopts an assumption from a long legacy of real-time

research: that hardware-management techniques can be developed in a manner orthogonal to the applications

being run. Unfortunately, as we stated in Chapter 1, control over hardware is only one part of the difficult

new reality facing real-time GPU usage—of equal importance is the shift to complex neural-network-based

applications.

5.1 The Behavior of Modern GPU-Accelerated Neural Networks

Over a decade ago, AlexNet (Krizhevsky, Sutskever and Hinton 2012), and the contemporaneous work by

Ciresan, Meier, Masci, Gambardella and Schmidhuber (2011), were implemented from scratch using CUDA.

Today, almost all neural-network-based computer-vision research is carried out using high-level neural-

network development frameworks, such as those discussed in Section 2.3.2. While neural-network developers

may occasionally write lower-level CUDA code to add specific functionality to high-level frameworks, current

computer-vision research seems to have shifted focus away from the accelerated code itself, leaving further

optimizations to other fields of study. Instead, new computer-vision and AI research tends instead to favor

studying the structure of neural-network architectures at a higher level, while relying on the increasingly

sophisticated collection of open-source libraries and tools to implement them. In this section, we examine the

behavior of one of the most popular modern neural-network frameworks, PyTorch, and its behavior running a

variant of the influential MobileNetV1 neural network (Howard, Zhu, Chen, Kalenichenko, Wang, Weyand,

Andreetto and Hartwig 2017).

5.1.1 Overview of PyTorch Execution

We already introduced PyTorch, and its popularity in the field of computer vision, in Section 2.3.2.

PyTorch’s complexity and popularity make it an ideal case study for modern GPU-accelerated applications.

Regardless of opinions as to whether such applications should be included in safety-critical contexts, it is a
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Python Interpreter

PyTorch’s C++ Implementation

Tensor-Processing APIs (c10, aten, etc.)

CPU or GPU Implementations of Tensor Logic

User-Created Python Script

Figure 5.1: Basic representation of the layers of abstraction involved in a PyTorch application.

mistake for anybody claiming to do real-time GPU research to not have a modest understanding of the tool

with which computer-vision researchers are developing the next generation of safety-critical applications.

Understanding the entirety of of PyTorch’s several hundred thousand lines of source code is beyond the scope

of a single dissertation. Nonetheless, it remains within our capabilities to at least understand the layers of

abstraction that arise in the framework.

Layers of abstraction. While the distinctions between abstractions in a single application are not as

clear-cut as they are between the components in the visually similar Figure 4.1, we still provide Figure 5.1 as

a visual reference for the components of PyTorch involved with launching GPU computations.

At the top of Figure 5.1 is the Python interpreter, obviously needed when executing Python scripts.

The interesting part of Figure 5.1 begins when the user’s script starts to interact with the PyTorch libraries.

The bulk of PyTorch is implemented using the C++ programming language. Even though the PyTorch

codebase includes many Python-language files, most of these are thin wrappers providing syntactic sugar

around invocations of functions contained in native C++ libraries. Within PyTorch’s C++ code base lie two

prominent, interwoven tensor-processing libraries: c10 and aten.1 In PyTorch, almost every mathematical

operation operates on one or more tensor arguments: multi-dimensional arrays of data. For example PyTorch

uses its Tensor data type to hold neural-network weights, input data, etc. PyTorch is designed to make it

easy for users to write both CPU-only and GPU-accelerated code with minimal changes. Implementing this

feature requires the separation between the bottom two layers of Figure 5.1: the tensor-processing libraries

provide a common interface backed by interchangable CPU-only and GPU-accelerated implementations.

1According to a PyTorch forum post (https://discuss.pytorch.org/t/whats-the-difference-between-a
ten-and-c10/114034), the aten library is older, and much of its functionality has been superseded by the newer c10 code.
However, the full integration of these two libraries remains incomplete, and both remain heavily used even in basic operations, as
illustrated by the presence of both the c10 and at namespaces in Figure 5.3.
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import torch

a = torch.rand((1000, 1000, 100), device="cuda:0")

b = torch.rand((1000, 1000, 100), device="cuda:0")

c = a + b

Figure 5.2: Python code using PyTorch to perform GPU-accelerated addition of two tensors.

PyTorch scripts can easily combine or switch between CPU and GPU computations at runtime. We discuss

this further in the context of the following example.

Using PyTorch for GPU-accelerated math. We provide Figure 5.2 to show why it can be so useful for

developers to use high-level scripts, even for performance-sensitive work like neural networks. Figure 5.2

is a Python snippet that uses the PyTorch library (torch), to allocate two tensors containing 100 million

(1000×1000×100) floating-point values each. The torch.rand function randomly initializes the contents

of each tensor, and the device="cuda:0" argument indicates that the tensors are to be allocated in the

memory of the first GPU on the system (index 0).2 Finally, the c = a + b line instructs PyTorch to add

the contents of the two “input” tensors, storing the results in a new tensor, c. Since both a and b are in GPU

memory, PyTorch will automatically allocate space for c from GPU memory as well, and invoke a GPU

kernel to perform the addition.

In contrast to the HIP or CUDA vector-add examples from Figures 2.1 or 2.2, the draw of writing

code like Figure 5.2 is obvious. PyTorch allows developers to avoid writing kernel code or performing

the memory-allocation and memory-transfer boilerplate present in Figures 2.1 or 2.2, which already omit

some boilerplate like initializing vector contents. Being a minimal example, Figure 5.2 does not enqueue

operations in a non-default HIP or CUDA stream, but other PyTorch API functions make it possible to do

so with very little additional complexity. Finally, even though Figure 5.2 uses the GPU, converting it to

perform computations on the CPU is trivial: removing the device="cuda:0" argument from the tensor

allocations will cause PyTorch to place the tensors in CPU memory and perform addition on the CPU by

default.

From Python scripts to the GPU. With an overview of the salient PyTorch components in Figure 5.1

and a simple code snippet in Figure 5.2, we are able to obtain a more precise picture of the abstractions

involved when ultimately launching a kernel to carry out a single addition operation with PyTorch. By

2For compatibility reasons, PyTorch scripts use the term “cuda” to specify all GPU-accelerated operations, even ones using HIP on
AMD GPUs.
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#0  ihipModuleLaunchKernel

#1  ihipLaunchKernel

#2  hipLaunchKernel

#3  void at::native::gpu_kernel_impl

#4  at::native::add_kernel_cuda

#5  at::native::structured_add_out::impl

#6  at::(anonymous namespace)::wrapper_add_Tensor

#7  c10::impl::wrap_kernel_functor_unboxed_::call

#8  at::_ops::add_Tensor::redispatch

#9  torch::autograd::VariableType::(anonymous namespace)::add_Tensor

#10 c10::impl::wrap_kernel_functor_unboxed_::call

#11 at::_ops::add_Tensor::call

#12 torch::autograd::THPVariable_add

#13 torch::autograd::TypeError_to_NotImplemented_

#14 method_vectorcall_VARARGS_KEYWORDS

#15 _PyObject_Vectorcall

#16 _PyObject_FastCall

#17 _PyObject_FastCall_Prepend

#18 call_unbound

#19 call_maybe

#20 slot_nb_add

#21 binary_op1

#22 PyNumber_Add

#23 _PyEval_EvalFrameDefault

#24 _PyEval_EvalCodeWithName

#25 PyEval_EvalCodeEx

#26 PyEval_EvalCode

#27 run_eval_code_obj

#28 run_mod

#29 PyRun_InteractiveOneObjectEx

#30 PyRun_InteractiveLoopFlags

#31 PyRun_AnyFileExFlags

#32 pymain_run_stdin

#33 pymain_run_python

#34 Py_RunMain

#35 Py_BytesMain

#36 __libc_start_main

#37 _start

HIP Kernel-Launch Internals

aten’s HIP Implementation

aten and c10’s Tensor-
Add Implementation

PyTorch C++ Libraries

Python Interpreter Code for 
Calling PyTorch’s + Operator

Python Interpreter Code

Figure 5.3: A concrete illustration of Figure 5.1: the call stack of functions leading to a kernel launch when
PyTorch adds two tensors using the GPU. (This call stack grows upward, with the highest-level function, the
Python interpreter’s start routine, appearing at the bottom.)

attaching the gdb debugger to the Python process executing the code in Figure 5.2, we obtained a backtrace

of the C and C++ functions involved when PyTorch invokes the tensor-addition kernel. Figure 5.3 shows the

stack of function calls, starting with the Python interpreter and ending with the HIP functions responsible for

launching a kernel. Additionally, we annotated groups of functions in Figure 5.3 with the layers of Figure 5.1

to which they belong.

Some lessons. Considering our pursuit of “realistic” applications, it may seem counterproductive to start

with an example as simple as a Python equivalent to the VectorAdd snippets from Chapter 2. However,

there are some useful points to this exercise. First, it serves as a gentle introduction to the “full” path between

PyTorch and GPU hardware. Granted, Figure 5.3 does not illustrate the entire relation between a Python

script and GPU hardware, but the content we presented in Chapter 4 is sufficient for making the remaining

114



connections. In fact, one could envision a larger figure combining Figures 5.1 and 4.1: the bottom layer of

Figure 5.1 would simply lead into to the HIP layer of Figure 4.1.

The second lesson to be learned from this simple example is more relevant to our true objective of

evaluating complex applications from a timing perspective. Popular sentiment often assumes that Python

scripts are inherently “slow,” and with some good reasons. For example, attempting to add two “vectors” of

100 million numbers contained only in Python’s built-in list type would be excruciatingly slow compared

to even a basic C++ equivalent. However, Figures 5.1 and 5.3 indicate that the performance of Python itself

is of little consequence: almost all of the relevant processing occurs in PyTorch’s C++ code.

In fact, we conducted a simple experiment that found the overhead imposed by Python in executing

Figure 5.2 is almost unnoticeable in the face of the time required to execute the GPU kernel. With slight

modifications, we repeated the addition operation in Figure 5.2 1,000 times and recorded the time required for

each iteration. Second, we used a vector add plugin to the HIP port of our microbenchmarking framework,

discussed in Sections 3.3 and 4.2.1. We configured our vector add microbenchmark to perform an amount

of GPU computation roughly equivalent to the amount required by the PyTorch script in Figure 5.2: add

two vectors of 100,000,000 random floating-point numbers. As with our experiments in Chapter 4, we

executed this code on a Radeon VII GPU. Surprisingly, this basic performance test favored PyTorch: the

mean execution time of our extremely simple vector add microbenchmark kernel took 1.8 milliseconds,

while PyTorch’s tensor-add took 1.6 milliseconds on average.

PyTorch: A short, qualitative, code review. We chose not investigate the small performance disparity

from the previous paragraph any further,3 but this is because the causes are irrelevant to the chief point

of the exercise: if a “high level” framework such as PyTorch is capable of performance on par with an

implementation that uses HIP directly, then it is unreasonable to assume that the amount of abstraction present

in PyTorch applications inherently causes timing problems at this scale.

By the time we ran the aforementioned short “addition” experiment, the high quality of PyTorch’s

software engineering had already become a common theme in our exploration of the code base. Apart from

the obvious effort that goes into writing optimized GPU kernel code for a popular, high-value framework, we

found a similar level of effort in virtually all of the timing-relevant portions of PyTorch that we investigated.

3There are some obvious candidates for the disparity: PyTorch’s multi-dimensional tensor addition may exhibit superior caching
behavior, our microbenchmarks’ kernel code may encounter unnecessary overheads due to our time measurements, PyTorch code
may be more efficient due to loop unrolling, etc.
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For example, we observed that PyTorch is capable of reusing pre-allocated buffers of GPU memory to

reduce the number of necessary calls to cudaMalloc or cudaFree (or their HIP equivalents). With some

additional tracing, we also found that PyTorch never seemed to make unnecessary copies to or from GPU

memory, even when evaluating the more sophisticated neural network we introduce in the following section.

In summary, developing GPU-accelerated applications using a sophisticated framework is unlikely to

cause unpredictable or degraded performance in itself. Even so, it can certainly make it easy to introduce

complexities that do—we encounter one such example later in this chapter. Even this risk could be a

worthwhile tradeoff if only we can convince software developers to repurpose the time they save by using

high-level languages into carefully profiling or tracing their applications! Our PyTorch overview has a clear

message towards current and future real-time GPU researchers as well: when developing case studies, it

should not be necessary to shy away from “real” applications such as PyTorch in favor of microbenchmarks.

The inherent overhead of the library is likely manageable, and the underlying GPU code will be well

optimized.

5.1.2 Neural Network: Adaptable MobileNetV1

Recall that PyTorch is only a framework; in order to have a proper case study, we need an application that

uses it. It is particularly fitting to focus on a neural network that was developed to explore timing tradeoffs:

namely, US-MobileNet V1, first introduced by Yu and Huang (2019b).

Slimmable networks. For the most part, US-MobileNet V1 is identical to the original MobileNet

architecture introduced by Howard et al. (2017). The key distinction between the modified version and

the original MobileNet is indicated by the US in the name of the modification—standing for universally

slimmable. This refers to the manner in which the neural network enables trading between accuracy and

computational cost.

The “universally slimmable” approach taken by Yu and Huang is applicable to many neural-network

architectures, not just MobileNet.4 As we discussed in Section 2.3, a neural network is organized into layers

of neurons, where each subsequent layer processes the output of one or more preceding layers. The slimming

implemented by Yu and Huang (2019b) is capable of disabling a portion of neurons in each of the network’s

4For example, the Slimmable Networks authors successfully evaluated their techniques using MobileNet V1, MobileNet V2, ShuffleNet,
ResNet-50, and MNas-Net across several publications (Yu et al. 2019, Yu and Huang 2019b, Yu and Huang 2019a).
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layers. Making each layer “slimmer” in this way requires progressively fewer computations as more neurons

are disabled.5

US-MobileNet V1’s width multiplier. In US-MobileNet V1, the slimming is controlled by a variable

called the width multiplier: a value between 0.0 and 1.0 specifying the ratio of neurons to enable. For

example, a width multiplier of 0.5 enables only half of the neurons in the network, while a width multiplier

of 1.0 enables all neurons in the network: resulting in the same computations as the full, original MobileNet

V1 network. It should not come as much of a surprise that a network with more neurons is more accurate but

slower than a smaller one, but this in itself is not the point of Yu and Huang’s research. The characteristic

that sets their work apart is the ability to offer a range of accuracies and computational costs using only a

single network, and even allowing these tradeoffs to be dynamically adjusted at runtime.

The ImageNet dataset. The MobileNet V1 neural network, and by extension, US-MobileNet V1,

perform image classification. As discussed in Section 2.3 this is a common problem in computer-vision:

automatically assigning labels to an image. More specifically, the pre-trained version of US-MobileNet V1,

provided by the paper’s authors,6 is designed to classify images from the ImageNet dataset: a very large

collection of images with a wide variety of possible labels (Deng, Dong, Socher, Li, Li and Fei-Fei 2009).

Figure 5.4, copied from the original ImageNet publication, shows a small sampling of these images and

representative labels.

Benefits of US-MobileNet V1 as a real-time benchmark. US-MobileNet V1 is an ideal benchmark for

realistic evaluation of real-time GPU management for several reasons. It is suitably recent, with adaptable

neural networks still being on the cutting edge of computer-vision research. It is nontrivial, well-known (at

least, the underlying MobileNet V1 architecture), and does not depend on external libraries aside from PyTorch

itself. The most obvious benefit, however, is its adaptability. Having been developed for resource-constrained

systems, adaptable neural networks are conceptually relevant to real-time systems, but they also have a very

practical application when testing GPU-sharing systems. Without changing the network, or even the sizes

or format of its inputs or outputs, such a benchmark allows us to simulate a wide range of computational

5Yu and Huang’s contribution is more complicated than this sentence may make it seem: a large part of the effort from their work
goes towards disabling less useful neurons before more useful ones. We direct readers interested in the topic to the original paper, or
the preceding paper by the same group (Yu et al. 2019).

6A link to the pretrained network weights is provided in the README of the repository containing the network’s PyTorch code:
https://github.com/JiahuiYu/slimmable networks.

117



Figure 5.4: Example images from the ImageNet dataset along with their expected labels. This figure originally
appears as Figure 1 in the original ImageNet publication by Deng et al. (2009).

requirements: making it possible to emulate a set of GPU-sharing tasks with different resource requirements

using only a single application.

5.2 Runtime Behavior of a PyTorch Application

Now that we have both a framework to use and a neural network to execute, we can progress towards

an application that can serve as a testbed for real-time GPU management. There is still plenty of relevant

information to gather, however. In the remainder of this chapter, we focus on a “job” of a hypothetical

US-MobileNet V1 task: a single forward pass of the neural network, which processes a batch of one or more

images, executes the network’s layers, and produces classification results.

5.2.1 Experimental Setup

Handling data. In the form provided by the original authors, US-MobileNet V1 loads input data

(images and labels from the ImageNet dataset) on-demand from disk, preprocesses the images into the format

expected by the neural network (224× 224-pixel floating-point RGB images), and transfers the data to GPU

memory. Our experiments focus on GPU management, so we avoided the overhead due to disk access and

image-format conversions by preprocessing and loading a randomized set of images from the dataset into

CPU memory prior to running any experiments. This was easy to do using the standard PyTorch API, which

allows writing custom DataSet and DataLoader classes compatible with the rest of the library. While it

would be equally simple and more performant to preload our random sampling of images into GPU memory,

118



we decided against doing so simply for the sake of greater realism—a realistic GPU-using application would

likely need to involve at least some amount of data transfer.

Test platform. Our test platform in this chapter is identical to the one used in Chapter 4: a desktop

computer containing a Radeon VII GPU, an Intel Xeon E5-2630 CPU, and 16 GB of DRAM. Our software

platform consisted of version 5.17 of the Linux kernel, ROCm version 4.2, and PyTorch version 1.10.

We used AMD’s rocprof tool to gather information about the kernels launched during each forward

pass of US-MobileNet V1. Like NVIDIA’s nvprof, rocprof is a command-line tool capable of recording

a list of all GPU kernels a given application launches, along with the kernels’ durations, block sizes, etc.

5.2.2 US-MobileNet V1 GPU Kernel Performance

Our first experiments aimed to answer two fundamental questions: how many kernels does US-MobileNet

V1 launch? and how long do they take? To obtain the necessary data, we monitored the performance of 100

forward passes of US-MobileNet V1 using rocprof. The first of our two questions was easy to answer:

US-MobileNet V1 launches 91 kernels per forward pass if running at its full width. Interestingly, using a

smaller width multiplier causes US-MobileNet V1 to launch a larger number of kernels: 104 per forward pass.

We assume that this behavior is due to implementation details of Yu and Huang’s approach. As we shall see,

however, overhead due to slimming is usually dominated by the faster execution of the slimmer network.

Answering the second question is more involved, as US-MobileNet V1 launches far more kernels than

the applications we considered in earlier chapters. First, we used the rocprof data to compute the average

time taken by each of the 91 or 104 kernels individually. We next represented this list of individual kernel

times as a CDF, and repeated the process for three different width multipliers. Figure 5.5 plots the results.

Note that the endpoints of the plot’s horizontal axis correspond to the fastest and slowest observed kernel

times among all three width multipliers.

Observation 5.1 Reducing US-MobileNet V1’s width multiplier consistently reduces the execution time

of at least 70% of the network’s GPU kernels.

It should come as no surprise that narrower width multipliers speed up kernel execution in general; this

only confirms that the faster performance of US-MobileNet V1 at narrower widths extends to time spent

executing on the GPU. Observation 5.1, illustrated by Figure 5.5, is more interesting than that, however. The

curves only overlap near the bottom left, below y = 30, indicating that fewer than 30% of the kernels have
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Figure 5.5: Distribution of the execution times of GPU kernels executed during a single forward pass of
US-MobileNet V1, with varying width multipliers and a batch size of 32.

similar execution times regardless of the width multiplier. On top of this, this small number of kernels with

similar execution times are the fastest kernels, executing for less than a tenth of a millisecond. The vast

majority of the kernels, however, clearly speed up as the network slims. For example, the median-duration

kernels, clearly speed up as the width multiplier decreases (median times are given by the curves’ x positions

where y = 50%), and the slowest kernels see the greatest response-time improvements (worst-case times are

given by the curves’ x positions where y = 100%).

The impact of batch size. While mentioned in passing earlier, many neural-network-based computer-

vision applications, including US-MobileNet V1, enable users to configure a batch size: a variable number of

images that a single forward pass processes in parallel. Using larger batch sizes can be especially helpful

when training the network: allowing greater GPU parallelism at the expense of a larger memory footprint.7

Similarly to choosing a width multiplier, choosing a batch size can also serve as a “knob” with which we

can adjust the network’s computational cost. Notably, increasing batch sizes does not cause US-MobileNet

V1 to launch a larger number of kernels, and instead simply increases the number of threads each kernel

7Batch sizes can also come into play with some training methods, such as stochastic gradient descent.
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Figure 5.6: Distribution of the execution times of GPU kernels executed during a single forward pass of
US-MobileNet V1, a width mutliplier of 1.0 and varying batch sizes.

executes to accommodate more input data.8 This is naturally reflected in the execution time of each kernel,

so we repeated our earlier experiment with width multipliers, this time varying batch size while keeping the

network at full width. Figure 5.6 shows the resulting CDFs.

The behavior shown in Figure 5.6 is consistent with our expectations: execution times increase with batch

size, but not entirely in a linear fashion. For example, the slowest kernel under a batch size of 64 executes for

about slightly over one millisecond (the rightmost point in the “Batch Size = 64” curve of Figure 5.6), while

the slowest kernel executing a batch of 128 inputs requires about 1.64 milliseconds (the rightmost point in

Figure 5.6): processing twice as many input images without requiring twice the amount of time.

5.2.3 Response Times of US-MobileNet V1 Jobs

Batch sizes and width multipliers clearly behave as expected with respect to kernel times: smaller batches

and narrower widths reduce the amount of GPU computation required for a forward pass of US-MobileNet

8This is expected behavior in most neural networks, which seek to maintain flexibility with respect to batch size without imposing
the overhead of additional kernel launches. Accommodating different batch sizes makes it easier to tune performance for different
hardware (larger batch sizes may only be possible on GPUs with more memory), allows using a different number of inputs during
training vs. evaluation, etc.
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V1. However, kernel execution is only part of what would be required if US-MobileNet V1 were a real-time

task: a full job would also handle input and output data as well as various CPU operations. Put another way,

our notion of a job is highly analogous to the “total time” illustrated in Figure 3.1 from Chapter 3. With the

addition of CPU and data-transfer operations, the view of the application becomes more complicated, along

with the batch-size and width-multiplier tradeoffs.

Figure 5.5 only used a batch size of 32, and Figure 5.6 only used a width multiplier of 1.0. We extended

these experiments to include combinations of multiple batch sizes and width multipliers. Rather than plotting

CDFs of these additional configurations, we chose to summarize their average response times in Table 5.1.

Observation 5.2 Improvements to job times become decreasingly significant with smaller batch sizes

and width multipliers.

On one hand, Table 5.1 confirms that a trend from earlier results: progressively smaller batch sizes and

width multipliers continue to speed up kernel execution. For example, Table 5.1 shows that a batch size of

eight images and a width multiplier of 0.25 lead to all 104 kernels taking only 1.130 milliseconds in total. On

the other hand, Observation 5.2 refers to the diminishing returns these reductions have on what an application

designer is more likely to care about: the latency with which images are processed. For example, job times

for batches of 8 or 16 inputs rarely differ by more than a millisecond, regardless of the width multiplier.

Observation 5.3 The improvements to kernel time from smaller width multipliers do not always lead to

faster job times.

Extending our scrutiny to the job times required by small batches reveals Observation 5.3. For batches

containing 32 or more inputs, reducing the network’s width consistently reduces job times. However, consider

the job times for a batch size of 8 images across the three width multipliers in Table 5.1: Rather than job

times becoming faster, the time required to complete a batch of 8 images with a width multiplier of 0.25 is

almost 0.6 milliseconds slower than with a width multiplier of 1.0. Recall from the start of Section 5.2.2 that

the times listed in Table 5.1 are averages over 100 jobs, and, after observing these unexpected results, we

re-ran the full set of experiments several times and found the results remained consistent. While we do not

have the expertise in neural-network logic to pinpoint the cause of this slowdown in US-MobileNet V1’s code,

the consistent reduction in GPU execution at slimmer widths leaves only CPU activity as the explanation.

We have already encountered some observable logical differences, as evidenced by the full-width network
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Batch Size
Width Mean Total Mean Job % Kernel

Multiplier Kernel Time (ms) Time (ms) Execution
8 1.00 3.422 14.373 23.8%
16 1.00 6.092 15.648 38.9%
32 1.00 11.496 22.960 50.1%
64 1.00 18.644 33.538 55.6%

128 1.00 36.643 56.601 64.7%
8 0.50 1.839 14.651 12.5%
16 0.50 3.081 14.716 20.9%
32 0.50 4.895 16.457 29.7%
64 0.50 9.076 22.703 40.0%

128 0.50 16.557 36.205 45.7%
8 0.25 1.130 14.945 7.6%
16 0.25 1.661 15.750 10.5%
32 0.25 2.670 16.381 16.3%
64 0.25 4.634 18.680 24.8%

128 0.25 8.583 27.545 31.2%

Table 5.1: US-MobileNet V1’s average total kernel times (as measured by rocprof) and overall job times
with varying width multipliers and batch sizes. These measurements were taken prior to the performance
improvements obtained by bypassing PyTorch’s DataParallel wrapper.

requiring 91 kernel launches while narrower widths launch 104 kernels. While unfortunate, it is perhaps not a

surprise that that these logical differences also involve at least a small amount of nontrivial CPU activity, but

this is at least dominated by the improved GPU times when batch sizes are sufficiently large.

Observation 5.4 In almost all of our configurations, GPU execution accounts for less than half of

US-MobileNet V1’s job time.

The impact of additional CPU overhead due to narrower width multipliers pales in comparison to the

overhead apparent with Observation 5.4. According to Table 5.1, GPU execution accounts for only 7.6% of

job time when executing US-MobileNet V1 with a batch size of 8 and a width multiplier of 0.25. The only

configurations in Table 5.1 where Observation 5.4 does not apply occur with a width multiplier of 1.0 and a

batch size over 32, though even in these cases almost 20 milliseconds of job time cannot be accounted for by

GPU execution.

One may assume that Observation 5.4 is due to the neural network carrying out intermediate CPU

computations between GPU kernel activity. While an understandable guess, this is unfortunately not the

case in our benchmark. We hinted in Section 5.1.1 that PyTorch does not transfer data between CPU and

GPU memory unless necessary; this statement was in fact based on our traces of US-MobileNet V1 using
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rocprof. During each job, we only see three requests to transfer data to or from GPU memory: two

requests to copy input images and labels to the GPU, and one request to copy results back to the CPU. This

makes it highly unlikely that the CPU is responsible for intermediate computations, as intermediate results

never seem to leave GPU memory. So, the question remains: if many jobs use less than half of their time on

GPU computations, and intermediate math-heavy CPU operations seem unlikely, then where is all the time

going?

5.2.4 Examining US-MobileNet V1 Using KUtrace

While AMD’s rocprof is useful for monitoring kernel launches and memory transfers, it is less useful

for tracking down the cause of wasted CPU time. Fortunately, we can examine US-MobileNet V1’s behavior

using a more powerful tool designed for such tasks: KUtrace (Sites 2021).

KUtrace overview. KUtrace (Kernel-User trace) instruments the Linux kernel to record all transitions

the system makes between kernelspace and userspace code, in addition to other events, such as interrupts. To

maintain low overheads, KUtrace represents start/end pairs of events as 64-bit integers,9 which it records in

an in-memory buffer. The buffer’s capacity is configurable, and typically sufficient for several seconds’ worth

of events. KUtrace is controlled using a userspace API, capable of enabling or disable tracing, saving the

trace to a file, and manually inserting “marker” events into the trace. Given KUtrace’s internal limitation of

representing events as 64-bit integers, KUtrace relies heavily on postprocessing to group events by Linux

process, generate human-readable labels, etc.

In our situation, the most useful output produced by KUtrace’s postprocessing tools is a visual timeline

of all system activity, across all Linux processes and CPU cores. We created a Python-language library to

interact with KUtrace’s userspace API from within our PyTorch scripts, and used this library to record a trace

of a single US-MobileNet V1 job. Figure 5.7 shows the resulting timeline, with additional notation along the

top indicating the approximate times during which GPU activity occurs.

Reading KUtrace timelines. KUtrace timelines, such as Figure 5.7, are standard HTML files that can

be navigated using a web browser. Typically, two sets of timelines are visible, where events are grouped

either by the CPU on which they were executed, or by the PID of their process or thread. For space, however,

we cropped Figure 5.7 to only show the activity of two relevant threads from our PyTorch process. To

9For example, KUtrace packs both the enter and exit timestamps for a system call, interrupt, or trap handler into a single integer.
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Figure 5.7: A visualization of PyTorch’s CPU activity produced using KUtrace, encompassing the execution
of a single US-MobileNet V1 job, with a batch size of 32 and width multiplier of 1.0.

provide visual contrast, KUtrace timelines indicate CPU activity as two-colored bars: narrower bars represent

userspace execution, and wider bars represent kernelspace execution. As an example, the timeline to the right

of point ❼ in Figure 5.7 frequently alternates between userspace and kernelspace execution. The narrowest,

gray bands, such as those appearing above points ❷ and ❹ in Figure 5.7, indicate spans of time during which

the process is suspended. Manually inserted markers are labeled with text boxes appearing below the timeline

in which the event occurred, such as the “job,” “eval,” “/eval,” and “/job” labels in Figure 5.7.

Activity in the US-MobileNet V1 trace. In addition to simply controlling when the trace starts and

ends, we also used our KUtrace Python library to manually insert the four aforementioned markers from

certain locations in our PyTorch scripts. The first of these labels, “job,” indicates the start of a US-MobileNet

V1 job, shown at point ❶ in Figure 5.7. Shortly after the start of a job, point ❷ indicates the time when our

input data, the batch of 32 images and expected labels, are copied into the GPU’s memory. As we would

hope, the main PyTorch thread is suspended while it waits for the memory transfer to complete, and the

entire memory-copy procedure only lasts for roughly two milliseconds. (We confirmed using a combination

of rocprof and additional KUtrace markers that all such input transfers only occur in the region of the

timeline surrounding point ❷, annotated with the “Copy In” text.)

For the sake of explanation, we leave aside the span of the timeline indicated by point ❻ for now, and

continue to the region annotated by point ❸. Point ❸ is surrounded by two marks, “eval” and “/eval,” that
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we inserted before and after the Python code responsible for executing the layers of the neural network.10

To confirm that all GPU kernel launches occurred between the “eval” and “/eval” markers, we instrumented

the underlying HIP userspace libraries to insert additional markers whenever a GPU kernel was launched.

We ultimately chose to omit these per-kernel markers from Figure 5.7: they confirmed that all kernels were

launched between the two “eval” markers as expected, but otherwise created significant visual noise.

Point ❹ indicates the span of time during which our script is waiting for resulting data to be copied from

GPU to CPU memory. However, the suspension at point ❹ is clearly far longer than what we would expect

for a small memory transfer, especially considering that copying an entire batch of input images to the GPU

at point ❷ only took around two milliseconds. Fortunately, the length of this second suspension is easy to

explain.

Recall that the prior paragraph only stated that all kernel launches appeared between the two points

marked by “eval” and “/eval.” Unless a CPU operation explicitly issues a synchronization request or depends

on data from GPU computations, PyTorch will allow GPU work to proceed asynchronously. In the case of

point ❹, the preceding kernel launches simply had yet to complete. Note that our “GPU Kernel Execution”

annotation along the top of Figure 5.7 encompasses not only the region of CPU activity within the “eval” tags,

but continues until some arbitrary point within the suspension. Without further tracing capable of aligning

both CPU and GPU activity in time (e.g., the globaltimer register we used to monitor NVIDIA GPU

execution in Sections 3.2 and 3.3), it is hard to determine exactly where GPU kernel execution ends and the

copy-out operation begins, but we do at least know that kernel execution must end before the resulting data

can be copied to CPU memory.

The unaccounted-for time. With the end of the job at point ❺, we now return to the region of our

timeline marked by point ❻. This span of time comprises nearly eight milliseconds of CPU execution (as

indicated by the measurement near the bottom of Figure 5.7), over a third of the time taken by the entire

job. CPU activity is no cause for suspicion in itself, but this particular region is suspicious due to where it

appears: inserted between the end of the data transfer but before the start of the network’s evaluation. As

stated earlier, we have already preprocessed the input data, and all significant computation should be carried

out by the neural network itself, in the region around point ❸—so what is the purpose of so much activity

that has nothing to do with the the data transfer or the neural network’s execution?

10For readers familiar with PyTorch, we added these markers at the start and end of the network module’s forward function.
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The extremely busy second Python thread. Even without identifying the region marked by point

❻ as a likely waste of time, Figure 5.7 contains a far more suspicious feature: the heavy activity in the

second thread marked by ❼. Could this thread be causing a stall at point ❻, perhaps via some spin-based

synchronization? After a lengthy investigation of this thread, we ultimately found it is unrelated to the activity

at ❻, but it is still worth discussing for two reasons. First, it is illustrative of the relative lack of maturity still

present in AMD’s GPU-compute software (i.e., Pitfall 4.7 in Section 4.3), and, second, it shows the value

provided by fine-grained tracing, which makes the issue unmissable.11

Observation 5.5 A bug in the amdgpu driver can cause ROCm to unnecessarily waste a full CPU core.

After tracking down all of the threads created by ROCm, we arrived at Observation 5.5. We determined

that the thread to the right of point ❼ in Figure 5.7 is created by ROCm’s userspace runtime library to handle

hostcalls. A hostcall is a CPU procedure invoked from GPU code, that does not require the GPU code to

exit.12 In other words, ROCm’s userspace libraries create this thread to listen for requests coming from the

GPU, and allow the thread to persist indefinitely, regardless of how frequently it is used. Normally, this would

not be a problem, as the code run by the thread ought to be suspended if no events occur.13 The reason for

the thread continually spinning (in kernelspace code!) appears to be a bug in the kfd wait on events

ioctl in AMD’s GPU driver for Linux 5.17.14 For reasons we were unable to determine, this ioctl never

actually suspends the caller while waiting for a signal from the GPU. Instead, it spins for some time before

immediately returning to userspace, despite the signal having not occurred. This does not cause a logical

error in the userspace code that issued the ioctl, because the semantics of the ioctl state that it may return

spuriously, even under normal operation. Returning early, therefore, causes the userspace thread to assume it

was spuriously woken up, and to call the ioctl again.

The thread to the right of point ❼ turned out to be a red herring with respect to the activity at point ❻,

even though it is a clear hazard on its own for systems with limited energy or computational capacity. We

could have omitted it from Figure 5.7 entirely, but chose to include it due to the interesting story and for

11Frankly, a tool such as UNIX top should be enough to raise red flags when every PyTorch process creates a thread that wastes an
entire CPU core for no obvious reason.

12Among other things, ROCm uses hostcalls in its support of GPU lambdas, a feature of CUDA and HIP in which a C++ lambda
function can be executed on the GPU, without the programmer needing to place kernel source code into a separate function.

13The loop of the hostcall thread can be seen in the ROCclr source code: https://github.com/ROCm-Developer-To
ols/ROCclr/blob/90f1f61a9d6c28ffd2f844dc773e921444752e47/device/devhostcall.cpp#L282.
Specifically, the doorbell->Wait(...) function should be able to suspend the calling thread.

14We have not checked whether this bug exists in other Linux versions, though 5.17 is still quite recent at the time of writing.
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the sake of completion: we disabled all of PyTorch’s multithreading support wherever possible, so the two

timelines remaining in the figure encompass the entirety of PyTorch’s CPU activity.

The casual waste enabled by high-level scripting. Eventually, additional tracing led us to identify the

cause of the problem at point ❻: the time was spent in internal PyTorch code between the point at which

our script requested a forward-pass of the neural network, and the actual start of the network’s top-level

forward function (the point marked by “eval” in Figure 5.7). This indicated that PyTorch was transparently

invoking several wrapper functions instead of directly calling forward: an assumption we confirmed by

printing a call trace from within the forward function itself. The call trace revealed the culprit: the version

of US-MobileNet V1 provided by the original authors encapsulates the entire neural network within the

DataParallel helper class provided by PyTorch. This fact alone added nearly eight milliseconds of

overhead to every forward pass of the neural network.

Ordinarily, the DataParallel wrapper class is used to simplify multi-GPU training. We never

performed any training, but we understand the draw of applying a simple wrapper to transparently enable

training a single network using multiple GPUs. However, for users like us, who do not have multi-GPU

systems or are not interested in training, wasting up to half of a job’s execution time is more problematic.

We suspect that the original authors never even realized the performance penalty imposed by their blanket

usage of the DataParallel wrapper: it occurs due to the inclusion of an unremarkable line of code,15

has no impact on logical correctness, and the temporal problem only becomes apparent after a thorough

investigation. This is a concrete illustration of a lesson we brought up in Section 5.1.1: while PyTorch may

not be inherently slow, the ease with which time can be unnecessarily wasted is potentially disastrous in a

safety-critical system, and a poor use of time and energy in any setting.

Solving the problem. Fixing the performance problem was easy after identifying its underlying cause:

remove PyTorch’s DataParallel wrapper from US-MobileNet V1. After doing so, we recreated the

timeline using KUtrace; Figure 5.8 shows this new version.

The trace in Figure 5.8 now matches the traditional organization of a GPU application given in Sec-

tion 2.1.1: exhibiting clear “copy-in,” “execute,” and “copy-out” phases at points ❷, ❸, and ❹. Furthermore,

the location of the “eval” tags in Figure 5.8 indicate that the network starts executing immediately after

15The line in question can be seen in the original repository at https://github.com/JiahuiYu/slimmable network
s/blob/5dc14d0357ccfc596d706281acdc8a5b0b66c6d6/train.py#L39.
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Figure 5.8: A visualization of PyTorch’s CPU activity produced by KUtrace, showing the behavior of a
US-MobileNet V1 job after removing the DataParallel wrapper.

the input data is copied to the GPU, and the job completes approximately eight milliseconds faster, both

consistent with our expectations.

Finally, we repeated the set of experiments with varying batch sizes and width multipliers that we used

earlier to produce Table 5.1, but after applying the DataParallel fix. We collected these results into a

new table: Table 5.2.

Observation 5.6 Removing the DataParallel wrapper from US-MobileNet V1 reduced job times

by nearly eight milliseconds regardless of the width multiplier or batch size.

Observation 5.6 is supported by comparing the job times shown in Tables 5.1 and 5.2. Unsurprisingly,

the fix had no significant impact on kernel times. Fixing the DataParallel issue also seems to have fixed

or reduced the overhead mentioned in Observation 5.3: Table 5.2 no longer exhibits a significant increase

in job times at narrower width multipliers. Similarly, Observation 5.4 is far less prominent after fixing the

performance deficiency.

5.2.5 Revisiting Our Motivations: US-MobileNet V1 as Real-Time Case Study

We conclude this section by clarifying one of our goals: we wish to make it easier for other real-time

researchers to evaluate their work using modern, realistic applications like PyTorch. It is easy to find online

articles containing instructions on how to use high-level frameworks to create and train neural networks, but

129



Batch Size
Width Mean Total Mean Job % Kernel

Multiplier Kernel Time (ms) Time (ms) Execution
8 1.00 3.419 7.200 47.5%
16 1.00 6.114 7.843 77.9%
32 1.00 10.783 13.680 78.8%
64 1.00 18.320 23.896 76.7%

128 1.00 36.744 47.733 77.0%
8 0.50 1.839 7.368 25.0%
16 0.50 3.086 7.855 39.3%
32 0.50 4.904 9.043 54.2%
64 0.50 9.079 13.981 64.9%

128 0.50 16.453 26.187 62.8%
8 0.25 1.131 6.909 16.4%
16 0.25 1.662 7.869 21.1%
32 0.25 2.670 8.949 29.8%
64 0.25 4.639 11.209 41.4%

128 0.25 8.589 18.063 47.5%

Table 5.2: US-MobileNet V1’s average total kernel times (as measured by rocprof) and overall job
times with varying width multipliers and batch sizes. These measurements were taken after applying the
performance fix of removing the DataParallel wrapper from US-MobileNet V1.

our goal is narrower: we assume that a real-time researcher is, like us, more likely to modify an existing

application to produce a real-time task. In such a case, understanding PyTorch’s underlying libraries and

expected behavior is a higher concern than understanding topics such as neural-network training. Apart from

the text of this chapter, we have also made the source code of our US-MobileNet V1 application available

online.16

Unfortunately, using complex software like PyTorch when evaluating GPU-management approaches

remains quite uncommon in real-time literature. Many works (e.g., our own work from Section 3.2, Basaran

and Kang (2012), Lee and Al Faruque (2014), Lee and Al Faruque (2016), Jain et al. (2019), etc.) only

evaluate GPU performance using a small number of microbenchmark tasks. More complex tasks structured

as DAGs (directed acyclic graphs) have also seen some attention in real-time GPU research. Even in this

case, however, it is unclear whether DAG-based approaches are capable of scaling to meet the needs of

neural networks requiring hundreds of GPU kernels. For example, both Elliott (2015) and Yang, Amert,

Yang, Otterness, Anderson, Smith and Wang (2018) contain evaluations using the DAG-based OpenVX

computer-vision framework, but both only test real-world DAGs containing fewer than a dozen nodes.

16https://github.com/yalue/slimmable nets rtbench
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Admittedly, some real-time GPU publications, such as Capodieci et al. (2018) or Yang, Wang, Bakita, Vu,

Smith, Anderson and Frahm (2019) do use neural-network workloads in their evaluation. To our knowledge,

however, none of these small handful of papers use PyTorch, despite the tool’s overwhelming success in other

fields.

We do not mean to imply at any of these aforementioned works are incapable of handling the demands of

a high-level framework like PyTorch. In fact, none of the proposed frameworks appear (in our reading) to be

fundamentally incapable of such a task. Regardless, the question of capability is superficial—moving from

the concepts to actually running PyTorch code would largely be an implementation exercise (though certainly

one that is more difficult in some cases than in others). Our point instead is this: if these management

techniques are capable of handling complex applications, then their evaluation should involve complex

applications. Anything less is shortselling the authors’ own work, and hindering the adoption of our field’s

research into other GPU-using domains.

5.3 Chapter Summary

In the same way that Chapter 4 advocates for an alternative hardware platform on which real-time GPU

research can be implemented, this chapter advocates for an alternative software platform with which the

research can be evaluated.

In this chapter, we proposed one such evaluation platform: the US-MobileNet V1 neural network using

the PyTorch framework. In Section 5.1.1, we summarized the relevant structural components of PyTorch’s

code. Based on a simple comparison with a microbenchmark, we found that PyTorch’s layers of abstraction

are not inherently problematic, at least when contrasted with the GPU execution they can carry out. On the

other hand, our work in Section 5.2.4 provided ample evidence that PyTorch applications’ reputation for

being “slow” is not without warrant, as the high-level design makes it easy to overlook mistakes capable of

wasting a significant amount of time.

Apart from our lower-level investigations, Sections 5.2.2 and 5.2.3 present basic information about the

kernels executed by US-MobileNet V1, and the amount of time it takes to execute on our system. In addition

to revealing the performance pitfall we investigated in Section 5.2.4, these sections support our concluding

argument: given that standard computer-vision software such as MobileNet V1 can require executing over
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a hundred GPU kernels, real-time GPU management should focus on supporting applications of similar

magnitude.
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CHAPTER 6: REAL-TIME MANAGEMENT FOR GPU-SHARING NEURAL NETWORKS

With the US-MobileNet V1 benchmark developed in Chapter 5, we are now able to directly investigate an

important question: what, if any, real-time GPU management systems are effective at improving the timing

characteristics of modern neural-network-based applications?

6.1 Implementing GPU Spatial Partitioning and Locking Using ROCm and PyTorch

In this chapter, we use the ROCm software stack and our US-MobileNet V1 benchmark to implement and

test two prominent real-time GPU management approaches from prior work: spatial partitioning and locking.

Spatial partitioning (i.e., allocating non-overlapping sets of CUs to separate tasks) is an obvious candidate for

testing given our AMD GPU’s hardware support and our experience in the topic from Section 4.2. We do not

experiment with fine-grained temporal partitioning, such as instruction-level preemption, due to platform

limitations,1 but we nonetheless implement coarse-grained temporal partitioning, in the form of GPU locking.

We also supplement locking methods from prior work with our own extension: using k-exclusion locking to

share a single GPU.

k-exclusion locks. Unlike typical mutual-exclusion (mutex) locks, which only allow a single task at

a time to access a shared resource, k-exclusion locks allow up to k tasks to access the shared resource at

once. (If k equals 1, then a k-exclusion lock behaves identically to a standard mutex lock.) Prior work used

k-exclusion locks to allocate entire GPUs to tasks in multi-GPU systems (Elliott and Anderson 2011), but, to

our knowledge, this chapter contains the first documented attempts at applying the technique to a single GPU.

We are especially interested in combining k-exclusion locking with spatial partitioning: in the same way that

Elliott and Anderson (2011) assigned entire GPUs to tasks, we can instead assign partitions of a single GPU

to tasks, eliminating the possibility of expensive inter-GPU migrations present in the prior work.

1We conducted some preliminary experiments with hardware preemption support on our Radeon VII GPU, but decided against
pursuing the topic further due to high overheads.
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6.1.1 Implementing Spatial Partitioning

Given the hardware support, using spatial partitioning on AMD GPUs requires fairly little work. Users

can create a stream with a CU mask using the hipExtStreamCreateWithCUMask function, and any

kernels submitted to the stream only use CUs enabled by the mask (we discussed this in more detail in

Section 4.2.3.1). Our experiments, however, required this functionality to be accessible from within Python

scripts, and to be compatible with PyTorch’s own stream API.

Addressing the first of these two requirements, accessing hipExtStreamCreateWithCUMask from

within Python scripts, was fairly straightforward. We created a native Python library, that calls the function

from HIP’s C-language API and returns the resulting hipStream t handle to the Python code. (We used

similar native Python extensions to access the KUtrace API in Section 5.2.4.)

Addressing the second requirement, using the stream handle within PyTorch code, was slightly more

difficult. Typically, PyTorch’s API for managing CUDA or HIP streams uses opaque data structures, enabling

PyTorch to reuse a small pool of pre-allocated streams. PyTorch ostensibly supports using what it calls

“external streams,” which are opaque objects wrapping hipStream t handles allocated by libraries other

than PyTorch. Disappointingly, despite being included in PyTorch’s documentation, implementation of this

feature was incomplete at the time we conducted our experiments; attempting to use it would cause errors.

We successfully worked around the problem by directly modifying PyTorch’s source code: in addition to

some trivial additions to switch statements, our fix required creating a cache of existing PyTorch “stream”

objects, preventing PyTorch from allocating new objects when external stream handles were reused.2

With these two fixes, we were able to spatially partition PyTorch applications on the GPU as follows:

1. Use our Python wrapper to call hipExtStreamCreateWithCUMask. Our wrapper function takes

a CU mask as a hexadecimal string and returns a handle to a HIP stream.

2. Use PyTorch’s API (including our fixes) to create an ExternalStream object using the HIP stream

handle obtained in Step 1.

3. Use PyTorch’s existing torch.cuda.Stream(...) function to prompt any following GPU kernel

launches to use the ExternalStream created in Step 2.

2Support for external streams has since been fixed in the upstream PyTorch respository, but our own fix for PyTorch 1.2 is still
available online: https://github.com/yalue/rocm pytorch.
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4. Execute the remainder of the US-MobileNet V1 code as normal.

6.1.2 Implementing k-Exclusion Locking

Due to queue-oversubscription issues (discussed in more detail in Section 6.2.1.1), we were effectively

limited in our experiments to running at most four US-MobileNet V1 instances. Even with each of these

instances creating a buggy CPU-occupying thread (see Section 5.2.4), our test system had 16 CPU cores,

ensuring sufficient capacity for all four US-MobileNet V1 instances. Our assumption that CPU availability

is never a problem for our task systems enabled us to simplify the k-exclusion approach taken by prior

work, which used complex priority-inheritance mechanisms to determine CPU scheduling (Elliott and

Anderson 2011). We implemented k-exclusion locking using a Linux kernel module, exposing acquire,

release, and set k ioctls. Internally, our kernel module maintains a list of k “slots,” each of which can

be occupied by a separate process.

To obtain the lock, a task issues the acquire ioctl, which places it into a FIFO wait queue and

suspends it until one of the k slots becomes available. The release ioctl, in turn, causes a lock-holding

task to relinquish its own slot. Additionally, release removes a waiting process from the head of the

wait queue, assigns it to the newly empty lock slot, and wakes it up. Even though we assume our system

always has sufficient CPU capacity, we nonetheless boost a lock-holding task’s priority to ensure it is not

preempted by spurious background work. When a task acquires the lock, our kernel module assigns it to

Linux’s SCHED FIFO priority level, and reverts it to SCHED NORMAL priority after it releases the lock.

Finally, the set k ioctl can be called by a manager process to change the number of available slots (this

is only possible if no processes currently hold the lock). Technically, a count of lock holders is sufficient

for a standard k-exclusion implementation; maintaining a list of slots is an extension sometimes known

as slotted k-exclusion (Attiya, Bar-Noy, Dolev, Peleg and Reischuk 1990) or k-assignment (Anderson and

Moir 1997). In our case, we require the slot-based extension for an additional purpose: determining GPU

partition assignments.

6.1.3 Combining k-Exclusion Locking and Spatial Partitioning

Upon returning, our acquire ioctl returns the index of the slot it occupies to the calling process. When

combining locking and CU partitioning, the calling process uses this slot index to determine the task’s GPU
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Figure 6.1: The mapping of partitions to CUs and SEs for various partition sizes. CUs are represented by the
colored squares within the SEs, and colored based on partition assignment.

partition assignment. In order to quickly switch between partitions on a per-job basis, each task creates a

list containing k of PyTorch’s ExternalStream objects at initialization time (following the steps from

Section 6.1.1). Each of these k streams uses a non-overlapping CU mask, containing 60/k CUs (due to the

Radevon VII’s 60 CUs). After acquiring the k-exclusion lock, the PyTorch script simply starts using the

ExternalStream object at the same index as its lock slot. Creating the streams once, at initialization time,

is essential: HIP’s stream-creation process is high-overhead (see Section 4.2.2.1), but instructing PyTorch to

start submitting kernels to a different stream is comparatively negligible.

CU masks for different partition sizes. One of the clearest lessons from Section 4.2 of Chapter 4 is that

even masks with identical numbers of enabled CUs can have extremely different behavior. Fortunately, our

Radeon VII’s 60 CUs are divisible into several evenly-sized partitions that do not fall into the performance

pitfalls. We made use of both SE-distributed and SE-packed partitions, depending on partition size. Being

limited to at most four concurrent tasks means that we only needed to define three different partition layouts,

which we show in Figure 6.1, and list below:

• Two-way partitioning: When dividing the GPU into two partitions, we used the SE-packed partitioning

scheme to force each of the two partitions to fully occupy two of the GPU’s four shader engines. This

configuration is represented by the leftmost image in Figure 6.1. Our experiments in Section 4.2.3.1

showed that this led to slight performance benefits, likely due to the fact that 30 SMs can entirely

packed into two SEs, but not evenly distributed across four SEs.

• Three-way partitioning: When dividing the GPU into three partitions, we used the SE-distributed

partitioning scheme so that each partition occupied five SMs on each of the four SEs. This choice was
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in line with Figure 4.9 from Section 4.2.3.1 (as well as earlier explanations in Chapter 4), which clearly

shows that SE-distributed partitions are faster than SE-packed partitions when using 20 CUs. This

configuration is shown by the middle image in Figure 6.1.

• Four-way partitioning: When dividing the GPU into four partitions, we used SE-packed partitioning to

designate each shader engine as a separate partition. As was the case for two-way partitioning, four

partitions map easily onto the GPU’s four SEs, while it would be impossible to evenly distribute the 15

SMs among four shader engines in a SE-distributed scheme. This configuration is represented by the

rightmost image in Figure 6.1.

6.2 Real-Time GPU Management of Multiple, Identical Neural-Network Applications

With our US-MobileNet V1 benchmark and a handful of management techniques, we are faced with

a large number both of potential task parameters and different management configurations. While our

experiment’s limited size makes us hesitant to extrapolate our results to broader contexts, we found lock-

based GPU management to be entirely detrimental in our constrained subset of US-MobileNet V1 tasks. The

experiments in this section provide evidence in support of this conclusion.

6.2.1 Experimental Setup

Unless otherwise noted, the experiments in this section involve four concurrent US-MobileNet V1

instances, sharing a single GPU. Sections 6.2.1.1 through 6.2.1.3 provide remaining details about how we set

up the experiment and the scenarios we evaluated.

6.2.1.1 Overcoming Practical Limitations to Multiple PyTorch Instances

Before discussing the specific task configurations or management techniques, it is worth stating that the

simple act of starting four concurrent US-MobileNet V1 instances requires overcoming a few hurdles.

Avoiding queue oversubscription. When using ROCm, it is remarkably easy to encounter Pitfall 4.1

from Section 4.3, unless specific steps are taken to mitigate it. As stated in Section 4.2, AMD GPUs such as

the Radeon VII are limited to 32 hardware queues before entering “oversubscription” behavior, with severe

performance degradation. Additionally, on our system, eight of the 32 queues are reserved for graphical work,

leaving only 24 for computational work such as HIP streams. As stated in Sections 4.2.2.2 and 6.1.1, both
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internal ROCm and PyTorch libraries create pools of streams (or lower-level queues), which can encroach on

this limit even if we never require more than one stream. In ROCm’s case, we limited the size of the pool of

shared HSA queues using an environment variable.3 For PyTorch, however, the size of the pool of shared

streams can only be changed by modifying the source code itself. Fortunately, this was also an easy fix for us,

because we were already modifying the relevant stream-related source files as part of our spatial-partitioning

implementation described in Section 6.1.1.

Even while limiting each process to a single stream per shared pool, our k-exclusion partitioning approach

requires creating k additional streams per process, each of which uses a separate CU mask, meaning they are

required to occupy separate hardware queues (see Section 4.2.2.2). In other words, each of our US-MobileNet

V1 tasks requires up to five queues: one default queue in addition to another four queues, one per partition.

This effectively limited us to four concurrent tasks: four tasks require a total of 20 hardware queues, but five

tasks would require 25: exceeding the limit of 32 after accounting for the eight graphical queues.

Memory limitations. In Section 5.2.1 of the previous chapter, we explained our choice to pre-load a

sample of US-MobileNet V1’s input data into CPU memory: avoiding unpredictable and slow disk-access

times while running the application. Unfortunately, maintaining a separate in-memory buffer of input data for

multiple US-MobileNet V1 instances can quickly exhaust system memory. Rather than attempting to limit our

input dataset to a tiny size, we instead opted to load the dataset into a region of shared memory, to which each

task was granted read-only access. This is possible using the mmap function present in Python’s standard

library, in combination with PyTorch’s capability to load data from plain mmap-ed buffers. Pre-loading input

data into shared memory has the added benefit of speeding up our experiments: when multiple US-MobileNet

V1 instances are running concurrently, we only need to wait for the dataset to be loaded into memory once.

Warming up and synchronization. Loading data from disk into CPU memory is only one part of the

initialization process when measuring the performance of GPU applications: initializing ROCm libraries

and transferring kernel code to GPU memory also costs a nontrivial amount of time. This is not unique to

GPU applications, and the practice of running one or more “warmup” iterations (i.e., to ensure code is loaded,

libraries are initialized, etc.) is common in many benchmarking domains. Still, this is particularly important

in our case, as the first iteration of a US-MobileNet V1 forward pass takes nearly eight seconds on our

ROCm test platform. Therefore, in all of our experiments we uses a kernel-supported barrier-synchronization

3Specifically, ROCm allows users to control the size of the pool by setting the GPU MAX HW QUEUES variable.
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operation to ensure that all of our US-MobileNet V1 tasks have completed two warmup iterations before

making any timing measurements.

Avoiding repeated ROCm initialization. We mentioned in the context of our microbenchmarking

framework in Section 3.3 that we needed to avoid initializing CUDA in a parent process, as the act of creating

a child using the fork system call would cause the CUDA context to be copied. The same constraint,

unfortunately, remains in place for ROCm processes, including in the context of Python and PyTorch. While

this requires some attention, it is at least an easy problem to work around: we simply avoid interacting with

any code that requires initializing ROCm (i.e., the PyTorch libraries) outside of child processes.

6.2.1.2 Task Parameters

We varied the batch size and width multipliers of US-MobileNet V1 to define three possible tasks with

different computational requirements: small, medium, and large.

• small: A single job of this task classifies a batch of eight input images, using a width multiplier of

0.25. This task uses the smallest parameters we measured to produce Table 5.2 in Section 5.2.4: in

isolation, we expect jobs of the small task to complete in 6.9 milliseconds on average, including 1.1

milliseconds of GPU kernel execution (about 16% of its job time).

• medium: A single job of this task classifies a batch of 32 input images, using a width multiplier of 0.5.

According to Table 5.2, jobs of this task should only take approximately 9 milliseconds in isolation,

roughly only 2 milliseconds longer than jobs of small. However, medium jobs spend a significantly

larger portion of their time performing GPU execution: about 4.9 milliseconds, or 54% the average job.

• large: A single job of this task classifies a batch of 64 input images, using a width multiplier of 1.0.

According to Table 5.2, jobs of this task require about 23.9 milliseconds to complete on average, when

executing in isolation. Additionally, large jobs execute on the GPU for 18.3 milliseconds on average,

about 76% of each job’s duration.

6.2.1.3 Management Techniques

We tested five GPU-management techniques in this round of experiments, using k-exclusion locking

with different k values, and different partition sizes.
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• Unmanaged: Allow all four competing tasks to access all CUs on the GPU with no additional restric-

tions. This is most similar to the unmanaged “co-scheduling” we investigated using microbenchmarks

in Section 3.2.

• Exclusive Locking: Allow only a single job to execute on the GPU at a time. The single job has full

access to the entire GPU. This is intended to mimic earlier work such as Elliott, Ward and Anderson

(2013), even though, unlike the prior work, our system only contains a single GPU.

• 2-Exclusion Locking: Allow at most two jobs to execute at a time, with no partitioning of the GPU’s

CUs.

• 2-Exclusive Locking, with Partitioning: This allows at most two jobs to execute at a time, but the two

active jobs execute on separate GPU partitions, in the manner described in Section 6.1.3.

• 4-Way Partitioning: Each job is assigned to one of four equally sized, non-overlapping partitions of

the GPU’s CUs. With four partitions and four tasks, locking is unnecessary, as each of the tasks can

always be assigned to the same partition.

Locking granularity. For our first set of experiments, we only consider locking at job-level granularity:

in scenarios requiring locking, tasks acquire the lock at the start of each job and release the lock when the job

ends. Later, we also consider locking on a per-kernel basis in Section 6.2.2.1.

6.2.2 Lock-Based GPU Management: Results

Our overall experiment required running fifteen scenarios: one scenario for each possible combination of

task size from Section 6.2.1.2 and management technique from Section 6.2.1.3. In executing a single scenario,

we ran four identical instances of the selected task size and recorded job times until a full minute had elapsed

(not counting initialization time). After each scenario completed, we collected statistics summarizing all job

times across all four task instances. Table 6.1 contains these results.

Observation 6.1 When considering the combined job times of four concurrent tasks, most GPU man-

agement approaches result in degraded performance.

It is hard to miss Observation 6.1: our attempted GPU-management techniques only served to harm

performance in almost every statistical category and for every task size. There are two notable exceptions:
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4-Way Partitioning slightly sped up the average-case times for medium and large tasks, and 2-Exclusion

locking (without partitioning) resulted in slight improvements to average-case performance for large

tasks. Even so, in these cases where additional management led to improved average-case performance, the

difference was always within a single standard deviation of the “Unmanaged” performance, with notable

drawbacks in other metrics.

Observation 6.2 Exclusive locking always produced the slowest worst-case and average-case perfor-

mance.

Observation 6.2 is apparent by examining the “Exclusive Locking” rows of Table 6.1. This observation

indicates that loss of potential GPU capacity is particularly destructive in neural-network applications. The

magnitude of the slowdown due to exclusive locking decreases with larger tasks, an unsurprising result given

the fact that tasks requiring more GPU resources waste less capacity to begin with. For example, according

to the list in Section 6.2.1.2, small tasks only spend around 16% of each job executing GPU kernels in

isolation, so locking the GPU for the entire duration of a small job potentially leaves the GPU unused for

over 80% of each job. On the other hand, large tasks spend nearly 76% of their jobs executing kernels,

making the capacity loss due to exclusive locking proportionally less extreme (though still more costly than

less-restrictive locking options).

Observation 6.3 The “Unamanged” technique always resulted in the lowest worst-case times.

Observation 6.3 is supported by the contents of the “Max” column in Table 6.1, containing the worst

observed job time from the 60 seconds of execution, across all four tasks. No matter the sizes of the

contending tasks, the “Unmanaged” technique always produced the lowest worst-case time: an unfortunate

indictment of such management for this particular type of application. Put another way: our experiments

never encountered a situation where interference due to sharing GPU hardware was destructive enough (in

the worst case) to overcome the capacity loss imposed by additional management.

Observation 6.4 4-way partitioning improved average-case response times for medium and

large jobs.

In an interesting contrast to Observation 6.3, Observation 6.4 indicates that destructive interference is

common enough that some management is capable of improving average-case times, at least for larger tasks.
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Task Management
Min (ms) Max (ms)

Arithmetic Standard
Sizes Technique Mean (ms) Deviation

small

Unmanaged 6.68 13.64 7.86 1.33
Exclusive Locking 9.00 48.99 39.01 2.91

2-Exclusion Locking 11.40 28.99 19.18 2.50
2-Excl. w/ Partitioning 13.79 38.71 19.09 2.42

4-Way Partitioning 6.74 19.89 8.53 1.43

medium

Unmanaged 8.28 25.30 18.53 3.45
Exclusive Locking 11.41 59.49 45.38 3.63

2-Exclusion Locking 13.88 35.96 24.05 2.77
2-Excl. w/ Partitioning 17.28 42.28 23.81 2.73

4-Way Partitioning 15.14 46.72 17.72 1.96

large

Unmanaged 75.51 88.23 83.43 2.11
Exclusive Locking 24.37 124.09 96.09 2.97

2-Exclusion Locking 41.40 94.71 82.78 1.98
2-Excl. w/ Partitioning 49.55 98.69 86.39 2.06

4-Way Partitioning 66.10 110.80 80.80 4.30

Table 6.1: Average job times when four identical tasks share the GPU, under varying sizes and management
techniques.

Observation 6.4 is supported by the mean times under 4-Way partitioning in Table 6.1, which, for medium

and large tasks, led to the fastest job times by a slight margin. We also provide Figure 6.2 for a more

thorough view of the impact different management techniques have on medium jobs. The leftmost two

curves in medium serve to confirm what we learned from the table: both Unamaged sharing and 4-way

partitioning have similar average job times, but the distribution of times is slightly in favor of the partitioned

approach.

The fact that the benefit of 4-Way Partitioning did not hold for small tasks indicates that partitioning is

more helpful for tasks requiring a larger amount of GPU work—jobs with greater potential both to cause and

receive interference. As for the reason why 4-way partitioning’s benefits do not extend to worst-case times,

we can only speculate. For example, despite its average times being the fastest under partitioning, large

also experienced its second-worst worst-case time under partitioning. This indicates a rare but potentially

costly source of interference that is shared among the entire GPU, but the rarity of such outliers makes them

harder to investigate. Both Table 6.1 and Figure 6.2 make it clear that the benefit to average-case times is

rather minor: less than a single standard deviation away from the Unmanaged times for both medium and

large tasks.
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Figure 6.2: CDFs of medium job times while sharing the GPU with three other medium instances, under
varying management strategies.

6.2.2.1 Per-Job or Per-Kernel Locking?

While easier to implement, one may reasonably question whether the coarse-grained approach of holding

a GPU lock for the duration of a job is more effective than alternative locking approaches, i.e., holding the

lock for shorter amounts of time, but acquiring and releasing the lock multiple times per job. Of these, the

most straightforward option is requiring each task to hold a lock prior to launching a single GPU kernel, and

to release the lock when each kernel completes. Rather than replicating the full set of experiments used for

Table 6.1, we evaluated per-kernel and per-job locking using a much narrower experiment: sharing the GPU

between up to two medium tasks.

Implementing per-kernel locking. Access to the underlying ROCm libraries makes it relatively

straightforward to implement per-kernel locking. For this, we modified HIP’s internal kernel-launch function,

ihipModuleLaunchKernel,4 to acquire a lock prior to enqueueing kernel-launch commands. Unfortu-

nately, per-kernel locking cannot allow multiple asnychronous kernel launches from a single task, as this

4Source code for this, and our other ROCm modifications, is available online: https://github.com/yalue/rocm mega r
epo.
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With
Management Min (ms) Max (ms)

Arithmetic Standard
Competitor? Mean (ms) Deviation

Unmanaged 8.81 14.68 9.74 0.60
No Per-Kernel Locking 15.29 22.09 16.88 0.85

Per-Job Locking 8.87 15.27 9.85 0.59
Unmanaged 8.57 16.84 11.37 1.21

Yes Per-Kernel Locking 16.47 27.38 20.38 1.77
Per-Job Locking 13.52 29.98 23.03 1.97

Table 6.2: Response times of a medium task, both with and without a single additional medium competitor,
contrasting per-kernel and per-job locking approaches.

could allow a task to “extend” the time it holds the lock indefinitely—degenerating into per-job locking.

Therefore, we also required ihipModuleLaunchKernel to wait for the kernel to complete and release

the lock before returning. In other words, per-kernel locking prevents asynchronous kernel launches. An

ideal solution would require locks to be acquired and released immediately at the start or end of GPU kernel

code, meaning that kernels could be enqueued ahead of time, but would still not concurrently execute on

GPU hardware. Unfortunately, to the best of our knowledge, neither AMD nor NVIDIA GPUs provide

mechanisms for accomplishing this. Short of destroying a context entirely, we are unable to prevent a kernel’s

execution after writing the kernel-launch request into a hardware queue (i.e., after writing the kernel-launch

AQL packet into an HSA queue, as described in Section 4.2.2.1).

Per-kernel and per-job locking experiment. As with the set of experiments at the start of Section 6.2.2,

we once again configured tasks to run jobs for 60 seconds (not including warm-up iterations), during which

we recorded response times. Table 6.2 summarizes the resulting measurements.

Observation 6.5 Per-kernel locking causes high overheads for tasks running in isolation.

Observation 6.5 is supported by the top half of Table 6.2, which summarizes the overhead a single

medium task experiences when the different forms of locking are enabled. Unsurprisingly, per-job locking

causes very little overhead when there is no contention for the GPU, slowing job times by only a few

hundredths of a millisecond over their Unmanaged counterparts. The consequences of using per-kernel

locking are stark: causing job times to increase by nearly seven milliseconds in the minimum, maximum, and

average cases.5 This illustrates the fact that preventing asynchronous kernels can result in extreme capacity

5In order to eliminate the possibility of these results being due to locking overheads, we ran a separate experiment in which we
performed per-job locking, but replaced the single lock-acquire ioctl at the start of each job with a loop that released and
re-acquired the lock 104 times. This led to no obvious increase in job times over the normal Per-Job Locking results in Table 6.2.
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loss: being unable to enque subsequent kernels as prior kernels complete appears to significantly reduce

hardware efficiency, especially for US-MobileNet V1 tasks requiring over 100 kernels.

Observation 6.6 Under contention, per-kernel locking wastes less capacity than per-job locking, but is

still far slower than Unmanaged GPU sharing.

The lower half of Table 6.2 summarizes the job times when two medium tasks contend for the Radeon

VII. The results in this half of the table support Observation 6.6: despite the consequences to job times

in isolation, the finer-grained per-kernel locking clearly improves GPU utilization compared to per-job

locking, speeding up both worst- and average-case job times by roughly three milliseconds. Even so, jobs’

performance under per-kernel locking is nowhere near as fast as the speeds possible when the jobs are allowed

to access the full GPU with no additional restrictions.

Observation 6.7 Per-kernel exclusive locking between two contending medium tasks leads to slower

per-job performance than when four tasks of the same size are managed using 4-Way Partitioning.

The final observation we take from this experiment serves as yet another strong condemnation of applying

exclusive GPU locking to neural networks. In Table 6.1, we see that four medium tasks have average job

times of 17.72 milliseconds when partitioned to four separate sets of CUs, and average job times of 18.53

milliseconds when left unmanaged. In contrast, we see in Table 6.2 that both per-kernel and per-job locking

lead to slower average job times, despite running half the number of concurrent tasks.

Per-kernel locking: conclusions. While this short experiment indicated that per-kernel locking may

offer some benefits over per-job locking when the GPU is contested, the overhead imposed on isolated

tasks is hard to justify. More importantly, our experiments with per-kernel locking do nothing to dispel

Observation 6.2: in our experiments, any sort of exclusive GPU locking seems to be far worse than partitioning

or no management at all.

6.2.3 Summary of Results

Without any reason to prioritize results from one task over another, our negative conclusions pertaining to

GPU locking may not be surprising: if maximizing system-wide throughput is a primary goal, then additional

overheads will only be detrimental.
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Observation 6.3, however, poses a more inconvenient truth for would-be real-time GPU management

approaches: not only are most approaches not beneficial from an average-case standpoint, they also serve no

benefit from a worst-case perspective, likely as additional overheads harm worst-case times more than the

interference they seek to prevent.

None of this is to say that contention for GPU hardware is not a problem at all. In fact, our results for

four-way partitioning specifically refute such a claim, leading to slight performance improvements over

unmanaged GPU sharing, even when evaluated solely from the standpoint of throughput. As we shall discuss

in the following section, GPU partitioning becomes even more useful when we wish to prioritize the timing

predictability of a single task.

What about NVIDIA GPUs? Given prior work’s positive portrayal of lock-based management using

NVIDIA GPUs, one may be tempted to believe that this section’s negative results are platform-specific.

While we admittedly only ran this set of experiments on an AMD GPU, we have good reasons to believe

that similar performance degradation due to locking would apply in equal, if not greater, measure on modern

NVIDIA GPUs, especially in embedded cases where MPS cannot be used. As we learned in Section 3.2,

NVIDIA GPUs already co-schedule multiple processes using time slicing, meaning that external lock-based

management will only impose additional blocking without the potential to reduce hardware interference.

Is this actually a realistic application? Another tempting rebuttal to the results in this section may

be to claim that our US-MobileNet V1 benchmark is an unrealistically demanding application compared

to the microbenchmarks favored by prior work, or compared to whatever processing pipelines currently

serve to control experimental autonomous systems. Unfortunately, such a claim is far from the truth; if

anything, our US-MobileNet V1 tasks are less sophisticated than many real-world neural networks, much less

full computer-vision processing pipelines (as stated in Section 2.3, image-classification algorithms such as

US-MobileNet V1 only serve as one of many components in such a system).

US-MobileNet V1 is actually designed to be a small neural network. The entire point of the underlying

MobileNet V1 architecture was to produce a neural network capable of running on edge-computing, mobile

devices (Howard et al. 2017), hence the name. Our experiments found that additional management performed

poorly even when running the network at a width multiplier of 0.25—at which it only correctly classifies

approximately 50% of its input images (Yu and Huang 2019b). For comparison, the most accurate neural

network at the time of writing classifies 91% of the ImageNet dataset correctly, and is approximately 1,000
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times larger than US-MobileNet V1 running at full width (Yu, Wang, Vasudevan, Yeung, Seyedhosseini and

Wu 2022). Certainly, these large, modern networks were not designed for embedded use cases, but the trend

is clear: MobileNet V1 was considered small from the time of its creation. After five years of hardware

improvements and expanding applications, if it fails to be representative of modern use cases, it is due to not

being complex enough.

6.3 Using Partitioning to Protect High-Priority Tasks

Our experiments in Section 6.2 that lock-based GPU management is unlikely to lead to any sort of

improvement for neural-network applications such as US-MobileNet V1, but this conclusion had two caveats.

First, the results considered system-wide performance, counting job times from all tasks with equal priority.

Second, Section 6.2 found one GPU-management option remained mostly beneficial: spatial partitioning.

In this section, we combine these two factors to examine another common target of prior real-time GPU

research: prioritizing some tasks over others.

6.3.1 Prioritizing US-MobileNet V1 Tasks Using CU Masking

A successful prioritization approach for real-time GPU management ought to not only improve the

average-case response times of a high-priority task, but also the task’s worst-case times. We restructured

several aspects of our GPU-sharing experiment from Section 6.2 to design a new set of scenarios in which

we measure the performance of a single measured task when facing contention from several competitors of

differing sizes.

Experimental setup. For this new set of experiments, we arbitrarily chose a medium task to serve

as our measured “high-priority” task. Our experiment involved 16 scenarios in total, using four partition

sizes and four different sets of competitors. For competitors, we tested the measured task in isolation, or in

contention with three instances of small, medium, or large tasks. As for partition sizes, our experiments

either allowed the measured task to share the full GPU with competitors, or assigned it to a partition containing

15, 20, or 30 CUs. In the partitioned cases, we assigned the non-measured competitors to the remaining CUs,

and followed the strategies outlined in Section 6.1.3 for producing CU masks of the correct sizes.
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Competitors
Partition

Min (ms) Max (ms)
Arithmetic Stdandard

Size (CUs) Mean (ms) Deviation

None

15 13.874 21.260 14.043 0.233
20 11.428 21.661 11.591 0.277
30 9.405 18.102 9.596 0.423

Unpartitioned 8.233 17.844 8.994 0.572

small

15 14.044 22.174 14.886 0.441
20 11.554 20.799 12.377 0.489
30 9.458 21.218 10.602 1.170

Unpartitioned 8.313 22.686 10.093 1.507

medium

15 15.360 28.716 18.920 1.745
20 11.936 26.215 15.112 1.399
30 9.360 23.154 12.042 1.438

Unpartitioned 9.390 25.486 14.791 1.733

large

15 16.792 31.922 18.702 1.123
20 13.577 32.797 15.018 0.978
30 10.387 20.021 11.758 1.367

Unpartitioned 8.767 52.856 24.921 4.158

Table 6.3: Table of job times for a medium neural network (using a batch size of 32 and a width multiplier
of 0.5).

As with all of our experiments in this chapter, we allowed all tasks in each scenario to run for 60 seconds,

not including warm-up time. Unlike in other experiments, however, we only collected job-time measurements

for the single medium measured task. Table 6.3 summarizes the results.

Observation 6.8 Partitions of any size improved the measured task’s average-case performance in the

presence of large competitors.

Observation 6.9 Partitions of any size improved the measured task’s worst-case performance in the

presence of large competitors.

Observations 6.8 and 6.9 are supported by the bottom portion of Table 6.3. Additionally, these two

observations are supported by Figure 6.3, which contains CDF plots for the portion of Table 6.3 corresponding

to large competitors. Even when restricted to a partition containing 15 CUs, the measured task still exhibited

faster average and worst-case times than when sharing the entirety of the GPU with large. While Figure 6.3

contains some of the same information as the bottom four rows of Table 6.3, the CDF plot gives a clear

visual representation of the benefits partitioning can have to the predictability of the measured task’s response

times. Not only are all of the “Partitioned” curves to the left of the “Unmanaged” curve, indicating faster
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Figure 6.3: CDFs of a medium task’s response times when competing against three large competitors,
using different partitioning schemes.

performance, the curves are also much narrower horizontally, indicating a narrower distribution of response

times with a thin tail containing few outliers.

Observation 6.10 Partitioning becomes less effective or detrimental when facing small amounts of

contention.

Observation 6.10 is supported by the sections of Table 6.3 showing the performance against small

and medium competitors. Against three medium competitors, our medium measured task only fared

better than its Unpartitioned performance when it was allocated 30 CUs: half of the entire GPU. This

performance indicates that even three medium competitors do not cause enough contention for GPU

hardware to overcome the downsides associated with large reductions to the number of CUs available to the

measured task. Observation 6.10 is even more apparent when considering the average-case performance of

the measured task against small competitors, where average Unpartitioned performance was faster than any

partitioning size.
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6.3.2 Summary of CU-Partitioning Experiments

Unlike our experiments in Section 6.2, our spatial-partitioning experiments were mostly positive. Clearly,

spatial partitioning remains an effective method for reducing harmful hardware contention without inducing

unnecessary overhead, even when applied to applications such as US-MobileNet V1. While we observed

greater efficacy with higher amounts of contention and relatively little benefit for smaller task sizes, we do not

find results such as Observation 6.10 to be particularly discouraging. Our attitude in this matter stems from

the same information with which we concluded Section 6.2.3: we intentionally erred on the side of keeping

our US-MobileNet V1 benchmark small and simple. Real-world neural networks, such as those likely to be

employed in a safety-critical autonomous system, are likely to be larger themselves and subject to greater

amounts of contention from other tasks in a system consisting of multiple software components. In such

a situation, our experiments from this section indicate that GPU spatial partitioning is still a management

technique well worth pursuing.

6.4 Chapter Summary

In Chapter 1, we claimed that “simplistic models of GPU behavior and restrictive requirements placed

on GPU software are unable to handle modern GPU-accelerated AI.” In this chapter, we used our platform

knowledge from Chapter 4 along with the US-MobileNet V1 application from Chapter 5 to finally provide

clear support of this claim. In Section 6.2, we found that capacity loss is a significant concern: in our

experiments, the additional blocking caused by lock-based approaches far overshadowed any benefits due to

a reduction in contention for GPU hardware.

Apart from the disappointing conclusions in Section 6.2, in Section 6.3 we found spatial partitioning

to be quite effective if one’s goal is not maximizing GPU throughput, but protecting a single task from

interference due to larger competitors.

Logical correctness and throughput. While most of the material presented in this dissertation remains

concerned with the timing behavior of GPU applications, it would be remiss to omit discussing an important

point last mentioned in Chapter 1: temporal correctness is not the only requirement from AI applications.

Useful results, naturally, must also be logically correct. Readers may have noticed this chapter’s primary

focus on average-case performance, which often falls outside the purview of real-time research, being

dismissed as “real fast.” We do not dispute the utility of bounding tail latencies or reducing the number
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of temporal outliers, but sacrificing too much throughput in favor of these other concerns is also unlikely

to make a neural-network-based system safer. Our discussion of Figure 1.1 in Chapter 1 implied that, for

most neural networks, greater throughput is greater safety. Ultimately, a safety-critical neural network must

maximize the probability of producing a logically correct result within a given window of time—a goal

served equally well, if not better, by focusing on “real-fast” performance. Therefore, this chapter’s increased

focus on throughput still serves the same goal as all other real-time research: producing safer software.
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CHAPTER 7: CONCLUSION

It seems contradictory to claim that any system is “safety critical” when it is built using hardware with

poorly understood behavior, or when its software lacks any guarantee of logical correctness. Heedless of this

fact, developers of safety-critical systems such as autonomous vehicles seem to be guided by the principle

that “perfect is the enemy of good,” staking human lives on statistical properties of software with well-known

shortcomings. Short of major catastrophes, our criticisms remain unlikely to halt or pause development of

such systems, leaving us with two options for improving safety: first, we can educate the relevant research

communities on how to avoid certain risks, and, second, we can develop middleware systems capable of

mitigating the risks in a transparent manner.

This dissertation contributes to both options. GPUs play a pivotal role in modern safety-critical systems,

providing much-needed acceleration for artificial-intelligence and computer-vision computations. First, by

providing additional information about GPU behavior, we both educate users about inherent risks and build

the capability to produce models with which timing behavior can be predicted. Second, by developing

and testing a neural-network-based real-time benchmark, we support accurate evaluation of past and future

real-time GPU-management techniques, and promote easier integration with high-level applications.

7.1 Summary of Results

In support of our thesis statement in Section 1.4 of Chapter 1, we made the following contributions:

Measuring the performance impact of unmanaged co-scheduling on NVIDIA GPUs. In Section 3.2,

we investigated whether GPU co-scheduling can maintain temporal predictability while reducing capacity

loss, even without additional management. We co-scheduled multiple microbenchmark applications on a

single, embedded NVIDIA GPU in several experiments, and found promising results: co-scheduling improved

system throughput with no obvious negative impacts on temporal predictability. On the other hand, these

results relied on NVIDIA’s default time-sliced management of multiple contexts, which prevents inter-process
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concurrent execution on the GPU hardware. This motivated our subsequent contributions, which sought to

enable true concurrent usage of GPU hardware by multiple independent tasks.

Developing a microbenchmarking framework for investigating GPU queueing behavior. In

Section 3.3, we developed and explained the need for a microbenchmarking framework, capable of carrying

out the black-box experiments we used to discern scheduling behavior on NVIDIA GPUs. We later ported

the framework to use AMD’s software stack, and used it for our AMD-based experiments in Section 4.2 of

Chapter 4.

Discerning queueing rules governing NVIDIA GPU sharing. In Section 3.4, we discerned several

fundamental rules governing the order in which kernels submitted to different CUDA streams execute on

an NVIDIA GPU. Absent confounding factors such as stream priorities or implicit synchronization, we

discovered that all kernels from separate streams enter a single per-context “primary” queue based on the

order in which they reach the head of their stream queues. From the single primary queue, kernels can begin

executing in FIFO order as long as sufficient GPU computational capacity is available.

Investigating synchronization pitfalls with NVIDIA GPUs. In Section 3.5, we investigated several

causes of synchronization in NVIDIA GPUs, which can stall CPU or GPU activity while waiting for

ongoing GPU work to complete. In addition to documenting behavioral differences of different types of

synchronization, we found additional pitfalls including the potential for blocking “asynchronous” CPU tasks

and discrepancies between documented and actual behavior.

Documenting internal AMD GPU scheduling behavior. In Section 4.2, we documented the internal

mechanisms responsible for scheduling computational kernels on AMD’s GCN-architecture GPUs. Despite

having an open-source software stack, documentation pertaining to AMD GPUs’ internal behavior remains

hard to find. We combined several sources of information with white-box experiments to contrive an example

workload that intentionally used AMD-specific “worst practices” to achieve surprisingly poor performance in

simple matrix-multiplication tasks. By explaining the bad behavior, we not only clarified how the specific

problems can be avoided, but also explained the entire process by which GPU kernels and thread blocks are

assigned to AMD hardware.

Providing guidance on using CU masking to spatially partition AMD GPUs. In Section 4.2.3.1, we

focused specifically on the AMD-specific CU-masking API for spatially partitioning the GPU’s computational

resources. CU masking plays an integral role in kernel scheduling on AMD GPUs as a whole, and was one of
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the methods with which we intentionally triggered the poor performance mentioned in the previous paragraph.

AMD’s official documentation includes little, if any, information on the impact certain CU-mask choices

can have on performance, so our guidance on correct CU-mask usage is a key contribution of Chapter 4. We

identified two CU-masking approaches, SE-distributed and SE-packed, each of which may be more or less

effective depending on partition sizes.

Producing a real-time benchmark using a modern PyTorch neural network. In Chapter 5, we

addressed what we view as a key need in real-time GPU research: relevant benchmarks for neural networks,

the flagship applications of modern GPU programming. To produce a suitable benchmark, we adapted an

existing image-classification neural network: US-MobileNet V1. Despite being considered a “small” network

by many standards, US-MobileNet V1 still launches over 100 GPU kernels, and can take tens of milliseconds

per job (depending on input sizes and accuracy settings). Our investigation of US-MobileNet V1 also included

the PyTorch neural-network programming framework in which it was developed. Our efforts in Chapter 5

encountered the pitfall that is nearly synonymous with high-level programming: unintentionally wasted

computational capacity. We used KUtrace, a tool that traces system-wide CPU activity on Linux, to identify

and fix some performance mistakes in US-MobileNet V1, leading to faster response times as well as an

ancillary observation: high-level frameworks like PyTorch are not inherently unsuitable for real-time work,

but they can certainly make timing problems easy to introduce.

Evaluating locking- and partitioning-based management of neural-network applications. In

Chapter 6, we revisited two GPU-management approaches from prior real-time research: locking and spatial

partitioning. Our management implementations relied on our findings about AMD GPU hardware and

software from Chapter 4, and our evaluation was based on the US-MobileNet V1 application we developed

in Chapter 5. Our evaluation found that lock-based management incurs significant capacity loss when used

with US-MobileNet V1, more than negating any benefits of reduced hardware contention. On the other hand,

we found spatial partitioning to be beneficial, both improving throughput and reducing worst-case response

times, especially for tasks more sensitive to interference due to heavy GPU utilization.

7.2 Future Work

Our work includes several possible avenues for future developments.

154



Expanding the availability of real-time neural-network benchmarks. Recent years have seen some

encouraging progress in the development of realistic, neural-network-based GPU benchmarks. For example,

the Tango DNN Suite (Karki, Keshava, Shivakumar, Skow, Hegde and Jeon 2019) is one such effort that

produced a C-language implementation of several neural-network architectures. Even so, a scan of Tango’s

source code reveals a need for significant corrections before it is an appropriate real-time benchmark, such as

restructuring logic into repeating jobs, or preloading the neural-network’s weights into GPU memory prior to

starting to execute kernels. A small number of prior real-time papers (Yang et al. 2019) use neural networks

developed using the DarkNet framework,1 which is conveniently implemented in C rather than Python. Still,

we are unaware of any real-time GPU research apart from our own that evaluates management techniques

using a “big” framework such as PyTorch or Tensorflow. While high-level frameworks may not be ideal to

use in deployed embedded products, improved support for them in real-time research would still serve to

promote integration with other disciplines, where such tools remain incredibly popular.

Performance optimizations and detailed tracing. While high-performance computing research

continues to thrive, issues such as the ones we discuss in Chapter 5 persist, even in relatively popular

applications such as US-MobileNet V1. The fact that our trace-based analysis easily uncovered the fact that

US-MobileNet V1 causes ROCm’s internal libraries to waste an entire CPU core suggests there are plenty

of low-hanging performance fixes for researchers willing to perform similar investigations. Future work

applying KUtrace or other tracing tools can identify and fix timing pitfalls in other other deep-learning

software frameworks or GPU drivers.

Combining spatial partitioning with fine-grained temporal partitioning. Combining fine-grained

temporal partitioning, such as hardware-supported preemption, with spatial partitioning techniques remains

a promising area for future work. For example, an ideal GPU-management platform could combine the

deadline-based GPU scheduling by Capodieci et al. (2018) with the hardware-partitioning work by Jain et al.

(2019). In the future, we expect such combined approaches to be possible on both NVIDIA and AMD GPUs,

so long as NVIDIA’s MIG partitioning remains available and AMD’s hardware-preemption support becomes

sufficiently performant with future GPUs.

1https://pjreddie.com/darknet/
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GPU-management possibilities enabled by NVIDIA’s new open-source Linux driver. NVIDIA

recently released an open-source GPU driver for Linux,2 which sadly arrived too late to factor into our

NVIDIA-related work from Chapter 3. In future work, an open-source driver should enable GPU-management

techniques that were previously only possible with the help of NVIDIA collaboration, such as the work by

Capodieci et al. mentioned in the previous paragraph.

7.3 Other Related Work

We close by acknowledging some of our non-GPU-related research, which was not included in this

dissertation. Along with several collaborators, we also conducted a series of projects aimed at enabling

mixed-criticality scheduling in combination with CPU, DRAM, and cache partitioning on an embedded

ARM-based platform. In one publication, we proposed several methods to allow data sharing in contexts

where concurrent access to shared-memory buffers may break temporal-isolation guarantees.3 In follow-up

work, we extended our data-sharing techniques to executable code contained in shared libraries.4 Next, we

proposed methods for handling mode changes: alternating between different task systems without breaking

isolation guarantees.5 Finally, we proposed methods for enabling memory-mapped device I/O on our platform,

while maintaining memory and cache partitioning.6

2https://github.com/NVIDIA/nvidia-installer

3This work appears in Chisholm, Kim, Ward, Otterness, Anderson and Smith (2016). Reconciling the Tension Between Hardware
Isolation and Data Sharing in Mixed-Criticality, Multicore Systems. IEEE Real-Time Systems Symposium (RTSS).

4This work appears in Kim, Chisholm, Otterness, Anderson and Smith (2017). Allowing Shared Libraries While Supporting
Hardware Isolation in Multicore Real-Time Systems. IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS).

5This work appears in Chisholm, Kim, Tang, Otterness, Anderson, Smith and Porter (2017). Supporting Mode Changes While
Providing Hardware Isolation in Mixed-Criticality Multicore Systems. International Conference on Real-Time Networks and
Systems (RTNS).

6This work appears in Kim, Tang, Otterness, Anderson, Smith and Porter (2020). Supporting I/O and IPC via Fine-Grained OS
Isolation for Mixed-Criticality Real-Time Tasks. Springer Real-Time Systems journal.
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