
J Supercomput (2015) 71:808–823
DOI 10.1007/s11227-014-1326-3

Automatic scoping of task clauses for the OpenMP
tasking model

Chun-Kun Wang · Peng-Sheng Chen

Published online: 2 December 2014
© Springer Science+Business Media New York 2014

Abstract OpenMP provides an easy-to-learn and powerful programming environ-
ment for the development of parallel programs. We propose here an algorithm for
the automatic correction of the OpenMP tasking model. Assuming a compiler or pro-
grammer has identified task regions in the source programs, the proposed algorithm
will automatically generate correct task clauses and synchronization. The proposed
algorithm is implemented here based on the ROSE compiler infrastructure; 14 bench-
mark programs are tested, each of which has had all clauses in the task directives
removed for the evaluation. The results of this experimental evaluation show that the
proposed technique can successfully generate correct clauses for the tested bench-
mark programs. The proposed technique can simplify the parallelizing of programs
using the OpenMP tasking model, making parallel programming more effective and
productive.

Keywords OpenMP · Tasking model · Parallelization · Validation

1 Introduction

Shared-memory multi-core/multi-processor architectures are becoming increasingly
mainstream in modern computer systems, and OpenMP is one of the most important

C.-K. Wang
Department of Computer Science and Information Engineering, National Chung Cheng University,
Chiayi 621, Taiwan
e-mail: amos76530@gmail.com

P.-S. Chen (B)
Department of Computer Science and Information Engineering, Advanced Institute of Manufacturing
for High-tech Innovations, National Chung Cheng University, Chiayi 621, Taiwan
e-mail: pschen@cs.ccu.edu.tw

123



Automatic scoping of task clauses for the OpenMP tasking model 809

programming approaches for this architecture [22]. OpenMP supports a simple and
flexible programming interface for the development of portable and scalable paral-
lel applications. It consists of compiler directives, library routines, and environment
variables for C, C++, and Fortran programs. It also provides programmers with sev-
eral parallel patterns for writing parallel programs, such as parallel, work-sharing,
combined parallel work-sharing, tasking constructs, and synchronization constructs.
OpenMP is designed to execute correctly a program in two ways: (1) parallel exe-
cution has OpenMP directives enabled and the OpenMP supported library is linked;
and (2) sequential execution, during which OpenMP directives are ignored and the
OpenMP stub library is linked. An OpenMP-compliant implementation is not required
to check issues of data dependencies, data conflicts, race conditions, deadlocks, or
improper uses of directives. The use of OpenMP in applications is intended to pro-
duce conforming programs. Therefore, even if OpenMP is easy to study and use,
much time is often required for the manual step-by-step writing of a correct parallel
program.

1.1 OpenMP tasking model

The OpenMP tasking model [6,10] was proposed to allow users to exploit the par-
allelism of irregular and dynamic program structures, such as unbounded loops,
recursive algorithms, and producer–consumer patterns. Figure 1 shows the syntax
of the OpenMP task construct. The supported clauses, which control the data-sharing
attributes of the variables, areshared,private,firstprivate, anddefault.
A task construct is composed of the code to be executed and its data environment. Users
need to select task regions and insert proper task constructs to enclose the chosen task
regions.

Fig. 1 Syntax of the OpenMP task construct

123



810 C.-K. Wang, P.-S. Chen

(a) (b)
Fig. 2 Parallelization using the OpenMP tasking model

Figure 2a shows a sequential code fragment and Fig. 2b shows the corresponding
parallel code using the OpenMP tasking model. The execution of the parallel code
is described as follows. First, a thread encounters the parallel directive and then
creates a team of threads based on the fork-join model. The single directive ensures
that only one thread in the team can enter the single construct. The other threads in
the team will become work threads which are possible candidates for the execution of
the generated tasks. When a thread encounters a task construct, it packages the asso-
ciated structured block and data environment into a task. The thread can immediately
execute this task or defer its execution by putting the task into the task pool. The work
threads wait until they find tasks in the task pool. Any work thread may pick up the
task from the task pool and execute it. Accordingly, all while loop iterations can be
quickly screened by one thread, and the parts of the loop body (i.e., the tasks) can be
executed by the work threads at the same time.

A task may be temporarily suspended when a thread encounters a task scheduling
point. A task scheduling point can be explicitly set by the barrier, taskyield,
and taskwait directives, or it can be implicitly decided by some other directives. If
a task is always executed by the same thread upon its resumption from the suspended,
the task is a tied task. Otherwise, it is an untied task. OpenMP provides untied
clause to specify these properties. A task will be treated as a tied task if neither clause
is specified.

OpenMP also provides the taskwait construct to synchronize the execution of
tasks and to preserve dependence relationships among tasks. Task synchronization can
suspend an encountered task until all child tasks of the current task are completed.

Although the OpenMP tasking model provides useful strategies to parallelize irreg-
ular program structures, programmers are required to use proper clauses to describe
the data-sharing attributes of the affected variables to obtain correct execution results,
even if the task regions have been proper selected. Figure 3a is an example of the
improper use of the OpenMP task directives. If the directive is ignored, the program

123



Automatic scoping of task clauses for the OpenMP tasking model 811

(a) (b)
Fig. 3 Examples of using the OpenMP tasking model

is sequentially executed, and we obtain the result: x = 1. If the directive is enabled,
the program is parallel executed, and we obtain the result: x = 0. In this case the
reason for the incorrect result is the misunderstanding of the task data scoping. The
task directive in this program does not describe the attribute of the variable x. When
the program is executed in parallel by enabling the directive, the value of variable
x will not be preserved out of the task region because the default data scoping rule
firstprivate is applied.

Figure 3b shows another example of OpenMP applying implicit rules when data
clauses are not provided in an OpenMP directive. The implicit rules are that a global
variable will be viewed as a shared variable, a variable defined outside an OpenMP
task construct will be viewed as a firstprivate variable in the task construct, and
a variable defined outside an OpenMP parallel construct will be viewed as a shared
variable in the parallel construct.

Accordingly, the data attributes of a, b, c, d, e, and f in the task region are
shared,firstprivate,private,shared,firstprivate, andprivate,
respectively. Implicit rules can make a program difficult to understand and debug.
Although OpenMP explicitly defines rules for handling situations in which no data
scoping clauses are provided, it is error prone and programmers may have difficulties
dealing with the interactions of directives and data scoping, particularly for large and
complicated programs.

In this paper, we propose an algorithm for the automatic scoping of task clauses
in the OpenMP tasking model. Assuming a compiler or programmer has identified
the task regions in the source program, the proposed algorithm will automatically
generate correct task clauses and synchronization. The proposed algorithm is imple-
mented based on the ROSE compiler infrastructure [16,25]. The Barcelona OpenMP
Task Suite (BOTS) [11], one program from the website [28], and two hand-coded

123



812 C.-K. Wang, P.-S. Chen

programs—which have had all clauses removed from the task directives—are used as
benchmark programs for testing. The experimental evaluation shows that the proposed
technique can successfully correct the tested benchmark programs.

1.2 Contributions

This paper makes the following contributions:

1. Automatic correction algorithm for OpenMP tasking model. An algorithm
is presented that automatically generates correct task clauses for the OpenMP
tasking model. The algorithm also inserts proper task synchronization to preserve
data dependence relationships.

2. Experimental results. The proposed algorithm was implemented based on the
ROSE compiler infrastructure. The previously defined benchmarks are used for
the evaluation.
The experimental results show that our approach can correctly generate clauses
and synchronization.

The remainder of this paper is organized as follows. Section 2 describes the proposed
algorithm in detail. Section 3 reports the experimental results of an evaluation of the
proposed approach, and Sect. 4 discusses related work on automatic parallelization
using OpenMP. Finally, the conclusions are presented in Sect. 5.

2 Algorithm

This section describes the proposed algorithm. An OpenMP program can be correctly
executed under two situations: parallel execution, during which OpenMP directives
are enabled and the OpenMP supported library is linked, and sequential execution,
during which OpenMP directives are ignored and the OpenMP stub library is linked.
Assuming an OpenMP program uses the OpenMP tasking model, the proposed algo-
rithm aims to generate a corresponding OpenMP program with proper clauses, whose
parallel execution gives the same result as its sequential execution. The proposed algo-
rithm does not consider the problem of the association of numeric operations affecting
the numeric results during parallel executions.

Two conditions must be satisfied for parallel execution to give the same result as
sequential execution: the scope of each variable value in the sequential program must be
properly reflected in its parallel version, and data dependence relationships [24,29] in
the sequential program must be preserved in the parallel version. These two conditions
underpin the development of the proposed algorithm.

For the task directive, OpenMP provides three clauses (shared, first-
private, and private) for the explicit control of the data-sharing attributes of
the variables. Figure 4a shows a code skeleton of the task directive, which contains
three different attributes of the variables using these clauses. Figure 4b correspond-
ingly shows the scopes of the variable values for the example in Fig. 4a. The variable
a has the attribute shared; therefore, its value before entering the task region is
visible inside the task, and its value remains visible after exiting the task region. The

123



Automatic scoping of task clauses for the OpenMP tasking model 813

(a) (b)
Fig. 4 Code skeleton of the task directive and the scope of its variables’ values

OpenMP program 
using tasking model

Program analysis
- liveness
- define-use chain

Variable identification 
and clauses selection

Task synchronizationValidated program

Input

Output

Fig. 5 Algorithm overview

variable b has the attribute firstprivate; its value before entering the task region
is visible inside the task and after exiting the task region, its value is the value that it
had before entering the task region. The values of variable c inside and outside the
task region are unrelated because it has the attribute private.

Accordingly, if the attributes of the variables can be analyzed, and the variables
can be properly classified based on their attributes, we can know their data-sharing
attributes in the OpenMP execution model, and the issue of the scope of the variable
value can be overcome. The preservation of data dependence can be achieved by
analyzing data dependence relationships and inserting a suitable task synchronization
directive.

Figure 5 shows the proposed algorithm. An OpenMP program using a tasking
model is the input program. First, classic compiler techniques are used to analyze the
program. During the analysis all OpenMP-related directives are ignored and infor-
mation about which code fragments are tasks as identified by the OpenMP directives
is retrieved and fed into the algorithm. Liveness analysis [1,2,20] is used to iden-

123



814 C.-K. Wang, P.-S. Chen

tify the data-sharing attributes of the variables for clause selection. The define-use
chain [1,2,20] is used to clarify data dependence relationships for task synchroniza-
tion. Then, according to the analytic results, OpenMP clauses are selected, and task
synchronization directives are inserted. Finally, the algorithm will output a validated
OpenMP program corresponding to the input program.

2.1 Variable identification and clause selection

The variables that are visible just before their entry to the task region are candidates for
liveness analysis. According to the data-sharing attributes in OpenMP, the liveness of
variables can be classified into four categories: liveinner, livein, liveout, and liveout_mod.
If a variable lives only within a task, it is classified as liveinner. A variable is livein
if it is not used after exiting a task. Variables that are live after exiting a task can be
further classified. If the variable is modified within a task, it is a liveout_mod variable.
Otherwise, it is a liveout variable. Figure 6 outlines the different categories. The variable
x is liveout_mod. The variable w is not modified within the task; therefore, it is liveout.
The variable y is livein, and z is a liveinner variable.

This classification is properly mapped to the data-sharing clauses of the task
directive. According to the classification, it is easier to identify systematically the
proper data-sharing clauses for each candidate variable. Assuming V(t) represents the
set of all candidate variables for a task t, the data-sharing clauses can be determined
by Eq. 1.

A liveout variable can be set to either shared or firstprivate. Using
firstprivate has fewer overheads of data synchronization, which is important
for the performance. Using shared may minimize space and data copying which
may be important for large-sized data and embedded systems. Users can select proper
clause according to their requirements. In the implementation, a liveout variable is set
to firstprivate.

In Fig. 6, the variable x is set to shared, and w and y are set to firstprivate.
The variable z is described by the clause private.

Fig. 6 Variable classification

123



Automatic scoping of task clauses for the OpenMP tasking model 815

Fig. 7 Example of task synchronization

∀Vi ∈ V(t), the clause of Vi =

⎧
⎪⎪⎨

⎪⎪⎩

shared if Vi ∈ liveout_mod,

firstprivate if Vi ∈ (livein ∪ liveout),

private otherwise.

(1)

2.2 Task synchronization

The shared attribute indicates that a variable has data dependence relationships
with some places outside a task. To preserve data dependence relationships, the task
that modifies a shared variable has to be completed before it is used outside the task.
OpenMP provides the task synchronization directive taskwait, which suspends an
encountered task until its direct child tasks have been completed. In the proposed
algorithm, the input program is first analyzed and its define-use chains are constructed
to clarify the data dependence relationships. Task synchronization directives are then
inserted into locations prior to the use of the program. Due to task synchronization
being a barrier to some task executions, postponing synchronization could increase the
parallelism of a program and avoid a parallel execution degenerating to a sequential
execution. Therefore, task synchronization is delayed until the first dependent variable
is encountered. Consider the example in Fig. 6. The variable x is re-defined in the
task and used outside the task. According to the define-use chain, the first dependent
statement is identified, and a task synchronization directive is inserted immediately
before it. Figure 7 shows the corresponding example code.

2.3 Tied and untied tasks

OpenMP regards tasks as tied tasks by default. A tied task is always executed by
the same thread. However, improvements of performance and the avoidance of dead-

123



816 C.-K. Wang, P.-S. Chen

lock may be achievable by making a task untied. Any thread can execute or resume
an untied task. OpenMP provides a directive threadprivate to replicate vari-
ables in which each thread has its own copy. In addition, the execution models
of the directive critical and the built-in function omp_get_thread_num()
have direct relationships with the threads themselves. Because an untied task can
migrate between threads at any task scheduling point, the use of these thread-
centric constructs complicates the behavior of the program and can cause unex-
pected results. Therefore, the proposed algorithm does not consider the use of these
thread-centric constructs. If a program does not use thread-centric constructs, the
proposed algorithm can correctly work, regardless of whether tasks are tied or
untied.

Algorithm 1 lists the proposed algorithm. Assume class_dataflow_analysis() per-
forms liveness analysis and constructs the define-use chain for the input program. For
a task T , a candidate variable of T is a variable that is visible at the point just before
its entry to the task region. First, the program will be analyzed by classic data-flow
analyses. Then, each task is traversed to clarify the relationships between the task itself
and outside the task. For each task, proper data-sharing clauses are computed for its
candidate variables by their liveness properties. Task synchronization is also inserted,
if necessary, according to the dependency relationships obtained from the define-use
chain.

Algorithm 1: Algorithm for correcting OpenMP tasking model
Input: An OpenMP program using the tasking model
Output: A validated OpenMP program corresponding to the input program
begin

/*Do classic program analyses: liveness analysis and define-use chain. */
classic_dataflow_analysis();

foreach task T do
/*Variable identification and clause selection */
foreach candidate variable V of T do

switch liveness class of V do
case liveout_mod

Vclause ←− shared;
break;

case liveout
Vclause ←− f irstprivate;
break;

case livein
Vclause ←− f irstprivate;
break;

otherwise
Vclause ←− private;

/*Task synchronization: using the dependency relationships obtained from the define-use
chain */

Insert task synchronization directives;

end

123



Automatic scoping of task clauses for the OpenMP tasking model 817

3 Experiment

3.1 Experimental environment

The proposed algorithm was implemented based on the ROSE compiler infrastructure
(version 0.95.5a), which was developed at the Lawrence Livermore National Labo-
ratory for building source-to-source program transformation and analysis tools. The
liveness, reaching-definition, and alias analyses provided by ROSE are leveraged in
our implementation. Table 1 lists the configuration of the experimental environment.
Experiments were executed on an Intel 2.67 GHz Corei7 920 processor coupled to
12 GB of RAM and running Ubuntu 10.04. The tested benchmark programs were the
two hand-coded programs, one program from [28], and the BOTS 1.1 benchmarks,
which each had all clauses in each task directive and all task synchronization directives
taskwait removed. Table 2 lists the tested benchmark programs and their charac-
teristics. Each benchmark program was fed into our implementation, and then a new
OpenMP program was generated to give the same results as the original program,
which all directives ignored. The generated OpenMP program was compiled using
GCC 4.4.3 with the “–O2” option; and it was then executed.

Table 1 Configuration of the
experimental environment

Item Value

Hardware CPU Intel Core i7 running at 2.67 GHz

Cache L1: 64 kB, L2: 1 MB, L3: 8 MB

Memory 12 GB

Software Operating system Ubuntu Linux (kernel version: 2.6.32)

Native C compiler GCC 4.4.3 with ”–O2” option

Table 2 Benchmark programs

Program Description Nested tasks Source

Pi Compute the value of π using integrals Yes Hand coding

Knight Find a closed knight’s tour on a chessboard Yes Hand coding

Gram–Schmidt Gram–Schmidt algorithm No Website [28]

Alignment Align sequences of proteins No BOTS

Fib Compute Fibonacci numbers Yes BOTS

FFT Compute a Fast Fourier transformation Yes BOTS

Floorplan Compute the optimal placement of cells in a floorplan Yes BOTS

Health Simulate a country health system Yes BOTS

N Queens Find solutions of the N Queens problem Yes BOTS

Sort Uses a mixture of sorting algorithms to sort a vector Yes BOTS

Sparselu Compute the LU factorization of a sparse matrix No BOTS

Strassen Compute a matrix multiply with Strassen’s method Yes BOTS

UTS Compute the number of nodes in an unbalanced tree No BOTS

123



818 C.-K. Wang, P.-S. Chen

We evaluated the proposed algorithm with the Oracle studio compiler (Oracle
Solaris Studio 12.3 [23]) which provides an autoscoping feature to automatically
determine data sharing attributes. The input to the Oracle studio compiler is the bench-
mark programs which all clauses in each task directive were replaced with the clause
default(__auto) to enable the autoscoping feature. Due to that the Oracle studio
compiler does not support automatic generating taskwait, all the task synchroniza-
tion directives taskwait were also preserved in the inputs.

The results from the generated OpenMP programs, Oracle studio compiler, and
the original OpenMP programs are compared to assess the correctness of the gener-
ated OpenMP programs. The BOTS benchmarks were verified using their own self-
verification methods.

3.2 Results

Table 3 presents the experimental results: the number of tasks, whether containing
taskwait, and comparison results are listed. The ROSE compiler cannot parse the
Alignment, Sparselu, and UTS programs, the modified benchmark programs which
preserve tasking skeletons were used as the input for these three benchmark programs,
the proposed algorithm can correctly generate the corresponding OpenMP programs.
For all the other benchmark programs, the proposed algorithm was able to automati-
cally generate correct OpenMP programs.

Consider the results from the Oracle studio compiler. For the Pi, Knight, Gram–
Schmidt, and Fib programs, the Oracle studio compiler cannot generate correct data-
sharing attributes in task directives. For the Health, N Queens, Sparselu, and UTS
programs, it can successfully identify correct data-sharing attributes. For the remain-

Table 3 Evaluation results for the tested benchmarks

Benchmark # of tasks Containing taskwait Comparison result

Proposed algorithm Oracle studio compiler

Pi 1 Y Correct Error

Knight 1 Y Correct Error

Gram–Schmidt 1 Y Correct Error

Alignment 1 N Parsing error Fail

Fib 2 Y Correct Error

FFT 41 Y Correct Fail

Floorplan 1 Y Correct Fail

Health 2 Y Correct Correct

N Queens 1 Y Correct Correct

Sort 9 Y Correct Fail

Sparselu 4 N Parsing error Correct

Strassen 8 Y Correct Fail

UTS 2 Y Parsing error Correct

123



Automatic scoping of task clauses for the OpenMP tasking model 819

Table 4 Clause comparison

Benchmark Original version Proposed algorithm Oracle studio compiler

S P F S P F S P F

Pi 1 0 2 1 0 2 0 1 2

Knight 1 0 1 1 0 1 0 1 1

Gram–Schmidt 4 2 1 2 5 0 0 2 5

Alignment 8 4 5 4 4 9 8 4 5

Fib 2 0 2 2 0 2 0 2 2

FFT 7 236 0 19 0 224 2 0 241

Floorplan 9 3 5 7 3 6 8 1 6

Health 2 0 1 1 1 1 1 0 2

N Queens 0 0 6 0 0 6 0 0 6

Sort 0 0 34 2 0 32 0 0 34

Sparselu 3 0 7 3 0 7 0 0 10

Strassen 4 0 45 17 0 32 0 0 49

UTS 3 0 3 2 0 4 2 0 4

ing programs, the compiler internally showed that autoscoping for some variables was
not successful.

Table 4 compares the clauses of the original programs, and those generated by
the proposed algorithm and the Oracle studio compiler for the task directives. The
predetermined data-sharing attributes are not counted in the table. For the proposed
algorithm, the gray cells indicate that the benchmark programs were modified in order
to be handled in the ROSE compiler. For the Oracle studio compiler, the bold num-
bers represent that autoscoping is incorrect or failed. The original FFT and Strassen
programs have 7 and 4 shared clauses, but the generated programs have 19 and
17 shared clauses, respectively. This is due to benchmark programs having sev-
eral array and pointer variables, which lead to conservative assumptions underlying
the analytic results. Although the execution results are correct, the increase of shared
variables might hinder the parallelism of the programs. The generated versions of the
Alignment, Floorplan, and Health programs have fewer shared variables than the orig-
inal programs. For the Gram–Schmidt benchmark, the proposed algorithm identified
more private variables than the original program, which can reduce the overheads of
building task runtime environments. These cases show that the proposed algorithm
can generate correct programs while also enhancing performance.

In our implementation, traditional analyses were used to handle array and pointer
data types. The analytic results are correct, but very conservative. However, proper
handling array is an important issue for automatic scoping. The size and behavior of
array in OpenMP programs significantly affects the performance and memory foot-
prints. Some reasonable cost functions should be developed to help compilers to select
proper data-sharing attributes. In addition, accurate interprocedural program analyses

123



820 C.-K. Wang, P.-S. Chen

can help to aggressively identify data-sharing attributes of variables and minimize
taskwait to meet the program issues (e.g., performance, code size).

4 Related work

Some issues of automatic scoping in OpenMP are covered in works that automatically
parallelize programs using OpenMP [9,12–14] and verify OpenMP programs. These
works analyze sequential programs, automatically identify proper code fragments
for concurrent execution, and generate the corresponding OpenMP programs. The
parallelized code fragments and the generated OpenMP program are controlled by
the algorithms. However, in the present study, users specify the parallelized code
fragments, and the proposed algorithm generates the correct clauses of the data-sharing
attributes.

Liao et al. [17] proposed an algorithm to parallelize high-level abstractions (e.g.,
STL and complex user-defined class types) in C++ programs. The semantics and
behaviors of high-level abstractions were analyzed to enhance the accuracy of compiler
analyses. The automatic exploiting parallelism of programs can be improved in the
case of more applicable analytic results. This research focuses on the parallelism
of array-based computation loops using the OpenMP parallel for and task
constructs.

Müller et al. [21] studied the validation of an OpenMP 2.0 implementation. The
validation methodology consisted of a number of routines to test the functionalities of
the OpenMP constructs. For each OpenMP construct, the proposed subroutine would
return ‘true’ while the construct executed as expected, and return ‘false’ otherwise.

The tool VivaMP [15] is a static code analyzer for the verification of OpenMP
programs.

Previous studies have considered the automatic scoping of variables in OpenMP
programs. Bik et al. [8] proposed an algorithm to find automatically parallel loops,
identify the data-sharing attributes of variables, and generate the corresponding multi-
threaded codes, rather than using OpenMP programs. They leveraged liveness analysis
and classic data-flow analyses to ensure the data-sharing attributes of the variables.

Lin et al. [18] proposed several rules for the automatic scoping of variables in par-
allel regions. Programmers can use the new clauses AUTO (list-of-variables)
andDEFAULT(AUTO) to drive a compiler to determine automatically the data-sharing
attributes of variables. Several scoping rules were also proposed for scalar and array
variables. To select a proper rule, a compiler needs to analyze the data race conditions
in the parallel regions and the data dependence relationships between the scoped vari-
ables. If a matching rule is not selected, the binding parallel region will be serially
executed. The proposed approach focuses on the constructs of parallel regions, parallel
work-sharing, and parallel sections; it was implemented on a Sun Studio 9 Fortran 95
compiler. The proposed approach does not support the OpenMP tasking model.

Voss et al. [27] implemented automatic scoping in the Polaris source-to-source
compiler. Similarly to Lin et al. [18], they focused on the Fortran language and imple-
mented the clause DEFAULT(AUTO). A subset of the SPECOMP benchmark pro-

123



Automatic scoping of task clauses for the OpenMP tasking model 821

grams [5] was used for evaluation. The authors did not describe in detail the method
of identifying the scopes of the variables.

The most closely related to the present work are Oracle Solaris Studio 12.3 [23] and
the Auto-scoping for OpenMP Tasks proposed by Royuela et al. [26]. The former [23]
supports the automatic scoping feature. The compiler can handle scoping for the
construct of parallel, work-sharing, parallel sections, and tasking models. The rules
from [18] are extended to handle scoping for the construct of parallel, work-sharing,
parallel sections, and tasking models. The compiler needs to analyze the data races
and read/write behaviors for the scoped variables. If auto-scoping fails, the compiler
will give a warning and assign the related code fragments to be serially executed.

Royuela et al. [26] proposed an algorithm to determine automatically the data-
sharing attributes of variables for the OpenMP tasking model. For an OpenMP task, the
algorithm identifies the code regions that will be concurrently executed with the task.
Then the liveness and user-definition analyses are used to analyze the relationships
between the variables, the concurrent regions, and the task region. According to the
relationships, several rules can be proposed to determine the data-sharing attributes
of the variables. A specific graph, a parallel control flow graph, is constructed for the
analyses in the proposed algorithm.

The main difference between these two previous works and the present study is
that our algorithm does not need to analyze the regions that are executed concurrently
with the analyzed task. Instead, a task synchronization directive taskwait is used
to ensure the data dependence relationships between the concurrent regions and the
analyzed task.

The two previous works may not decide the data-sharing attributes of some vari-
ables, but the proposed algorithm can identify the data-sharing attribute for each vari-
able.

Moreover, we do not need to construct a parallel control flow graph for the analyses.
For our algorithm, the classic control-flow graph and data-flow analyses are sufficient
to recognize the data-sharing attributes of the variables.

The previous works may achieve better parallelism, but the present study is simpler
and easier to implement. In addition, the data-sharing attributes of variables can be
determined using the present study.

5 Conclusion

OpenMP provides an easy-to-learn and powerful programming environment for the
development of parallel programs. An OpenMP program also has portability and can
be executed in most shared-memory multi-core systems. An open source compiler
(GCC) and several major commercial compilers (e.g., Intel C++ compiler, Microsoft
Visual C++) support OpenMP.

Compiler-based automatic parallelization plays an important role in enabling effec-
tive multi-core processing, and

the parallelization strategies [3,4,7,19] affect the design of algorithms. The use of
OpenMP to achieve automatic parallelization has attracted much attention.

123



822 C.-K. Wang, P.-S. Chen

There are two issues that are central to automatic parallelization. The first is the
assessment of which code fragments in the program should be parallelized. This is
related to the parallelization strategy. In most cases, the problem can be solved by
profiling the program execution to find its hotspots or critical paths. The second issue
is the way in which a compiler automatically inserts the correct OpenMP directives
and data-sharing clauses. This problem is closely connected to the program analysis.
Accurate program analyses (e.g., alias and data dependence) allow a compiler to
identify correctly the variable attributes and to understand program behaviors with
less conservative assumptions.

In this paper, we study a possible solution for the second issue. We propose an algo-
rithm for the automatic correction of the OpenMP tasking model. Assuming a compiler
or programmers have identified task regions in the source programs, the proposed algo-
rithm will automatically generate the correct task clauses and synchronization. The
proposed algorithm was implemented based on the ROSE compiler infrastructure,
with 14 benchmark programs—from which all clauses in the task directives had been
removed—being tested. The experimental evaluation showed that the proposed tech-
nique can successfully generate correct clauses for the tested benchmark programs.

The proposed technique can reduce programmers’ burden in parallelizing programs
using the OpenMP tasking model and make parallel programming more effective and
productive.

Acknowledgments This work was sponsored by the National Science Council of Taiwan under Grants
NSC-100-2221-E-194-034-MY2 and 102-2221-E-194-031-MY3. The authors are grateful to the National
Center for High-Performance Computing for computer time and facilities.

References

1. Aho AV, Sethi R, Ullman JD (1986) Compilers: principles, techniques, and tools. Addison Wesley
2. Allen R, Kennedy K (2001) Optimizing compilers for modern architectures: a dependence-based

approach. Morgan Kaufmann
3. Arabnia H, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its

implementation using a multi-stage switching box. In: International conference on high performance
computing: New Horizons (Alberta, Canada, 1993), pp 349–357

4. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-
and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–192

5. Aslot V, Domeika MJ, Eigenmann R, Gaertner G, Jones WB, Parady B (2001) Specomp: a new
benchmark suite for measuring parallel computer performance. In: Proceedings of the international
workshop on OpenMP applications and tools: OpenMP shared memory parallel programming (London,
UK, UK, 2001), WOMPAT ’01, Springer, pp 1–10

6. Ayguadé E, Copty N, Duran A, Hoeflinger J, Lin Y, Massaioli F, Teruel X, Unnikrishnan P, Zhang G
(2009) The design of openmp tasks. IEEE Trans Parallel Distrib Syst 20(3):404–418

7. Bhandarkar SM, Arabnia HR (1995) The refine multiprocessor theoretical properties and algorithms.
Parallel Comput 21(11):1783–1805

8. Bik A, Girkar M, Grey P, Tian X (2001) Efficient exploitation of parallelism on Pentium III and Pentium
4 processor-based systems. Intel Technol J Q1:9

9. Bondhugula U, Baskaran M, Krishnamoorthy S, Ramanujam J, Rountev A, Sadayappan P (2008)
Automatic transformations for communication-minimized parallelization and locality optimization in
the polyhedral model. In: International conference on compiler construction (ETAPS CC)

10. Duran A, Corbalan J, Ayguade E (2008) Evaluation of openmp task scheduling strategies. In: OpenMP
in a new era of parallelism (4th IWOMP’08), Eigenmann R, de Supinski BR eds vol 5004 of lecture
notes in computer science (LNCS). Springer, New York, West Lafayette, IN, USA, pp 100–110

123



Automatic scoping of task clauses for the OpenMP tasking model 823

11. Duran A, Teruel X, Ferrer R, Martorell X, Ayguade E (2009) Barcelona openmp tasks suite: a set
of benchmarks targeting the exploitation of task parallelism in openmp. In: Proceedings of 2009
international conference on parallel processing (38th ICPP’09) CD-ROM (Vienna, Austria, Sept. 2009),
IEEE Computer Society

12. Intel. Automatic parallelization with intel compilers. http://software.intel.com/en-us/articles/
automatic-parallelization-with-intel-compilers/. [Online; Accessed 1 July 2011]

13. Jin H, Jost G, Yan J, Ayguade E, Gonzalez M, Martorell X (2003) Automatic multilevel parallelization
using openmp. Sci Progr 11(2):177–190

14. Johnson S, Evans E, Jin H, Ierotheou C (2005) The parawise expert assistant - widening accessibility to
efficient and scalable tool generated openmp code. In: Proceedings of the 5th international conference
on OpenMP applications and tools: shared memory parallel programming with OpenMP (Berlin, 2005),
WOMPAT’04, Springer, pp 67–82

15. Karpov A (2009) Peaceful coexistence of pc-lint and vivamp. http://www.viva64.com/en/b/0005/
[Online; Accessed 1 July 2011]

16. Liao C, Quinlan DJ, Panas T, de Supinski BR (2010) A ROSE-based openmp 3.0 research compiler
supporting multiple runtime libraries. In: IWOMP, Sato M, Hanawa T, Müller MS, Chapman BM, de
Supinski BR eds vol 6132 of lecture notes in computer science, Springer, pp 15–28

17. Liao C, Quinlan DJ, Willcock J, Panas T (2010) Semantic-aware automatic parallelization of modern
applications using high-level abstractions. Int J Parallel Program 38(5–6):361–378

18. Lin Y, Terboven C, Mey DA, Copty N (2005) Automatic scoping of variables in parallel regions of
an openmp program. In: Proceedings of the 5th international conference on OpenMP applications and
tools: shared memory parallel programming with OpenMP, WOMPAT’04, Springer, Berlin, pp 83–97

19. Mattson T, Sanders B, Massingill B (2004) Patterns for parallel programming, 1st edn Addison-Wesley
Professional

20. Muchnick S (1997) Advanced compiler design and implementation. Morgan Kaufmann
21. Müller MS, Neytchev P (2003) An openmp validation suite., In: Fifth European workshop on Open-

MPAachen University, Germany
22. OpenMP architecture review board (2011) OpenMP application program interface, 3.1 edn. Online

available at http://www.openmp.org
23. Oracle (2012) Oracle solaris studio 12.3: OpenMP API USer’s Guide. http://docs.oracle.com/cd/

E24457_01/html/E21996/, [Online; Accessed 1 Sept 2013]
24. Padua DA, Wolfe MJ (1986) Advanced compiler optimizations for supercomputers. Commun ACM

29(12):1184–1201
25. Quinlan DJ (2000) ROSE: compiler support for object-oriented frameworks. Parallel Process Lett

10(2/3):215–226
26. Royuela S, Duran A, Liao C, Quinlan DJ (2012) Auto-scoping for openmp tasks. In: Proceedings of

the 8th international conference on OpenMP in a heterogeneous World, IWOMP’12, Springer, Berlin,
pp 29–43

27. Voss M, Chiu E, Chow PMY, Wong C, Yuen K (2005) An evaluation of auto-scoping in openmp. In:
Proceedings of the 5th international conference on OpenMP applications and tools: shared memory
parallel programming with OpenMP, WOMPAT’04, Springer, Berlin, pp 98–109

28. Website. Programming of parallel computers, assignment 3, gram-schmidt. https://github.com/
yohannteston/Parallel-course-Ass3/. [Online; Accessed 1 July 2011]

29. Wolfe MJ (1995) High performance compilers for parallel computing. Addison Wesley, Boston

123

http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/
http://www.viva64.com/en/b/0005/
http://www.openmp.org
http://docs.oracle.com/cd/E24457_01/html/E21996/
http://docs.oracle.com/cd/E24457_01/html/E21996/
https://github.com/yohannteston/Parallel-course-Ass3/
https://github.com/yohannteston/Parallel-course-Ass3/

	Automatic scoping of task clauses for the OpenMP tasking model
	Abstract
	1 Introduction
	1.1 OpenMP tasking model
	1.2 Contributions

	2 Algorithm
	2.1 Variable identification and clause selection
	2.2 Task synchronization
	2.3 Tied and untied tasks

	3 Experiment
	3.1 Experimental environment
	3.2 Results

	4 Related work
	5 Conclusion
	Acknowledgments
	References


