Generating Task Clauses for OpenMP Programs

Chun-Kun Wang and Peng-Sheng Chen

Department of Computer Science and Information Engingesimd
Advanced Institute of Manufacturing for High-tech Inndeats
National Chung Cheng university, Chia-Yi, Taiwan, R.O.C.

amos76530@gmail.com pschen@cs.ccu.edu.tw

Abstract—OpenMP provides an easy-to-learn and power- " ﬁfggzr“[alrr:;gs“ are " ’:fg;'g’*“ and B[] are integer
ful programming environment for the development of parallel
programs. We propose here an algorithm for the automatic Fnt num = 0; fnt num = 0;
correction of the OpenMP tasking model. Assuming a compileor _ #pragma onp paral | el
programmer has identified task regions in the source progrars, vhite (Blnum <= 1000) { e 2 000y ¢
the proposed algorithm will automatically generate corret¢ task it (Bnun% == 0) if (Blnunjo@ == 0) ,
clauses and synchronization. The proposed algorithm is imp- ol s oAU) P be Al ok Ftprivate(num
mented here based on the ROSE compiler infrastructure; 14 do_wor k2(Al nuni) ; else _ »
benchmark programs are tested, each of which has had all claes N T Kot Al oy St privatetnum
in the task directives removed for the evaluation. The resus of num ++;
this experimental evaluation show that the proposed techijue))

a) S ial cod b) Parallel code by OpenMP taski del
can successfully generate correct clauses for the testedrtméamark (&) Sequential code () Paralicl code by OpenMP tasking mode

programs. Fig. 1. Parallelization using the OpenMP tasking model

I. INTRODUCTION

The OpenMP tasking modell], [2], [3] was proposed to an untied task. OpenMP providesit i ed clause to specify
allow users to exploit the parallelism of irregular and dyma these properties. A task will be treated as a tied task iheeit
program structures, such as unbounded loops, recursiee algclause is specified. OpenMP also provides theskwai t
rithms, and producer—consumer patterns. In the OpenMP taglonstruct to synchronize the execution of tasks and to prese
construct, the data-sharing attributes of the variablegaio dependence relationships among tasks. Task synchramizati

shared, private, firstprivate, anddefault. A can suspend an encountered task until all child tasks of the
task construct is composed of the code to be executed anglirrent task are completed.

its data environment. Users need to select task regions and

insert proper task constructs to enclose the chosen tasiseg Although the OpenMP tasking model provides useful
Figure 1(a) shows a sequential code fragment and Figb¢ strategies to parallelize irregular program structuresggam-
shows the corresponding parallel code using the OpenMmhers are required to use proper clauses to describe the date
tasking model. The execution of the parallel code is desdrib sharing attributes of the affected variables to obtain exirr

as follows. First, a thread encounters fher al | el directive execution results, even if the task regions have been propel
and then creates a team of threads based on the fork-joselected. Figur&(a) is an example of the improper use of
model. Thesi ngl e directive ensures that only one thread in the OpenMP task directives. If the directive is ignored, the
the team can enter th& ngl e construct. The other threads program is sequentially executed, and we obtain the result:
in the team will become work threads which are possiblex=1. If the directive is enabled, the program is parallel
candidates for the execution of the generated tasks. Whenexecuted, and we obtain the result0. In this case the reason
thread encounters a task construct, it packages the atbciafor the incorrect result is the misunderstanding of the tieta
structured block and data environment into a task. The threascoping. The ask directive in this program does not describe
can immediately execute this task or defer its execution byhe attribute of the variabbe. When the program is executed in
putting the task into the task pool. The work threads waitl unt parallel by enabling the directive, the value of variabklevill

they find tasks in the task pool. Any work thread may picknot be preserved out of the task region because the defaul
up the task from the task pool and execute it. Accordinglydata scoping ruld i rstprivate is applied. Figure2(b)

all while loop iterations can be quickly screened by oneshows another example of OpenMP applying implicit rules
thread, and the parts of the loop body (i.e., the tasks) cawhen data clauses are not provided in an OpenMP directive.
be executed by the work threads at the same time. A taskhe implicit rules are that a global variable will be viewed
may be temporarily suspended when a thread encounters a taag& ashar ed variable, a variable defined outside an OpenMP
scheduling point. A task scheduling point can be explicsy task construct will be viewed asfa r st pri vat e variable in

by thebarri er,t askyi el d, andt askwai t directives, or the task construct, and a variable defined outside an OpenMF
it can be implicitly decided by some other directives. If akka parallel construct will be viewed asshar ed variable in the

is always executed by the same thread upon its resumptigoarallel construct. Accordingly, the data attributesaot, c,

from the suspended, the task is a tied task. Otherwise, it id, e, andf in the task region arehar ed, firstprivate,

E{Ei i nvoi) II. ALGORITHM

o (Y #p‘gmd"p et st vateth This section describes the proposed algorithm. An OpenMP
|/ assion & initial value (o x £oraam om paral e pr vate(o) program can be correctly executed under two situations: par

x =0 int e allel execution, during which OpenMP directives are engble
vor agma omp sk ot s o sk and thg OpenMP supported Iibrary.is Ii_nked, anq sequential
L s execution, during Whlch OpenMP dlrectlves_ are ignored and

! 11 a d shared ‘ the OpenMP stub library is linked. Assuming an OpenMP

Il b, e: firstprivate .

or it (Xt %) 11 e, £ private program uses the OpenMP tasking model, the proposed algo
, oo 0 rithm aims to generate a corresponding OpenMP program with

R proper clauses, whose parallel execution gives the samé res
@ ®) as its sequential execution. The proposed algorithm does no

consider the problem of the association of numeric oparatio

Fig. 2. Examples of using the OpenMP tasking model affecting the numeric results during parallel executions.

Two conditions must be satisfied for parallel execution
to give the same result as sequential execution: the scope
of each variable value in the sequential program must be
properly reflected in its parallel version, and data depen-
dence relationships8], [9] in the sequential program must
pe preserved in the parallel version. These two conditions
underpin the development of the proposed algorithm. For the
t ask directive, OpenMP provides three clauseshdr ed,
firstprivate, and private) for the explicit control

In this paper, we propose an algorithm for the automatiof the data-sharing attributes of the variables. Fig@te)
scoping of task clauses in the OpenMP tasking model. Assunshows a code skeleton of thesk directive, which contains
ing a compiler or programmer has identified the task regions i three different attributes of the variables using thesesea.
the source program, the proposed algorithm will autombyica Figure 3(b) correspondingly shows the scopes of the variable
generate correct task clauses and synchronization. The pregalues for the example in Figua) The variablea has the
posed algorithm is implemented based on the ROSE compilattributeshar ed; therefore, its value before entering the task
infrastructure 4], [5]. The Barcelona OpenMP Task Suite region is visible inside the task, and its value remainsblési
(BOTS) [6], one program from the websit&][and two hand- after exiting the task region. The variallehas the attribute
coded programs—which have had all clauses removed from thel r st pri vat e; its value before entering the task region is
task directives—are used as benchmark programs for testingisible inside the task and after exiting the task regios, it
The experimental evaluation shows that the proposed tgubni value is the value that it had before entering the task region
can successfully correct the tested benchmark programs. The values of variable inside and outside the task region are

unrelated because it has the attribptd vat e. Accordingly,

o if the attributes of the variables can be analyzed, and the
A. Contributions variables can be properly classified based on their ateghut
we can know their data-sharing attributes in the OpenMP
execution model, and the issue of the scope of the variable
value can be overcome. The preservation of data dependenc
gan be achieved by analyzing data dependence relationship
nd inserting a suitable task synchronization directive.

private, shared, firstprivate, andprivate, re-
spectively. Implicit rules can make a program difficult to
understand and debug. Although OpenMP explicitly define
rules for handling situations in which no data scoping asus
are provided, it is error prone and programmers may hav
difficulties dealing with the interactions of directivesdadata
scoping, particularly for large and complicated programs.

This paper makes the following contributions:

e Automatic correction algorithm. An algorithm is
presented that automatically generates correct tas
clauses for the OpenMP tasking model. The algorithm?
also inserts proper task synchronization to preserve scope of variable value
data dependence relationships.

#pragma onp task shared(a)\
firstprivate(b)\

e Experimental results. The proposed algorithm was private(c) b
implemented based on the ROSE compiler infrastruc-
ture. The tested benchmark programs consist of the structured block 8 task region
BOTS, one program from the websit&][and two
hand-coded programs from which all clauses in the
task directives are removed. We present experimental (a) Code skeleton of theask di- (b) Scope of variables’ val-

a

results for the tested benchmark programs, which rectve ues
show that Our.aPPfoaCh can correctly generate Clauseﬁg. 3. Code skeleton of theask directive and the scope of its variables’
and synchronization. values

The remainder of this paper is organized as follows. Figure 4 shows the proposed algorithm. An OpenMP
Section |l describes the proposed algorithm in detail. Sec{program using a tasking model is the input program. First,
tion Il reports the experimental results of an evaluationclassic compiler techniques are used to analyze the program
of the proposed approach, and Sectidh discusses related During the analysis all OpenMP-related directives are igdo
work on automatic parallelization using OpenMP. Finalhgt and information about which code fragments are tasks as
conclusions are presented in Sectién identified by the OpenMP directives is retrieved and fed into

int foo()
Input Program analysis {

e - liveness int x=y=2z=w=0;

OpenMP program
using tasking model

- define-use chain
#pragnma onp task shared(x)\
firstprivate(y,w)\
Variable identification private(z)

and clauses selection f

L

Output d

X + 1;
y +w+ 1; flow dependence

Vielisied prog = Task synchronization #pragma onp taskwait
printf("%\n", + W,
return O;

}

Fig. 4. Algorithm overview
Fig. 6. Example of task synchronization

int foo()
t X 'y z w
It x =y =z=w=0 i I 1 shar ed may minimize space and data copying which may be
#pragm onp task important for large-sized data and embedded systems. User:
: can select proper clause according to their requirementiel
X j ; I \}V? i1 q I task region implementation, diveous variable is settd i r st pri vat e.
} ’ In Figureb, the variablex is set toshar ed, andw andy are
printf("%h\n", x + w; set tofirstprivate. The variablez is described by the
return 0; J « clausepri vat e.
} live range
Fig. 5. Variable classification VV; € V(t),the clause ofV; = { :}iljls::grivate :I \‘2 2 ti?fg::_&ﬁilaout), (:
private otherwise.

the algorithm. Liveness analysid(], [11], [12] is used to

identify the data-sharing attributes of the variables flause B, Task Synchronization

selection. The define-use chaia(], [11], [17] is used to) o)

clarify data dependence relationships for task synchediaia. The shar ed attribute indicates that a variable has data
Then, according to the analytic results, OpenMP clauses aéependence relationships with some places outside a task. T
selected, and task synchronization directives are imkefie ~ Preserve data dependence relationships, the task thafiesodi

nally, the algorithm will output a validated OpenMP program@ shared variable has to be completed before it is used
corresponding to the input program. outside the task. OpenMP provides the task synchronization

directive t askwai t, which suspends an encountered task
until its direct child tasks have been completed. In the pseg
algorithm, the input program is first analyzed and its defise-
The variables that are visible just before their entry to thechains are constructed to clarify the data dependencéomelat
task region are candidates for liveness analysis. Accgrttin ships. Task synchronization directives are then insenéal i
the data-sharing attributes in OpenMP, the liveness of- varilocations prior to the use of the program. Due to task synchro
ables can be classified into four categori#seinner, livein, nization being a barrier to some task executions, postgonin
liveout, and liveout_mod- If @ variable lives only within a synchronization could increase the parallelism of a pnogra
task, it is classified aiveinner. A variable islive;, ifitisnot and avoid a parallel execution degenerating to a sequential
used after exiting a task. Variables that are live afteriexia ~ execution. Therefore, task synchronization is delayed tire
task can be further classified. If the variable is modifiechimit ~ first dependent variable is encountered. Consider the eleamp
a task, it is aliveout_mod Variable. Otherwise, it is Hveout in Figure5. The variablex is re-defined in the task and used
variable. Figurés outlines the different categories. The variable outside the task. According to the define-use chain, the first
X is liveout_mod. The variablew is not modified within the dependent statement is identified, and a task synchromizati
task; therefore, it idiveo,t. The variabley is live;,, andz directive is inserted immediately before it. Figueshows the
is alivejnner Variable. corresponding example code.

A. Variable Identification and Clause Selection

This classification is properly mapped to the data-sharing Algorithm 1 lists the proposed algorithm. Assume
clauses of theé ask directive. According to the classification, class dataflow analysig) performs liveness analysis and con-
it is easier to identify systematically the proper datarstta structs the define-use chain for the input program. For a task
clauses for each candidate variable. Assumiift represents 7', a candidate variable df is a variable that is visible at the
the set of all candidate variables for a task t, the datapoint just before its entry to the task region. First, thegoeon
sharing clauses can be determined by EquatioA liveo,t Will be analyzed by classic data-flow analyses. Then, eath ta
variable can be set to eithathared or firstprivate. is traversed to clarify the relationships between the tesifi
Using firstprivate has fewer overheads of data syn- and outside the task. For each task, proper data-sharingeda
chronization, which is important for the performance. dsin are computed for its candidate variables by their liveness

. TABLE I. CONFIGURATION OF THE EXPERIMENTAL ENVIRONMENT
properties. Task synchronization is also inserted, if asasy,

according to the dependency relationships obtained fram th

define-use chain. | Item Value
Hardware | CPU Intel Core i7 running at 2.67 GHz
Algorithm 1: Algorithm for correcting OpenMP tasking Cache L1: 64 kB, L2: 1 MB, L3: 8 MB
model Memory 12 GB
InPUt: An OpenMP program using the taSking model Software Operating system | Ubuntu Linux (kernel version: 2.6.32)
Output: A validated OpenMP program corresponding Native C compiler| GCC 4.4.3 with 02" option

to the input program
begin
/+* Do classic program anal yses:
l'iveness anal ysis and define-use was compiled using GCC 4.4.3 with the “~02” option; and it

chain. _ */ was then executed.
classic dataflow analysis();

foreach task Tdo

/* Variable identification and
cl ause sel ection

foreach candidate variable V of Tdo

switch liveness class of o

caseliveout_mod

We evaluated the proposed algorithm with the Oracle studio
compiler (Oracle Solaris Studio 12.33)) which provides an
x/ autoscoping feature to automatically determine data sbari
attributes. The input to the Oracle studio compiler is the
benchmark programs which all clauses in each task directive
were replaced with the clauskef aul t (__aut 0) to enable
the autoscoping feature. Due to that the Oracle studio dempi

Kﬁg’gﬁ? — shared; does not support automatic generatiragkwai t , all the task
- ' synchronization directivesaskwai t were also preserved in
caseliveout the inputs.
Vilause <— firstprivate;
break; The results from the generated OpenMP programs, Ora-
c;selivein cle studio compiler, and the original OpenMP programs are
Vitause —— firstprivate; compared to assess the correctness of the g(_enerateq Open_M
break: programs. The BOTS benchmarks, were verified using their

) own self-verification methods.
otherwise

L ‘/(:lause — p'f"i’l}@l‘,e;

/+ Task synchronization: using B. Results

t he dependency rel ati onshi ps
obt ai ned fromthe define-use
chain */
| Insert task synchronization directives;

Tablelll presents the experimental results: the number of
tasks, whether containingaskwai t , and comparison results
are listed. The ROSE compiler cannot parse the Alignment,
Sparselu, and UTS programs, the modified benchmark pro-
grams which preserve tasking skeletons were used as the inpu
For these three benchmark programs, the proposed algorithn
can correctly generate the corresponding OpenMP programs

. EXPERIMENT For all the other benchmark programs, the proposed algorith
A. Experimental Environment was able to automatically generate correct OpenMP programs
Consider the results from the Oracle studio compiler. For

The proposed algorithm was implemented based on thghe Pi, Knight, Gram-Schmidt, and Fib programs, the Oracle
ROSE compiler infrastructure (version 0.95.5a), which wasstudio compiler cannot generate correct data-sharinifpatiés
developed at the Lawrence Livermore National Laboratory foin task directives. For the Health, N Queens, Sparselu, and
building source-to-source program transformation andyai® UTS programs, it can successfully identify correct dataristy
tools. The liveness, reaching-definition, and alias amalys attributes. For the remaining programs, the compiler irty

provided by ROSE are leveraged in our implementation. Tashowed that autoscoping for some variables was not suatessf
ble | lists the configuration of the experimental environment.

Experiments were executed on an Intel 2.67 GHz Corei7 920 In our implementation, traditional analyses were used to
processor coupled to 12 GB of RAM and running Ubuntuhandle array and pointer data types. The analytic results ar
10.04. The tested benchmark programs were the two handorrect, but very conservative. However, proper handlimgya
coded programs, one program from,[and the BOTS 1.1 is an important issue for automatic scoping. The size and
benchmarks, which each had all clauses in each task dbehavior of array in OpenMP programs significantly affects
rective and all task synchronization directivesiskwai t the performance and memory footprints. Some reasonable cos
removed. Tabldl lists the tested benchmark programs andfunctions should be developed to help compilers to select
their characteristics. Each benchmark program was fed intproper data-sharing attributes. In addition, accuragrjpmbce-
our implementation, and then a new OpenMP program wasdural program analyses can help to aggressively identifg-da
generated to give the same results as the original programharing attributes of variables and minimizaskwai t to
which all directives ignored. The generated OpenMP progranmeet the program issues (e.g., performance, code size).

TABLE II. B ENCHMARK PROGRAMS

Program Description Nested tasks Source |
Pi Compute the value ofr using integrals yes Hand coding
Knight Find a closed knight's tour on a chessboard yes Hand coding
Gram-Schmidt | Gram-Schmidt algorithm no Website []
Alignment Align sequences of proteins no BOTS
Fib Compute Fibonacci numbers yes BOTS
FFT Compute a Fast Fourier Transformation yes BOTS
Floorplan Compute the optimal placement of cells in a floorplan yes BOTS
Health Simulate a country health system yes BOTS
N Queens Find solutions of the N Queens problem yes BOTS
Sort Uses a mixture of sorting algorithms to sort a vectof yes BOTS
Sparselu Compute the LU factorization of a sparse matrix no BOTS
Strassen Compute a matrix multiply with Strassen’s method yes BOTS
UTS Compute the number of nodes in an Unbalanced Tiee no BOTS

TABLE IlI. E VALUATION RESULTS FOR THE TESTED BENCHMARKS
Benchmark # of tasks | Containing Comparison result

t askwai t
Proposed algorithm| Oracle studio compiler
Pi 1 Y Correct Error
Knight 1 Y Correct Error
Gram-Schmidt 1 Y Correct Error
Alignment 1 N Parsing error Fail
Fib 2 Y Correct Error
FFT 41 Y Correct Fail
Floorplan 1 Y Correct Fail
Health 2 Y Correct Correct
N Queens 1 Y Correct Correct
Sort 9 Y Correct Fail
Sparselu 4 N Parsing error Correct
Strassen 8 Y Correct Fail
UTS 2 Y Parsing error Correct
IV. RELATED WORK race conditions in the parallel regions and the data deperde

relationships between the scoped variables. If a matchileg r

is not selected, the binding parallel region will be seyiall
executed. The proposed approach focuses on the constfucts ¢
parallel regions, parallel work-sharing, and paralleltisss;
iwas implemented on a Sun Studio 9 Fortran 95 compiler.

Some issues of automatic scoping in OpenMP are cov:
ered in works that automatically parallelize programs gsin
OpenMP [14], [19], [16], [17] and verify OpenMP programs.
These works analyze sequential programs, automaticaly-id

tify proper code fragments for concurrent execution, andr . proposed approach does not support the OpenMP taskin:
generate the corresponding OpenMP programs. The pargh,qe| “\oss et al. 40] implemented automatic scoping in
lelized code fragments and the generated OpenMP prografl, po

are controll_ed by the algo_nthms. However, in the preserdyst al. [19], they focused on the Fortran language and implemented
users specify the parallelized code fragments, and theogeap _the clauseDEFAULT(AUTO). A subset of the SPECOMP
algprlthm generates the correct clauses of the data'g]a”rbenchmark program&]] was used for evaluation. The authors
attributes. did not describe in detail the method of identifying the sE®p
Previous studies have considered the automatic scopir@f the variables.
of variables in OpenMP programs. Bik et al.g] proposed
an algorithm to find automatically parallel loops, identify = The most closely related to the present work are Oracle
the data-sharing attributes of variables, and generatedhe Solaris Studio 12.313 and the Auto-scoping for OpenMP
responding multithreaded codes, rather than using OpenMPasks proposed by Royuela et al2f]. The former [L3
programs. They leveraged liveness analysis and classic datsupports the automatic scoping feature. The compiler can
flow analyses to ensure the data-sharing attributes of thbandle scoping for the construct of parallel, work-sharing
variables. Lin et al. 19) proposed several rules for the au- parallel sections, and tasking models. The rules fratf] &re
tomatic scoping of variables in parallel regions. Prograarsn extended to handle scoping for the construct of paralletkwo
can use the new claus5ITQ(| i st - of - vari abl es) and sharing, parallel sections, and tasking models. The camnpil
DEFAULT(AUTO) to drive a compiler to determine automat- needs to analyze the data races and read/write behaviors fo
ically the data-sharing attributes of variables. Sevetapsg the scoped variables. If auto-scoping fails, the compilér w
rules were also proposed for scalar and array variables. Tgive a warning and assign the related code fragments to be
select a proper rule, a compiler needs to analyze the daterially executed. Royuela et a7 proposed an algorithm to

aris source-to-source compiler. Similarly to Lin et

determine automatically the data-sharing attributes ahies [4]
for the OpenMP tasking model. For an OpenMP task, the
algorithm identifies the code regions that will be concutisen [5]
executed with the task. Then the liveness and user-definitio
analyses are used to analyze the relationships between the
variables, the concurrent regions, and the task region. Ac-
cording to the relationships, several rules can be proposegg
to determine the data-sharing attributes of the variabfes.
specific graph, a parallel control flow graph, is construdted

the analyses in the proposed algorithm. The main difference
between these two previous works and the present study i
that our algorithm does not need to analyze the regions tha
are executed concurrently with the analyzed task. Instaad,
task synchronization directiteaskwai t is used to ensure the g
data dependence relationships between the concurreoheegi
and the analyzed task. The two previous works may not[9]
decide the data-sharing attributes of some variables, Haut t
proposed algorithm can identify the data-sharing attelfor
each variable. Moreover, we do not need to construct a pérall
control flow graph for the analyses. For our algorithm, thel1l]
classic control-flow graph and data-flow analyses are seiffici
to recognize the data-sharing attributes of the variablbs.
previous works may achieve better parallelism, but thegires
study is simpler and easier to implement. In addition, tha-da 13]
sharing attributes of variables can be determined using the
present study.

7]

[10]

[12]

[14]
V. CONCLUSION

In this paper, we propose an algorithm for the automatiqs
correction of the OpenMP tasking model. Assuming a compiler
or programmers have identified task regions in the source
programs, the proposed algorithm will automatically geter
the correct task clauses and synchronization. The propos?r%]
algorithm was implemented based on the ROSE compile
infrastructure, with 14 benchmark programs—from which all
clauses in the task directives had been removed—beingitestg;7
The experimental evaluation showed that the proposed tech-
nigue can successfully generate correct clauses for tiedtes
benchmark programs. The proposed technique can reduce pro-
grammers’ burden in parallelizing programs using the OpenM 18]
tasking model and make parallel programming more effectivé
and productive.

[19]
VI.

This work was sponsored by the National Science Council
of Taiwan under grants NSC-100-2221-E-194-034-MY2 and
102-2221-E-194-031-MY3. The authors are grateful to the Na[20]
tional Center for High-Performance Computing for computer
time and facilities.

ACKNOWLEDGEMENTS

REFERENCES [21]

[1] OpenMP Architecture Review Board)penMP Application Program
Interface 3.1 ed., July 2011, online availabletstp://www.openmp.org

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.askaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of open
tasks,”IEEE Transactions on Parallel and Distributed Systerd. 20,
no. 3, pp. 404-418, 2009.

[3] A. Duran, J. Corbalan, and E. Ayguade, “Evaluation of rupe
task scheduling strategies,” @penMP in a New Era of Parallelism
(4th IWOMP’08) ser. Lecture Notes in Computer Science (LNCS),
R. Eigenmann and B. R. de Supinski, Eds. West Lafayette, IBAU
Springer-Verlag (New York), May 2008, vol. 5004, pp. 100811

[22]

D. J. Quinlan, “ROSE: Compiler support for object-otiedh frame-
works,” Parallel Processing Lettersiol. 10, no. 2/3, pp. 215-226, 2000.

C. Liao, D. J. Quinlan, T. Panas, and B. R. de Supinski, @3E-based
openmp 3.0 research compiler supporting multiple runtitmeties,” in
IWOMP, ser. Lecture Notes in Computer Science, M. Sato, T. Hanawa,
M. S. Miller, B. M. Chapman, and B. R. de Supinski, Eds., 6dI32.
Springer, 2010, pp. 15-28.

A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Aygig
“Barcelona openmp tasks suite: a set of benchmarks tagyetip
exploitation of task parallelism in openmp,” Broc. 2009 International
Conference on Parallel Processing (38th ICPP’09) CD-ROMienna,
Austria: IEEE Computer Society, Sep. 2009.

Website, “Programming of parallel computers, assignn®, gram-
schmidt,” https://github.com/yohannteston/Parallel-course2As$On-
line; accessed 1-July-2011].

D. A. Padua and M. J. Wolfe, “Advanced compiler optimieas for
supercomputers,Communication of ACMvol. 29, no. 12, Dec. 1986.

M. J. Wolfe, High Performance Compilers for Parallel Computing
C. Shanklin and L. Ortega, Eds., 1995.

A. V. Aho, R. Sethi, and J. D. UllmanCompilers: Principles, Tech-
niques, and Tools Addison Wesley, January 1986.

S. Muchnick,Advanced Compiler Design and Implementatidorgan
Kaufmann, August 1997.

R. Allen and K. KennedyOptimizing Compilers for Modern Architec-
tures: A Dependence-based ApproachMorgan Kaufmann, October
2001.

Oracle, “Oracle Solaris Studio 12.3: OpenMP AP| USeBsiide,”
http://docs.oracle.com/cd/E244871/html/E21996/ January 2012,
[Online; accessed 1-September-2013].

H. Jin, G. Jost, J. Yan, E. Ayguade, M. Gonzalez, and Xrtdtell,
“Automatic multilevel parallelization using openmpSci. Program,
vol. 11, no. 2, pp. 177-190, Apr. 2003.

S. Johnson, E. Evans, H. Jin, and C. lerotheou, “Thewiaeaexpert
assistant - widening accessibility to efficient and scalabbl generated
openmp code,” inProceedings of the 5th international conference on
OpenMP Applications and Tools: shared Memory Parallel Paog-
ming with OpenMP ser. WOMPAT'04, 2005, pp. 67-82.

Intel, “Automatic parallelization with intel compite,”
http://software.intel.com/en-us/articles/automatarallelization-with-intel-co
[Online; accessed 1-July-2011].

U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Raujam,
A. Rountev, and P. Sadayappan, “Automatic transformatidois
communication-minimized parallelization and localitytiogization in
the polyhedral model,” innternational Conference on Compiler Con-
struction (ETAPS CC)Apr. 2008.

A. Bik, M. Girkar, P. Grey, and X. Tian, “Efficient explt@ition of
parallelism on Pentium Il and Pentium 4 processor-basedesys,”
no. Q1, p. 9, Feb. 2001.

Y. Lin, C. Terboven, D. a. Mey, and N. Copty, “Automaticaping
of variables in parallel regions of an openmp program,Piroceed-
ings of the 5th international conference on OpenMP Appilicet
and Tools: shared Memory Parallel Programming with OpenhEr.
WOMPAT'04, 2005, pp. 83-97.

M. Voss, E. Chiu, P. M. Y. Chow, C. Wong, and K. Yuen, “An
evaluation of auto-scoping in openmp,” iAroceedings of the 5th
international conference on OpenMP Applications and Toslsared
Memory Parallel Programming with OpenMBer. WOMPAT'04, 2005,
pp. 98-109.

V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W.JBnes, and
B. Parady, “specomp: A new benchmark suite for measuringliphr
computer performance,” iRroceedings of the International Workshop
on OpenMP Applications and Tools: OpenMP Shared Memory IRdra
Programming ser. WOMPAT ’'01, 2001, pp. 1-10.

S. Royuela, A. Duran, C. Liao, and D. J. Quinlan, “Autmping for
openmp tasks,” irProceedings of the 8th international conference on
OpenMP in a Heterogeneous Waorkker. IWOMP’12, 2012, pp. 29-43.

http://www.openmp.org
https://github.com/yohannteston/Parallel-course-Ass3/
http://docs.oracle.com/cd/E24457_01/html/E21996/
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/

	I Introduction
	I-A Contributions

	II Algorithm
	II-A Variable Identification and Clause Selection
	II-B Task Synchronization

	III Experiment
	III-A Experimental Environment
	III-B Results

	IV Related work
	V Conclusion
	VI acknowledgements
	References

