
Generating Task Clauses for OpenMP Programs

Chun-Kun Wang and Peng-Sheng Chen

Department of Computer Science and Information Engineering and
Advanced Institute of Manufacturing for High-tech Innovations

National Chung Cheng university, Chia-Yi, Taiwan, R.O.C.

amos76530@gmail.com pschen@cs.ccu.edu.tw

Abstract—OpenMP provides an easy-to-learn and power-
ful programming environment for the development of parallel
programs. We propose here an algorithm for the automatic
correction of the OpenMP tasking model. Assuming a compileror
programmer has identified task regions in the source programs,
the proposed algorithm will automatically generate correct task
clauses and synchronization. The proposed algorithm is imple-
mented here based on the ROSE compiler infrastructure; 14
benchmark programs are tested, each of which has had all clauses
in the task directives removed for the evaluation. The results of
this experimental evaluation show that the proposed technique
can successfully generate correct clauses for the tested benchmark
programs.

I. I NTRODUCTION

The OpenMP tasking model [1], [2], [3] was proposed to
allow users to exploit the parallelism of irregular and dynamic
program structures, such as unbounded loops, recursive algo-
rithms, and producer–consumer patterns. In the OpenMP task
construct, the data-sharing attributes of the variables contain
shared, private, firstprivate, and default. A
task construct is composed of the code to be executed and
its data environment. Users need to select task regions and
insert proper task constructs to enclose the chosen task regions.
Figure1(a) shows a sequential code fragment and Figure1(b)
shows the corresponding parallel code using the OpenMP
tasking model. The execution of the parallel code is described
as follows. First, a thread encounters theparallel directive
and then creates a team of threads based on the fork-join
model. Thesingle directive ensures that only one thread in
the team can enter thesingle construct. The other threads
in the team will become work threads which are possible
candidates for the execution of the generated tasks. When a
thread encounters a task construct, it packages the associated
structured block and data environment into a task. The thread
can immediately execute this task or defer its execution by
putting the task into the task pool. The work threads wait until
they find tasks in the task pool. Any work thread may pick
up the task from the task pool and execute it. Accordingly,
all while loop iterations can be quickly screened by one
thread, and the parts of the loop body (i.e., the tasks) can
be executed by the work threads at the same time. A task
may be temporarily suspended when a thread encounters a task
scheduling point. A task scheduling point can be explicitlyset
by thebarrier, taskyield, andtaskwait directives, or
it can be implicitly decided by some other directives. If a task
is always executed by the same thread upon its resumption
from the suspended, the task is a tied task. Otherwise, it is

// Assume A[] and B[] are
// integer arrays.

int num = 0;

while (B[num] <= 1000) {

 if (B[num]%2 == 0)
 do_work1(A[num]);
 else
 do_work2(A[num]);

 num ++;

}

// Assume A[] and B[] are integer
// arrays.

int num = 0;

#pragma omp parallel
#pragma omp single
while (B[num] <= 1000) {
 if (B[num]%2 == 0)
 #pragma omp task firstprivate(num)
 do_work1(A[num]);
 else
 #pragma omp task firstprivate(num)
 do_work2(A[num]);
 num ++;
}

(a) Sequential code (b) Parallel code by OpenMP tasking model

Fig. 1. Parallelization using the OpenMP tasking model

an untied task. OpenMP providesuntied clause to specify
these properties. A task will be treated as a tied task if neither
clause is specified. OpenMP also provides thetaskwait
construct to synchronize the execution of tasks and to preserve
dependence relationships among tasks. Task synchronization
can suspend an encountered task until all child tasks of the
current task are completed.

Although the OpenMP tasking model provides useful
strategies to parallelize irregular program structures, program-
mers are required to use proper clauses to describe the data-
sharing attributes of the affected variables to obtain correct
execution results, even if the task regions have been proper
selected. Figure2(a) is an example of the improper use of
the OpenMP task directives. If the directive is ignored, the
program is sequentially executed, and we obtain the result:
x=1. If the directive is enabled, the program is parallel
executed, and we obtain the result:x=0. In this case the reason
for the incorrect result is the misunderstanding of the taskdata
scoping. Thetask directive in this program does not describe
the attribute of the variablex. When the program is executed in
parallel by enabling the directive, the value of variablex will
not be preserved out of the task region because the default
data scoping rulefirstprivate is applied. Figure2(b)
shows another example of OpenMP applying implicit rules
when data clauses are not provided in an OpenMP directive.
The implicit rules are that a global variable will be viewed
as ashared variable, a variable defined outside an OpenMP
task construct will be viewed as afirstprivate variable in
the task construct, and a variable defined outside an OpenMP
parallel construct will be viewed as ashared variable in the
parallel construct. Accordingly, the data attributes ofa, b, c,
d, e, andf in the task region areshared, firstprivate,

int main(void)
{
 int x;

 // assign a initial value to x
 x = 0;

 #pragma omp task
 {
 x = x + 1;
 }

 printf("x=%d\n", x);
 return 0;
}

int a, b;
int main(void)
{
 int c, d;

 #pragma omp parallel firstprivate(b)
 #pragma omp parallel private(c)
 {
 int e;

 #pragma omp task
 {
 int f;
 // data attributes are:
 // a, d: shared
 // b, e: firstprivate
 // c, f: private
 ...
 }
 }
 ...
}

(a) (b)

Fig. 2. Examples of using the OpenMP tasking model

private, shared, firstprivate, and private, re-
spectively. Implicit rules can make a program difficult to
understand and debug. Although OpenMP explicitly defines
rules for handling situations in which no data scoping clauses
are provided, it is error prone and programmers may have
difficulties dealing with the interactions of directives and data
scoping, particularly for large and complicated programs.

In this paper, we propose an algorithm for the automatic
scoping of task clauses in the OpenMP tasking model. Assum-
ing a compiler or programmer has identified the task regions in
the source program, the proposed algorithm will automatically
generate correct task clauses and synchronization. The pro-
posed algorithm is implemented based on the ROSE compiler
infrastructure [4], [5]. The Barcelona OpenMP Task Suite
(BOTS) [6], one program from the website [7], and two hand-
coded programs—which have had all clauses removed from the
task directives—are used as benchmark programs for testing.
The experimental evaluation shows that the proposed technique
can successfully correct the tested benchmark programs.

A. Contributions

This paper makes the following contributions:

• Automatic correction algorithm. An algorithm is
presented that automatically generates correct task
clauses for the OpenMP tasking model. The algorithm
also inserts proper task synchronization to preserve
data dependence relationships.

• Experimental results. The proposed algorithm was
implemented based on the ROSE compiler infrastruc-
ture. The tested benchmark programs consist of the
BOTS, one program from the website [7], and two
hand-coded programs from which all clauses in the
task directives are removed. We present experimental
results for the tested benchmark programs, which
show that our approach can correctly generate clauses
and synchronization.

The remainder of this paper is organized as follows.
Section II describes the proposed algorithm in detail. Sec-
tion III reports the experimental results of an evaluation
of the proposed approach, and SectionIV discusses related
work on automatic parallelization using OpenMP. Finally, the
conclusions are presented in SectionV.

II. A LGORITHM

This section describes the proposed algorithm. An OpenMP
program can be correctly executed under two situations: par-
allel execution, during which OpenMP directives are enabled
and the OpenMP supported library is linked, and sequential
execution, during which OpenMP directives are ignored and
the OpenMP stub library is linked. Assuming an OpenMP
program uses the OpenMP tasking model, the proposed algo-
rithm aims to generate a corresponding OpenMP program with
proper clauses, whose parallel execution gives the same result
as its sequential execution. The proposed algorithm does not
consider the problem of the association of numeric operations
affecting the numeric results during parallel executions.

Two conditions must be satisfied for parallel execution
to give the same result as sequential execution: the scope
of each variable value in the sequential program must be
properly reflected in its parallel version, and data depen-
dence relationships [8], [9] in the sequential program must
be preserved in the parallel version. These two conditions
underpin the development of the proposed algorithm. For the
task directive, OpenMP provides three clauses (shared,
firstprivate, and private) for the explicit control
of the data-sharing attributes of the variables. Figure3(a)
shows a code skeleton of thetask directive, which contains
three different attributes of the variables using these clauses.
Figure3(b) correspondingly shows the scopes of the variable
values for the example in Figure3(a). The variablea has the
attributeshared; therefore, its value before entering the task
region is visible inside the task, and its value remains visible
after exiting the task region. The variableb has the attribute
firstprivate; its value before entering the task region is
visible inside the task and after exiting the task region, its
value is the value that it had before entering the task region.
The values of variablec inside and outside the task region are
unrelated because it has the attributeprivate. Accordingly,
if the attributes of the variables can be analyzed, and the
variables can be properly classified based on their attributes,
we can know their data-sharing attributes in the OpenMP
execution model, and the issue of the scope of the variable
value can be overcome. The preservation of data dependence
can be achieved by analyzing data dependence relationships
and inserting a suitable task synchronization directive.

 structured block

#pragma omp task shared(a)\
 firstprivate(b)\
 private(c)

(a) Code skeleton of thetask di-
rective

scope of variable value

a
b

c task region

(b) Scope of variables’ val-
ues

Fig. 3. Code skeleton of thetask directive and the scope of its variables’
values

Figure 4 shows the proposed algorithm. An OpenMP
program using a tasking model is the input program. First,
classic compiler techniques are used to analyze the program.
During the analysis all OpenMP-related directives are ignored
and information about which code fragments are tasks as
identified by the OpenMP directives is retrieved and fed into

OpenMP program

using tasking model

Program analysis

- liveness

- define-use chain

Variable identification

and clauses selection

Task synchronization
Validated program

Input

Output

Fig. 4. Algorithm overview

int foo()
{
 int x = y = z = w = 0;

 #pragma omp task
 {
 x = x + 1;
 z = y + w + 1;
 }
 printf("%d\n", x + w);
 return 0;
}

task region

x y z w

live range

Fig. 5. Variable classification

the algorithm. Liveness analysis [10], [11], [12] is used to
identify the data-sharing attributes of the variables for clause
selection. The define-use chain [10], [11], [12] is used to
clarify data dependence relationships for task synchronization.
Then, according to the analytic results, OpenMP clauses are
selected, and task synchronization directives are inserted. Fi-
nally, the algorithm will output a validated OpenMP program
corresponding to the input program.

A. Variable Identification and Clause Selection

The variables that are visible just before their entry to the
task region are candidates for liveness analysis. According to
the data-sharing attributes in OpenMP, the liveness of vari-
ables can be classified into four categories:liveinner, livein,
liveout, and liveout mod. If a variable lives only within a
task, it is classified asliveinner. A variable islivein if it is not
used after exiting a task. Variables that are live after exiting a
task can be further classified. If the variable is modified within
a task, it is aliveout mod variable. Otherwise, it is aliveout
variable. Figure5 outlines the different categories. The variable
x is liveout mod. The variablew is not modified within the
task; therefore, it isliveout. The variabley is livein, andz
is a liveinner variable.

This classification is properly mapped to the data-sharing
clauses of thetask directive. According to the classification,
it is easier to identify systematically the proper data-sharing
clauses for each candidate variable. AssumingV(t) represents
the set of all candidate variables for a task t, the data-
sharing clauses can be determined by Equation1. A liveout

variable can be set to eithershared or firstprivate.
Using firstprivate has fewer overheads of data syn-
chronization, which is important for the performance. Using

int foo()
{
 int x = y = z = w = 0;

 #pragma omp task shared(x)\
 firstprivate(y,w)\
 private(z)
 {
 x = x + 1;
 z = y + w + 1;
 }
 #pragma omp taskwait
 printf("%d\n", x + w);
 return 0;
}

flow dependence

Fig. 6. Example of task synchronization

shared may minimize space and data copying which may be
important for large-sized data and embedded systems. Users
can select proper clause according to their requirements. In the
implementation, aliveout variable is set tofirstprivate.
In Figure5, the variablex is set toshared, andw andy are
set tofirstprivate. The variablez is described by the
clauseprivate.

∀Vi ∈ V(t), the clause ofVi =







shared if Vi ∈ liveout mod,
firstprivate if Vi ∈ (livein ∪ liveout),
private otherwise.

(1)

B. Task Synchronization

The shared attribute indicates that a variable has data
dependence relationships with some places outside a task. To
preserve data dependence relationships, the task that modifies
a shared variable has to be completed before it is used
outside the task. OpenMP provides the task synchronization
directive taskwait, which suspends an encountered task
until its direct child tasks have been completed. In the proposed
algorithm, the input program is first analyzed and its define-use
chains are constructed to clarify the data dependence relation-
ships. Task synchronization directives are then inserted into
locations prior to the use of the program. Due to task synchro-
nization being a barrier to some task executions, postponing
synchronization could increase the parallelism of a program
and avoid a parallel execution degenerating to a sequential
execution. Therefore, task synchronization is delayed until the
first dependent variable is encountered. Consider the example
in Figure5. The variablex is re-defined in the task and used
outside the task. According to the define-use chain, the first
dependent statement is identified, and a task synchronization
directive is inserted immediately before it. Figure6 shows the
corresponding example code.

Algorithm 1 lists the proposed algorithm. Assume
class dataflow analysis() performs liveness analysis and con-
structs the define-use chain for the input program. For a task
T , a candidate variable ofT is a variable that is visible at the
point just before its entry to the task region. First, the program
will be analyzed by classic data-flow analyses. Then, each task
is traversed to clarify the relationships between the task itself
and outside the task. For each task, proper data-sharing clauses
are computed for its candidate variables by their liveness

properties. Task synchronization is also inserted, if necessary,
according to the dependency relationships obtained from the
define-use chain.

Algorithm 1: Algorithm for correcting OpenMP tasking
model

Input : An OpenMP program using the tasking model
Output : A validated OpenMP program corresponding

to the input program
begin

/* Do classic program analyses:
liveness analysis and define-use
chain. */

classic dataflow analysis();

foreach task T do
/* Variable identification and

clause selection */
foreach candidate variable V of Tdo

switch liveness class of Vdo
caseliveout mod

Vclause ←− shared;
break;

caseliveout
Vclause ←− firstprivate;
break;

caselivein
Vclause ←− firstprivate;
break;

otherwise
Vclause ←− private;

/* Task synchronization: using
the dependency relationships
obtained from the define-use
chain */

Insert task synchronization directives;

III. E XPERIMENT

A. Experimental Environment

The proposed algorithm was implemented based on the
ROSE compiler infrastructure (version 0.95.5a), which was
developed at the Lawrence Livermore National Laboratory for
building source-to-source program transformation and analysis
tools. The liveness, reaching-definition, and alias analyses
provided by ROSE are leveraged in our implementation. Ta-
ble I lists the configuration of the experimental environment.
Experiments were executed on an Intel 2.67 GHz Corei7 920
processor coupled to 12 GB of RAM and running Ubuntu
10.04. The tested benchmark programs were the two hand-
coded programs, one program from [7], and the BOTS 1.1
benchmarks, which each had all clauses in each task di-
rective and all task synchronization directivestaskwait
removed. TableII lists the tested benchmark programs and
their characteristics. Each benchmark program was fed into
our implementation, and then a new OpenMP program was
generated to give the same results as the original program,
which all directives ignored. The generated OpenMP program

TABLE I. CONFIGURATION OF THE EXPERIMENTAL ENVIRONMENT.

Item Value

Hardware CPU Intel Core i7 running at 2.67 GHz

Cache L1: 64 kB, L2: 1 MB, L3: 8 MB

Memory 12 GB

Software Operating system Ubuntu Linux (kernel version: 2.6.32)

Native C compiler GCC 4.4.3 with ”-O2” option

was compiled using GCC 4.4.3 with the “–O2” option; and it
was then executed.

We evaluated the proposed algorithm with the Oracle studio
compiler (Oracle Solaris Studio 12.3 [13]) which provides an
autoscoping feature to automatically determine data sharing
attributes. The input to the Oracle studio compiler is the
benchmark programs which all clauses in each task directive
were replaced with the clausedefault(__auto) to enable
the autoscoping feature. Due to that the Oracle studio compiler
does not support automatic generatingtaskwait, all the task
synchronization directivestaskwait were also preserved in
the inputs.

The results from the generated OpenMP programs, Ora-
cle studio compiler, and the original OpenMP programs are
compared to assess the correctness of the generated OpenMP
programs. The BOTS benchmarks, were verified using their
own self-verification methods.

B. Results

Table III presents the experimental results: the number of
tasks, whether containingtaskwait, and comparison results
are listed. The ROSE compiler cannot parse the Alignment,
Sparselu, and UTS programs, the modified benchmark pro-
grams which preserve tasking skeletons were used as the input
For these three benchmark programs, the proposed algorithm
can correctly generate the corresponding OpenMP programs.
For all the other benchmark programs, the proposed algorithm
was able to automatically generate correct OpenMP programs.
Consider the results from the Oracle studio compiler. For
the Pi, Knight, Gram-Schmidt, and Fib programs, the Oracle
studio compiler cannot generate correct data-sharing attributes
in task directives. For the Health, N Queens, Sparselu, and
UTS programs, it can successfully identify correct data-sharing
attributes. For the remaining programs, the compiler internally
showed that autoscoping for some variables was not successful.

In our implementation, traditional analyses were used to
handle array and pointer data types. The analytic results are
correct, but very conservative. However, proper handling array
is an important issue for automatic scoping. The size and
behavior of array in OpenMP programs significantly affects
the performance and memory footprints. Some reasonable cost
functions should be developed to help compilers to select
proper data-sharing attributes. In addition, accurate interproce-
dural program analyses can help to aggressively identify data-
sharing attributes of variables and minimizetaskwait to
meet the program issues (e.g., performance, code size).

TABLE II. B ENCHMARK PROGRAMS.

Program Description Nested tasks Source

Pi Compute the value ofπ using integrals yes Hand coding

Knight Find a closed knight’s tour on a chessboard yes Hand coding

Gram-Schmidt Gram-Schmidt algorithm no Website [7]

Alignment Align sequences of proteins no BOTS

Fib Compute Fibonacci numbers yes BOTS

FFT Compute a Fast Fourier Transformation yes BOTS

Floorplan Compute the optimal placement of cells in a floorplan yes BOTS

Health Simulate a country health system yes BOTS

N Queens Find solutions of the N Queens problem yes BOTS

Sort Uses a mixture of sorting algorithms to sort a vector yes BOTS

Sparselu Compute the LU factorization of a sparse matrix no BOTS

Strassen Compute a matrix multiply with Strassen’s method yes BOTS

UTS Compute the number of nodes in an Unbalanced Tree no BOTS

TABLE III. E VALUATION RESULTS FOR THE TESTED BENCHMARKS.

Benchmark # of tasks Containing
taskwait

Comparison result

Proposed algorithm Oracle studio compiler

Pi 1 Y Correct Error

Knight 1 Y Correct Error

Gram-Schmidt 1 Y Correct Error

Alignment 1 N Parsing error Fail

Fib 2 Y Correct Error

FFT 41 Y Correct Fail

Floorplan 1 Y Correct Fail

Health 2 Y Correct Correct

N Queens 1 Y Correct Correct

Sort 9 Y Correct Fail

Sparselu 4 N Parsing error Correct

Strassen 8 Y Correct Fail

UTS 2 Y Parsing error Correct

IV. RELATED WORK

Some issues of automatic scoping in OpenMP are cov-
ered in works that automatically parallelize programs using
OpenMP [14], [15], [16], [17] and verify OpenMP programs.
These works analyze sequential programs, automatically iden-
tify proper code fragments for concurrent execution, and
generate the corresponding OpenMP programs. The paral-
lelized code fragments and the generated OpenMP program
are controlled by the algorithms. However, in the present study,
users specify the parallelized code fragments, and the proposed
algorithm generates the correct clauses of the data-sharing
attributes.

Previous studies have considered the automatic scoping
of variables in OpenMP programs. Bik et al. [18] proposed
an algorithm to find automatically parallel loops, identify
the data-sharing attributes of variables, and generate thecor-
responding multithreaded codes, rather than using OpenMP
programs. They leveraged liveness analysis and classic data-
flow analyses to ensure the data-sharing attributes of the
variables. Lin et al. [19] proposed several rules for the au-
tomatic scoping of variables in parallel regions. Programmers
can use the new clausesAUTO(list-of-variables) and
DEFAULT(AUTO) to drive a compiler to determine automat-
ically the data-sharing attributes of variables. Several scoping
rules were also proposed for scalar and array variables. To
select a proper rule, a compiler needs to analyze the data

race conditions in the parallel regions and the data dependence
relationships between the scoped variables. If a matching rule
is not selected, the binding parallel region will be serially
executed. The proposed approach focuses on the constructs of
parallel regions, parallel work-sharing, and parallel sections;
it was implemented on a Sun Studio 9 Fortran 95 compiler.
The proposed approach does not support the OpenMP tasking
model. Voss et al. [20] implemented automatic scoping in
the Polaris source-to-source compiler. Similarly to Lin et
al. [19], they focused on the Fortran language and implemented
the clauseDEFAULT(AUTO). A subset of the SPECOMP
benchmark programs [21] was used for evaluation. The authors
did not describe in detail the method of identifying the scopes
of the variables.

The most closely related to the present work are Oracle
Solaris Studio 12.3 [13] and theAuto-scoping for OpenMP
Tasks proposed by Royuela et al. [22]. The former [13]
supports the automatic scoping feature. The compiler can
handle scoping for the construct of parallel, work-sharing,
parallel sections, and tasking models. The rules from [19] are
extended to handle scoping for the construct of parallel, work-
sharing, parallel sections, and tasking models. The compiler
needs to analyze the data races and read/write behaviors for
the scoped variables. If auto-scoping fails, the compiler will
give a warning and assign the related code fragments to be
serially executed. Royuela et al. [22] proposed an algorithm to

determine automatically the data-sharing attributes of variables
for the OpenMP tasking model. For an OpenMP task, the
algorithm identifies the code regions that will be concurrently
executed with the task. Then the liveness and user-definition
analyses are used to analyze the relationships between the
variables, the concurrent regions, and the task region. Ac-
cording to the relationships, several rules can be proposed
to determine the data-sharing attributes of the variables.A
specific graph, a parallel control flow graph, is constructedfor
the analyses in the proposed algorithm. The main difference
between these two previous works and the present study is
that our algorithm does not need to analyze the regions that
are executed concurrently with the analyzed task. Instead,a
task synchronization directivetaskwait is used to ensure the
data dependence relationships between the concurrent regions
and the analyzed task. The two previous works may not
decide the data-sharing attributes of some variables, but the
proposed algorithm can identify the data-sharing attribute for
each variable. Moreover, we do not need to construct a parallel
control flow graph for the analyses. For our algorithm, the
classic control-flow graph and data-flow analyses are sufficient
to recognize the data-sharing attributes of the variables.The
previous works may achieve better parallelism, but the present
study is simpler and easier to implement. In addition, the data-
sharing attributes of variables can be determined using the
present study.

V. CONCLUSION

In this paper, we propose an algorithm for the automatic
correction of the OpenMP tasking model. Assuming a compiler
or programmers have identified task regions in the source
programs, the proposed algorithm will automatically generate
the correct task clauses and synchronization. The proposed
algorithm was implemented based on the ROSE compiler
infrastructure, with 14 benchmark programs—from which all
clauses in the task directives had been removed—being tested.
The experimental evaluation showed that the proposed tech-
nique can successfully generate correct clauses for the tested
benchmark programs. The proposed technique can reduce pro-
grammers’ burden in parallelizing programs using the OpenMP
tasking model and make parallel programming more effective
and productive.

VI. ACKNOWLEDGEMENTS

This work was sponsored by the National Science Council
of Taiwan under grants NSC-100-2221-E-194-034-MY2 and
102-2221-E-194-031-MY3. The authors are grateful to the Na-
tional Center for High-Performance Computing for computer
time and facilities.

REFERENCES

[1] OpenMP Architecture Review Board,OpenMP Application Program
Interface, 3.1 ed., July 2011, online available athttp://www.openmp.org.

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of openmp
tasks,”IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, 2009.

[3] A. Duran, J. Corbalan, and E. Ayguade, “Evaluation of openmp
task scheduling strategies,” inOpenMP in a New Era of Parallelism
(4th IWOMP’08), ser. Lecture Notes in Computer Science (LNCS),
R. Eigenmann and B. R. de Supinski, Eds. West Lafayette, IN, USA:
Springer-Verlag (New York), May 2008, vol. 5004, pp. 100–110.

[4] D. J. Quinlan, “ROSE: Compiler support for object-oriented frame-
works,” Parallel Processing Letters, vol. 10, no. 2/3, pp. 215–226, 2000.

[5] C. Liao, D. J. Quinlan, T. Panas, and B. R. de Supinski, “A ROSE-based
openmp 3.0 research compiler supporting multiple runtime libraries,” in
IWOMP, ser. Lecture Notes in Computer Science, M. Sato, T. Hanawa,
M. S. Müller, B. M. Chapman, and B. R. de Supinski, Eds., vol.6132.
Springer, 2010, pp. 15–28.

[6] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,
“Barcelona openmp tasks suite: a set of benchmarks targeting the
exploitation of task parallelism in openmp,” inProc. 2009 International
Conference on Parallel Processing (38th ICPP’09) CD-ROM. Vienna,
Austria: IEEE Computer Society, Sep. 2009.

[7] Website, “Programming of parallel computers, assignment 3, gram-
schmidt,” https://github.com/yohannteston/Parallel-course-Ass3/, [On-
line; accessed 1-July-2011].

[8] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,”Communication of ACM, vol. 29, no. 12, Dec. 1986.

[9] M. J. Wolfe, High Performance Compilers for Parallel Computing,
C. Shanklin and L. Ortega, Eds., 1995.

[10] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, January 1986.

[11] S. Muchnick,Advanced Compiler Design and Implementation. Morgan
Kaufmann, August 1997.

[12] R. Allen and K. Kennedy,Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann, October
2001.

[13] Oracle, “Oracle Solaris Studio 12.3: OpenMP API USer’sGuide,”
http://docs.oracle.com/cd/E2445701/html/E21996/, January 2012,
[Online; accessed 1-September-2013].

[14] H. Jin, G. Jost, J. Yan, E. Ayguade, M. Gonzalez, and X. Martorell,
“Automatic multilevel parallelization using openmp,”Sci. Program.,
vol. 11, no. 2, pp. 177–190, Apr. 2003.

[15] S. Johnson, E. Evans, H. Jin, and C. Ierotheou, “The parawise expert
assistant - widening accessibility to efficient and scalable tool generated
openmp code,” inProceedings of the 5th international conference on
OpenMP Applications and Tools: shared Memory Parallel Program-
ming with OpenMP, ser. WOMPAT’04, 2005, pp. 67–82.

[16] Intel, “Automatic parallelization with intel compilers,”
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compil
[Online; accessed 1-July-2011].

[17] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic transformationsfor
communication-minimized parallelization and locality optimization in
the polyhedral model,” inInternational Conference on Compiler Con-
struction (ETAPS CC), Apr. 2008.

[18] A. Bik, M. Girkar, P. Grey, and X. Tian, “Efficient exploitation of
parallelism on Pentium III and Pentium 4 processor-based systems,”
no. Q1, p. 9, Feb. 2001.

[19] Y. Lin, C. Terboven, D. a. Mey, and N. Copty, “Automatic scoping
of variables in parallel regions of an openmp program,” inProceed-
ings of the 5th international conference on OpenMP Applications
and Tools: shared Memory Parallel Programming with OpenMP, ser.
WOMPAT’04, 2005, pp. 83–97.

[20] M. Voss, E. Chiu, P. M. Y. Chow, C. Wong, and K. Yuen, “An
evaluation of auto-scoping in openmp,” inProceedings of the 5th
international conference on OpenMP Applications and Tools: shared
Memory Parallel Programming with OpenMP, ser. WOMPAT’04, 2005,
pp. 98–109.

[21] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B.Jones, and
B. Parady, “specomp: A new benchmark suite for measuring parallel
computer performance,” inProceedings of the International Workshop
on OpenMP Applications and Tools: OpenMP Shared Memory Parallel
Programming, ser. WOMPAT ’01, 2001, pp. 1–10.

[22] S. Royuela, A. Duran, C. Liao, and D. J. Quinlan, “Auto-scoping for
openmp tasks,” inProceedings of the 8th international conference on
OpenMP in a Heterogeneous World, ser. IWOMP’12, 2012, pp. 29–43.

http://www.openmp.org
https://github.com/yohannteston/Parallel-course-Ass3/
http://docs.oracle.com/cd/E24457_01/html/E21996/
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/

	I Introduction
	I-A Contributions

	II Algorithm
	II-A Variable Identification and Clause Selection
	II-B Task Synchronization

	III Experiment
	III-A Experimental Environment
	III-B Results

	IV Related work
	V Conclusion
	VI acknowledgements
	References

