Summary:

Shape Representations and Statistics

- Shape Representations
 - Local Properties
 - Shape Spaces
 - Object vs. Diffeomorphism representations

- Multi-entity objects, shape over time
- Shape statistics
 - Over Euclidean spaces
 - PCA, DWD, Permutation methods of hypothesis testing
 - Over diffeomorphism momenta
 - Euclideanization, esp. PNS, log (positive feature)
 - Over curved manifolds
 - Correspondence

Local Properties

- Normal directions and tangent directions
- Fitted frames to boundary
 - Later: to interior via s-reps onion skins
 - Space curves: Frenet frames, curvature, torsion
- Curvatures: curves and surfaces
 - Esp. vertices and crests
 - Curvedness (C) and shape type (S)
- Manifolds and geodesics
- Distance measures
 - Riemannian metrics
 - Metric tensor: M_{II}

Shape Representation Categories

- Landmarks
- Objects
 - Boundaries
 - Points
 - Normals
 - Spherical harmonics
 - Signed distance images
 - Skeletal models
 - Multifigure models
 - Landcurves: currents
 - Multi-object representations

• Diffeos from a central example

- From boundaries of mean
- From s-reps of ellipsoid

Shape Representation by Boundary Points

- Points in correspondence (PDM); or Meshes
 - Correspondence produced by
 - Diffeomorphisms
 - Skeletal models
 - Entropy minimization
- Spherical harmonics
- Points with on landcurves (Currents)
- Normals with correspondence mod-ed out
- Signed distance images, esp. for 3D visualization
- Alignment by Procrustes
- Aligned PDMs on high-dimensional sphere

Shape Representation Designed for Correspondence

- Normals with correspondence mod-ed out [Srivastava, Kurtek]
- Skeletal models fit from ellipsoid
 - Interior positions correspondence
- ?? Diffeomorphisms based on boundaries
 - Points
 - Curves, e.g., crests

Shape Representation by Skeletal Models

- Medial and skeletal mathematics
 - Blum medial axis: bitangent spheres
 - Geometric relations among axis and width
 - Singularities: branching, ends, etc.
 - Radial shape operator S_{rad}
 - Radial distance
 - Geometry of onion skins
 - Cm-reps based on Blum math
- Skeletal generalization: S-reps
 - Skeleton and spokes
 - Discrete s-reps
 - Deformation from ellipsoids
 - Alignment-free coordinates
 - Fitted frames
 - Slabular planar cross-section sweeping
 - Taheri s-reps: spine

Shape Representation by Skeletal Models

- S-reps
 - Fitting to boundaries
 - Optimization

Bdry implied by s-rep

- Cm-reps [2 lectures by P. Yushkevich]
 - Based on mesh and Blum conditions
 - Explicit: inverse skeletonization using biharmonic PDE
 - Implicit: deformation of boundary & medial locus preserving medial linkages to boundary
 - Like s-reps, starts from model with known branching topology and medial locus
 - Based on splines in \underline{x} and width

parametric medial model

Euclidean Statistics Methods

- Means
- PCA: feature reduction and removal of noise
- Classification
 - Producing separation direction
 - Multi-entity analysis: DIVAS
- Hypothesis Testing
 - Permutation tests
 - Corrections for multiple tests
- Segmentation by posterior optimization
 - Priors via shape representation statistics
 - Likelihoods via shape-based coordinates
- Longitudinal methods

Euclidean Statistics Methods, 2

- PCA: feature reduction and removal of noise
 - Eigenanalysis of covariance
 - Features via inner product with eigenvectors
 - And other related producers of modes of variation
- Classification
 - Producing separation direction
 - Distance-Weighted Discrimination
 - $-\Sigma 1/r + \Sigma$ misclassification penalties
 - Kernels, esp. radial basis functions
 - Multi-entity analysis: DIVAS
 - Producing & using histograms along separation direction

Euclidean Statistics Methods, 3

- Hypothesis Testing
 - Permutation tests
 - Corrections for multiple tests
- Segmentation by posterior optimization
 - Priors via shape representation statistics
 - Likelihoods via shape-based coordinates
 - S-reps provide both
- Longitudinal methods
 - Variations on the Euclidean space
 - Curves over t for intra-subject distances
 - Inter-subject distances between intra-subject curves
 - Generalized linear models
 - Diffeomorphisms' momenta
 - Intra subject diffeos over t
 - Inter-subject diffeos

Applicability of Marchenko-Pastur Analysis on PNS modes [Choi]

- Our "eigenanalysis" is via PNS, i.e., on sphere
- Hyo Young Choi studied this problem
 - By producing derived features from the sphere that do follow the MP distribution
 - But she only studied great subspheres, whereas the common analysis uses small subspheres, when hypothesis test supports But the open problem remains: How to select the eigenmodesde by depolluting the MP-plot, given noise properties from high eigenvalues which show ~pure noise
 - Besides dealing with the actual subsphere approach

Euclidean Statistics Methods, 4

- Multi-entity statistics (DIVAS, AJIVE)
 - Noise removal via PCA of each entity
 - Space of subjects: tuple of noise-removed features based on PCAs
 - Subspaces each specified by orthogonal linear combinations of subjects-space features
 - Subspace of joint features via Principal Angle Analysis
 - Subspaces of individual features for each individual
 - Orthogonal to joint subspace
 - Not necessarily orthogonal to subspace of other individuals

from Prothero et al.

Shape Representation by Deformations

- Diffeomorphisms: velocities
 - Points data
 - Currents data
 - For landcurves
 - For surfaces
- Displacements
 - Thin-plate splines
 - B-splines
 - Elastic deformations

Thin Plate Splines Method

- Fast: based on a solution to linear equations
 - Typically preceded by optimum affine transformation
- Elastic warp in each variable
 - $-\underline{\mathbf{x}'}(\underline{\mathbf{x}}) = \underline{\mathbf{c}} + A\underline{\mathbf{x}} + \sum_{\mathbf{j}} \underline{\mathbf{w}}_{\mathbf{j}} \mathbf{U}(|\underline{\mathbf{x}} \underline{\mathbf{x}}^{\mathbf{j}}|)$
 - Basis functions $U(|\underline{x}-\underline{x}^{j}|)$ depend on moving image's landmarks \underline{x}^{j}
 - Radial bases: $U(d) = d^2 \log d$ for 2D, d^3 for 3D
- Solve linearly for c, A, {<u>w</u>_j} based on {<u>Δx</u>^j}
 Minimizing Frobenius norm: ∫^{∞ space} Σ_{all} 2nd partial derivatives², so smooth
 - 27 terms for 3D: 9 for $\Delta x(x,y,z)$, 9 for $\Delta y(x,y,z)$, 9 for $\Delta z(x,y,z)$
- Not necessarily diffeomorphic; may produce folding Normally OK if displacements << inter-landmark spacing
- Not symmetric, not affine invariant

Large Deformation Diffeometric Metric Mapping (LDDMM) Methods

- Consider the shape space of diffeomorphisms
- Let metric on that space measure spatial smoothness within a velocity image
- We want the shortest geodesic from Identity mapping to the diffeomorphism that maps the corresponding points onto each other
- Typically requires iterative optimization
- Implementations
 - Deformetrica
 - Can also use corresponding space curves
 - Joshi

Statistics on Curved Manifolds [Esp. Fletcher lecture]

- Exp_p and Log_p
- Fréchet and backwards means
- Geodesics
 - And other polynomial generalizations
- Shape spaces, esp. spheres and polyspheres: PNS
- Classification via separating directions
 - Esp. DWD
 - Advantage over SVM
- Longitudinal statistics
 - See later: longitudinal stats via diffeomorphisms

Statistics on Curved Manifolds, 2 [Esp. Fletcher lecture]

- Geodesics
 - Representation by point and direction
 - Generalization of line in Euclidean space
 - Yielding distances, thus Fréchet mean, princi directions
 - Polynomial generalizations
- Shape spaces, esp. spheres and polyspheres: PNS
- Classification via separating directions
 - Esp. DWD
 - Advantage over SVM
- Longitudinal statistics
 - Like Euclidean, but using geodesics, etc.
 - See later: longitudinal stats via diffeomorphism

Statistics in Shape Spaces

- Commensuration: scaling and weighting
- Euclideanization
 - -Positive scalars
 - -Directions
 - -Normalized PDMs
- Directly on curved manifold

- Importance
- Relation to PCA
- Production
 - Analytic form in Euclidean space
 - Given Principal frame R and eigenvalues Λ
 - Diffusion: $\partial f(\underline{x},t)/\partial t = \nabla^2 f$ with $f(\underline{x},0) = \delta(\underline{x})$ with $t = \sigma^2/2$
 - Brownian motion

• On curved surfaces, esp. spheres

- Wrapped Gaussian
- von Mises distribution
 - ~ wrapped Gaussian on sphere
 - With an analytic form not needing sums over wraps
 - Most commonly used due to its rather simple form
- Brownian motion (random walks)
 - Moving frames [Sommer]

Statistics on PDMs

- Procrustes alignment
 - Centering
 - Scaling via Σ squares
 - Rotation via 2nd moments
- Principal nested spheres for feature reduction
- Transformation to spherical harmonics coefficients

Statistics on PDMs Transformed into Spherical Harmonics Coefficients

- Each object mapped from sphere: $\underline{x}(\theta, \phi) = \sum_i \underline{b}_i \psi^i(\theta, \phi)$
 - Discretized with equal area spherical triangles
 - Can do Euclidean statistics of the <u>b</u> values over a population
 - <u>b</u> values are determined globally

- Object features: coefficients of basis functions on the sphere
 - Basis functions organized by frequency in latitude and longitude
 - From $\underline{x}(\theta, \phi)$, coefficients easily obtained by dot product w/ basis
 - For <u>any</u> (θ,ϕ) , <u>x</u> (θ,ϕ) (e.g., mean) can be computed from coefficients
 - Correspondence via (θ, ϕ) , but empirically not always adequate

How to get the point coordinates on the object onto the sphere

- Equal area mapping [Brechbuehler]
 - Or alternative of conformal mapping, which is angle preserving
- North pole and Greenwich meridian via best fitting ellipsoid
 - Might need straightening as a preprocessing

• Possible use of s-reps implied spacing

Correspondence

Α В А B А High surface entropy

Non-tight distr'n (high ensemble entropy)

- Via entropy: produce tightest ensemble $p(\underline{x})$ • Possibly also including C, S as features [Oguz] - Registration

Approaches

- Via landmarks
 - thin plate splines
 - diffeo guaranteeing methods
- Via transformation from basic object reflecting richer geometry, such as skeletal

Low surface entropy (uniformity)

А

Correspondence via Entropy of PDMs

- Shapeworks [Cates, Whitaker]
 - Ensemble entropy H(ensemble) should be low (p(<u>x</u>) tight)
 - Entropy H(point positions along boundary for each case) should be high (uniformly distributed)
 - So $\min_{\underline{x}} [H_{\text{training cases}}(\underline{\text{geometry}}) \Sigma_{\text{training cases}} H(\text{points on training case})]$
 - Entropy via PCA: H(nD Gaussian) = (n/2) [1+ ln(2π) + avg ln λ]
 - Optimize by successively doubling number of points
 - Slow and often finds local optimum

Correspondence via Skeletal Mapping from Ellipsoid to Object

- Mapping via diffeomorphism such that
 - Vertices, crests map onto vertices
 - Crests map onto crests, crests
 - Straight spokes, radial distances map onto straight spokes, radial distances

 Defines a fitted frame at every sampled spoke point – i.e., on onion skins

[Pizer, *Skeletons, Object Shape Statistics*, Frontiers in Computer Science, 2023, on google drive for Pizer, Comp 790-6

Srivastava boundary geometry modulo correspondence

- Want representation independent of boundary parameterization
 - So inter-object distances are between equivalence classes over alignment in Rⁿ and reparameterization should be

$$- \left\| [q_1], [q_2] \right\| = \min_{0 \in SO^n, \gamma \in \Gamma} d_c (q_1, O(q_2 \circ \gamma)) / \sqrt{\dot{\gamma}},$$

- $||A,B|| = distance^2$ between A and B
- $[q_i]$ = equivalence class of Γ = rep'ns q_i that are reparameterizations γ of boundary of object i
- d_C is L^2 norm on boundary representation (normal)
- *O* is orbit over reparameterizations
- $-= \min_{0 \in SO^{n}, \gamma \in \Gamma} d_{c}(q_{1}, O(q_{2} \circ \gamma)) / \sqrt{\kappa(\gamma)}$

Kurtek 2D boundary geometry in 3D modulo correspondence, 3

- Want representation independent of boundary parameterization
 - So inter-object distances are between equivalence classes over alignment in R^n and reparameterization

 $- d([q_1], [q_2]) = \min_{O \in SO(3), \gamma \in \Gamma} // q_1 - O_{\gamma} q_2 //$

- d(A,B) = distance between A and B
- $[q_i]$ = equivalence class of Γ = rep'ns q_i that are reparameterizations γ of boundary of object i
- O_{γ} is orbit over reparameterizations
- In q_1 and q_2 scaled versions of the objects are used
- Minimization of the reparameterizations needs to use its Jacobian, which captures the geometry through its fitted frames

Skeletal Representations

- Conceptually, skeletal representations have the following major advantages over other representations:
 - For correspondence reflect
 - Object width
 - Curvature and direction of the object *interior*
 - Ideally, capture division of object into a tree of protrusions and indentations
 - Separate width and bending features

Medial and Skeletal Mathematics

- Blum Medial representation
 - Skeleton (medial locus) $\underline{x}(u,v)$, spoke length r(u,v)
 - Bitangent spheres entirely in object interior with centers <u>x</u>, radii r
 - Implies spoke rU, orthogonal to boundary where U gives spoke direction – Computed by grassfire
- Folded skeleton: (u,v) spherical
- Interior and boundary positions are parameterized by figural coordinates (u,v,τ_2) , with $\tau_2 =$ (radial distance) fraction of spoke from <u>x</u>(u,v)

$$-\underline{\mathbf{b}}_{\tau 2} = \Psi(\underline{\mathbf{x}}, \tau_2) = \underline{\mathbf{x}} + \tau_2 \mathbf{r} \mathbf{U}$$

• Branch (A_1^3) and endpoints (A_3)

Blum Ends (Folds) in 2D

- Fold (end) atom
 –Zero object angle
 - -Multiplicity 3 tangency, i.e., osculation
 - $-\theta = 0$, so $dr/dx = -\cos(0) = -1$
 - -Infinitely fast spoke swing in limit

Medial Mathematics in 3D

- Medial representation singularities
 - Normal point (no singularity; 2D or 3D): A^{2} (bitangent)
 - A_1^2 (bitangent)
 - Point on branch curve (point for 2D): A_1^3 (tritangent)
 - Point on fold curve (point for 2D):
 A₃ (tangent of order 3 at 1 point)
 - Surprisingly 3rd order touching at crest
 - 4 point contact not generic in 2D but is generic in 3D: A_1^4
 - Ends of branch curves in 3D mix normal point and fold of branch : A_1A_3

B

Radial Shape Operator [Damon]

- $S_{rad} = 2 \times 2$ matrix of negative of orthogonal (e_u, e_v) coefficients for walking directions
 - $-S_{rad} \underline{w}$ analyzes swing of spoke direction U for any walking direction \underline{w} on the skeletal tangent plane
- Radial curvatures κ_r are eigenvalues of S_{rad}
 - $-r < 1/\kappa_{r_i}$ for all positive radial curvatures and all skeletal points to prevent spoke crossing in closed object interior
 - Boundary curvatures: $\kappa = \kappa_r / (1 \kappa_r)$
 - Similar formula for onion skins (which have same skeleton)

Among Objects with with Spherical Topology, The Ellipsoid: The Primordial Shape

- Ellipsoid with principal radii $r_x > r_y > r_z$ is simplest shape with a skeleton in the form of a folded surface
 - Blum skeleton is ellipse in (x,y) plane with principal radii: $(r_x^2 + r_z^2)/r_x$ in x direction ; $(r_y^2 + r_z^2)/r_y$ in y direction
 - Crest of boundary
 - Medial spokes are from fold
 - Relative max of κ_1 in \mathbf{p}_1 direction
 - On ellipsoid is an ellipse in the (x,y) plane
 - It has two opposing vertices

Objects with Spherical Topology and No Protrusions or Indentations

- Can be understood as diffeomorphism of the ellipsoid
 - It will have at least two opposing vertices and at least one closed crest
- Want to carry all the basic skeletal geometry into the object throughout the diffeomorphism
- Designed to yield a strong correspondence in and near objects' interiors across objects in a population via (θ, τ₁, τ₂)

Single Figure Objects with Spherical Topology via Diffeomorphism of Ellipsoid

- For correspondence, want the diffeomorphism to carry the basic skeletal geometry of the ellipsoid into the target object
- Because the skeleton is designed to carry the curvature of the interior of the object, it appears not possible for the spokes across the skeleton (with their radial distance τ₁), which are straight in the ellipsoid's skeleton to remain straight in target object skeleton.
 - But in Taheri's swept plane skeleton coplanar spokes from skeleton with common spine point

Single Figure Objects with Spherical Topology via Diffeomorphism of Ellipsoid, 2

• Computation of diffeomorphism from ellipsoid to object can be initialized with curvature-smoothing flow of target object boundary, which will approach ellipsoid

- Before it approaches its limiting sphere
- By conformalized mean curvature flow [Kazhdan]
 - But produces poor correspondence for skeletal geometry maintenance
- Will collapse protrusions and indentations early (see subfigure discussion)
- Its inverse, the desired diffeomorphism, needs to be modified to maintain the basic ellipsoidal skeletal geometry for the object

Conformalized Mean Curvature Flow of an Object Boundary

- Original idea was mean curvature flow:
 - $d\underline{b}/dt = H(\underline{b}, t) \mathbf{N}(\underline{b}, t)$
 - t is time of flow
 - Though it does deform boundary into a near ellipsoid, it collapses regions of high curvature into a point,
 - i.e., has singularities
- Improved method does not have singularities: conformalized mean curvature flow [Kazhdan]
 - Changes the metric for the flow:
 - Metric is in principal coordinates
 - Metric changes with deformation time t

$$\tilde{g}_t = \sqrt{|g_0^{-1}g_t|}g_0.$$

Fitted Frames for Single-Figure Objects

- Objective
 - Like fitted frames for boundary (Cartan), carry local geometry,
 - But here of the closure of interior, not just the boundary
 - Like boundary fitted frames, capture local curvatures,
 - Provides a coordinate system for inter-point geometry
 - Rotations: curvature
 - Inter-point vectors
 - Do it with good correspondence across the object population
- Avoids need for alignment

 No dependence on alignment scale

Fitted Frames for Ellipsoid, 3

• On onion skins

- Thus on skeleton ($\tau_2=0$)
 - Respecting side of fold, dependent on θ
 - And thus on spine ($\tau_1 = \tau_2 = 0$)
- Thus on boundary ($\tau_2=1$)
- In 2D normal and tangent to onion skin form frame

– In 3D

- Third frame vector **f**³ is normal to onion skin
- Second frame vector f² is along fixed τ₁ as θ varies
 f¹
- $\mathbf{f}^1 = \mathbf{f}^2 \times \mathbf{f}^3$
- Allows spoke interpolation
 - Rotations of frame
 - r interpolation recognizing dr properties

Fitted Frames for 3D, Single Figure Object of Spherical Topology

- With proper diffeomorphism, same definition as from ellipsoid
 - In 3D
 - Third frame vector **f**³ is normal to onion skin
 - Second frame vector f² is along fixed τ₁ as θ varies
 - $\mathbf{f}^1 = \mathbf{f}^2 \times \mathbf{f}^3$
- Approximation by carrying f¹ and f²
 by diffeomorphism from ellipsoid

Affine Fitted Frames for 3D Single Figure Object of Spherical Topology

- Carry **f**¹, **f**², and **f**³ by diffeomorphism from ellipsoid
 - Will no longer have unit lengths
 - Lengths form features
 - Will no longer be mutually orthogonal
 - Angles form features

Affine fitted frames to a hippocampus skeleton [Z Liu]

Skeletal Features for Single Figure Object

- Skeletal positions
 - Ideally relative to
 - Center point frame, or
 - Neighbor skeletal position frame
- Spoke lengths
- Affine frame lengths
- Directions
 - Frame vector directions
 - Affine frame directions
 - Ideally, all relative to local frame
- For statistics, spoke directions and frame rotations are Euclideanized using PNS

Affine fitted frames to a hippocampus skeleton [Z Liu]

Summary of Production of Skeletal Features with Correspondence

- Let rep'n of each training sample come from diffeomorphism of the same ellipsoid, recognizing
 - Vertices and crests
 - Boundaries, using CMC flow
 - Spoke loci and radial lengths
 - From skeleton to boundary
 - From spine to skeletal fold
- And producing correspondence via skeletal coordinates (θ, τ₁, τ₂)
 - Achieved by fitted frames via onions skins
 - With directions and positions measured via local frames
- Avoids alignment by use of frames fitted to onion skins

Fitting an S-rep to a Boundary Mesh

- Fitting rather than generated from boundary to fix branching topology
- Fitting to boundaries
 - Optimization [Z Liu]

- Stage 1: approximate diffeomorphism to yield correspondence
- Stage 2: Refinement optimization: Penalties:
 - 1) foremost, a term heavily penalizing crossing of the spokes, via κ_{r_i}
 - » Could be a hard constraint
 - 2) the deviation of the implied boundary from the target object boundary;
 - 3) the deviation of the angle of the spokes from the corresponding boundary normal
 - Could use the difference in corresponding spoke lengths
- Code at slicersalt.org
- Alternatives on next slides

Fitting an S-rep to a Boundary Mesh, 3

• By temporal stages producing reverse diffeomorphsisms to yield stage to stage small deformations

- Each of these is an optimization: Penalties:
 - 1) foremost, a term heavily penalizing crossing of the spokes, via κ_{r_i}
 - Could be a hard constraint
 - 2) the deviation of the implied boundaries between stages
 - 3) the deviation of the angle of the spokes from the corresponding boundary normal
 - 4) the deviation of the implied crest to the later stage crest – Also for vertices
 - 5) the difference in corresponding spoke lengths
- In late stages of development [Tapp-Hughes]

Taheri Computing a Plane-Sweep S-rep from a Boundary Mesh

- Find shortest spokes to boundary from each interior point

 Find pairs with largest angles
- Classify paired spokes into top and bottom
 - Straighten and fit planes
- Compute spine
 - Requiring relative curvature criterion
- Optimize volume coverage, skeletal symmetry, and lowered curvature

Cm-reps via PDE [Yushkevich]

Biharmonic (Laplace-Beltrami)² operator offers an elegant solution

Laplace-Beltrami Operator (LBO)

$$\nabla_{\mathbf{x}}^{2} f = \operatorname{div}_{\mathbf{x}} \nabla_{\mathbf{x}} f = \frac{1}{\sqrt{g}} \frac{\partial}{\partial u^{\eta}} \left(\sqrt{g} \, g^{\mu\eta} \frac{\partial f}{\partial u^{\eta}} \right)$$

- The 4th order PDE admits <u>two</u> boundary conditions
 - Dirichlet and von Neumann
- The non-linear constraint can be made linear w.r.t. the unknown function *R* by introducing new parameter function *R*₀

Cm-reps via PDE [Yushkevich], 2

Example of medial model fitting (hippocampus)

Cm-reps via PDE [Yushkevich], 3

Limitations of the PDE-based approach

- Computationally expensive
 - Must solve a PDE (large sparse linear system) every iteration
 - -R, y depend on ρ globally (lots of derivatives to compute)
- Does not handle tubular structures in 3D
- Limited to simple branching configurations
 - How to handle seam-edge and seam-seam intersections?

Cm-reps via Medial Linkage Preservation [Yushkevich]

The boundary-first approach, for the first time, allows deformable medial modeling of objects with **branching** Blum medial axis

It also has the potential to model tubular and part-sheet/part-tube objects

Univariate Hypothesis Testing on a Curved Surface

- Test is by DOUBLE NEGATIVE: *Reject* (null) hypothesis *that* the two classes are *not different*
 - I.e., reject hypothesis that two classes are the same, i.e., observed differences come from random sampling
- Typically tests on magnitude of differences between class means: m_A and m_B

$$- T_0 = d(\mu_A, \mu_B | / (s_A^2/n_A + s_B^2/n_B)^{\frac{1}{2}})$$

- Create distribution of T under null hypothesis empirically
 - Under null hypothesis groups are not different, any permutation produces an equivalent T (normalized
 - Over all permutations produces empirical T distribution
 - With that distribution see percentile of T₀ in that distribution: p-value =
 #Perms larger / #Perms total

Hypothesis Testing of Shape with Locality

- Goal: given training data sets of objects <u>z</u>^k in two classes, determine whether there are significant differences between the classes and if so, where
 - Where (locality): positions or other parameters
 - Training data: $\{\underline{\mathbf{z}}^k | 1 \le k \le n_{A;} n_A + 1 \le k \le n_A + n_B\}$
- Method: Hypothesis test with initial Geometric Object Property(ies) (GOPs) at each location
 - A GOP may be a tuple, e.g., object normal direction
 - With corrections for multiple comparisons, which will lead to a different threshold for each location × GOP
 - Commensuration by turning T values into p values
 - Making p values for each feature std Gaussian
 - Then decorrelation via PCA

Permutation Tests on >1 Variable µ-diff fixup

- Commensurate by transforming each mean difference into a probability via its histogram
- Make distributions same and joint distribution Gaussian by turning each distribution into a standard Gaussian
 - Two cumulative histogram transformations: quantiles have uniform probability
 - Cumulative dist. of v'ble \rightarrow uniform
 - Quantile f'n of normal \rightarrow st'd Gaussian
- What's left is handling covariance of transformed variables

Decorrelating the Standard Normal Variables

- Note that all hyperplanar (including dimension 1) crosssections through the mean of a Gaussian are Gaussian
 - Also, the principal dimension-1 cross-sections yield uncorrelated variables
- $\Sigma_{\rm U}$ is made up or correlated standard 1-dimensional Gaussians
 - So the cross-sections are not principal (nor orthogonal)
- Use PCA on Σ_U to produce new, uncorrelated variables formed as the eigenvector directions
 - Multiple test correction assuming non-correlation is applicable
 - For shapes (U formed from GOPs) there will be few such variables (ones with low eigenvalues can be cut out)

P-value correction via FDR or FWER

- False Discovery Rate (FDR)
 - More relaxed assumptions
 - More power than Bonferroni, higher specificity than uncorrected
 - Used in fMRI, VBM and Deformation field analysis
- FDR: Proportion of false positive tests among those test for which H₀ is rejected
 - Bounds expected rate among those tests that show significance only.
- FWER correction: Rate of false positives among all tests, whether or not H_0 is rejected
 - 1. Controlling False Discovery Rate: A practical and powerful approach to multiple testing, Y Benjamini, Y Hochberg, J.R. Stat Soc Ser B 57 1995
 - 2. Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate, CR Genovese, NA Lazar, T Nichols, NeuroImage 15 2002

Slide: M. Styner

Corrected Multivariate Hypothesis Testing: by Permutation Tests [Pizer]

ROC Analysis

- An important means of evaluating any medical procedure involving a detection of a signal
 - Signal can be classification of voxel as the object to be segmented
- True positive rate (*sensitivity*) plotted against false positive rate (1-*specificity*)
 - TPR: P(correct decision | signal present)
 - FPR: P(wrong decision | signal absent); a measure of conservatism
 - Common measure: area under ROC (AUC)
 - Equivalent to 2-alternative forced-choice fraction correct

AUC by Random Holdouts

- Assume data has N_i in class i
- Pick a subdivision fraction:
 - f = # training cases / N = # all cases, e.g., 80%
 - # test cases is complement
 - In each holdout # of test cases is (1-f) N_1 in class 1 and (1-f) N_2 in class 2, with the cases chosen at random
- Run the experiment many times
 - Each test case yields a d value, leading to a class choice, given a threshold
 - Yield TPR and FPR for various thresholds
- Two options for combining trials
 - Average AUCs per random set
 - Combine FPR, TPR data over sets, to yield a single AUC

Combining random holdouts results into an AUC

- Each test case yields a d value along separation direction
- But d values are not commensurate across random holdouts
 - They have different separation directions
- So turn d values into p values via Bayesian analysis

 Then the set of p values for each class can be coalesced to produce 2 histograms, which can yield an ROC and thus an AUC

Going from histograms on d to P(schizo | D) function

- Bayesian formulation
 - Two histograms are Gaussians
 with common variance from histo's
 P(d | schizo) and P(d | control)
 - P(schizo|d) =

 $p_s p(d|schizo)$

 $\overline{p_s \, p(d|schizo) + (1 - p_s) \, p(d|control)}$

- There is a parameter, P_s, the prior probability of being schizo
 - Each value of P_s yields a different P(schizo | d) function
 - Applied to test data, each value of P_s yields a different true positive rate and true negative rate
 - These rate curves yield an ROC

Longitudinal Analysis of Shape

- How does shape change over time?
- Longitudinal data set:
 - Set of homologous objects (e.g., anatomical structures), each object being observed repeatedly at several time points; for now non
 - cyclic, e.g., aging
 - Shape varies across individuals
 - For each individual shape temporal paths differ
 - Temporal sampling may differ among individuals
 - Initial times and rates of changes of shape longitudinal changes may differ among individuals

• Two approaches

- Use object features \underline{z} on curved manifold and study $\underline{z}(t)$
 - See Fletcher lectures in this course and his papers
 - Schiratti, ..., Durrleman, for mixed effects models on manifolds: "Learning spatiotemporal trajectories from manifold-valued long'l data"
- Study deformations in time: $\phi(\underline{x},t)$. See upcoming slides

Longitudinal Analysis of Shape via Space Deformations

• Data

- Need to do subject by subject deformations across time:
- Need to do subject by subject temporal deformations from atlas
 - Time passes on differently for different subjects
- Need to do inter-subject deformations from atlas
 - Thus need an atlas, M(t), typically a kind of mean
- Want to include covariates such as age (especially) and gender in the analysis

Longitudinal Analysis of Shape via Space Deformations, 3

- Issues
 - Need to do subject by subject deformations across time: S_i(t)
 - Need to do subject by subject temporal deformations from atlas

- Time passes on differently for different subjects
- Need to do inter-subject deformations from atlas
 - Thus need an atlas, M(t), typically a kind of mean

Subject-specific Longitudinal Analysis of Shape via Space Deformations

of subject j

• Via LDDMM approach minimize

$$E(\chi) = \sum_{t_i} \mathrm{d}(\chi_{t_i}(M_0),S_i)^2 + \gamma^{\chi}\mathrm{Reg}(\chi)$$

Subject-specific Longitudinal Analysis of Shape via Space Deformations

- Let $\chi(t)$ be deformation of shape across time of atlas - Let $\chi_j(t)$ be deformation of shape across time of subject j
- But time runs differently for each subject - Let $\psi(t)$ deform time: $\Phi(x, y, z, t) = (\phi(x, y, z, \psi(t)), \psi(t))$

where the geometrical part has the form

 $\phi(x,y,z,t) = \chi_t {\bigcirc} \phi_0 {\bigcirc} \chi_t^{-1}(x,y,z)$

• Via LDDMM approach minimize

$$E(\phi,\psi) = \sum_{t_j} \mathrm{d}(\phi(S(\psi(t_j))), U_{t_j})^2 + \gamma^{\phi} \mathrm{Reg}(\phi) + \gamma^{\psi} \mathrm{Reg}(\psi)$$

– where U_{tj} is the shape of object j at time t

subject-specific approach