
Summary: 

Shape Representations and Statistics

• Shape Representations
– Local Properties
– Shape Spaces
– Object vs. Diffeomorphism 

representations
• Multi-entity objects, shape over time

• Shape statistics
– Over Euclidean spaces

• PCA, DWD, Permutation methods of hypothesis testing
• Over diffeomorphism momenta

– Euclideanization, esp. PNS, log (positive feature)
– Over curved manifolds
– Correspondence



Local Properties

• Normal directions 

and tangent directions

• Fitted frames to boundary

– Later: to interior via s-reps onion skins

– Space curves: Frenet frames, 

curvature, torsion

• Curvatures: curves and surfaces

– Esp. vertices and crests

– Curvedness (C) and shape type (S)

• Manifolds and geodesics

• Distance measures
– Riemannian metrics
– Metric tensor: MII



Shape Representation Categories

• Landmarks

• Objects
– Boundaries

• Points
• Normals
• Spherical harmonics
• Signed distance images

– Skeletal models
• Multifigure models

– Landcurves: currents 
– Multi-object representations

• Diffeos from a central example
• From boundaries of mean

• From s-reps of ellipsoid



• Points in correspondence 

(PDM); or Meshes
– Correspondence produced by

• Diffeomorphisms

• Skeletal models

• Entropy minimization

• Spherical harmonics

• Points with on landcurves (Currents)

• Normals with correspondence mod-ed out

• Signed distance images, esp. for 3D visualization

• Alignment by Procrustes

• Aligned PDMs on high-dimensional sphere

Shape Representation by Boundary Points



• Normals with correspondence mod-ed out 

[Srivastava, Kurtek]

• Skeletal models fit from ellipsoid

– Interior positions correspondence

• ?? Diffeomorphisms based on boundaries

– Points

– Curves, e.g., crests

Shape Representation Designed

for Correspondence



• Medial and skeletal mathematics
– Blum medial axis: bitangent spheres

• Geometric relations among axis and width

• Singularities: branching, ends, etc.

• Radial shape operator Srad

• Radial distance
– Geometry of onion skins

• Cm-reps based on Blum math

• Skeletal generalization: S-reps
– Skeleton and spokes

– Discrete s-reps

– Deformation from ellipsoids
• Alignment-free coordinates

• Fitted frames

– Slabular planar cross-section sweeping
– Taheri s-reps: spine

Shape Representation by Skeletal Models



• S-reps
– Fitting to boundaries

• Optimization

• Cm-reps [2 lectures by P. Yushkevich]

– Based on mesh and Blum conditions
• Explicit: inverse skeletonization 

using biharmonic PDE

• Implicit: deformation of boundary & medial

locus preserving medial linkages to boundary
– Like s-reps, starts from model with 

known branching topology and medial locus

• Based on splines in x and width

Shape Representation by Skeletal Models

Bdry implied     Target object

by s-rep



Euclidean Statistics Methods
• Means
• PCA: feature reduction and removal of noise
• Classification

– Producing separation direction
– Multi-entity analysis: DIVAS

• Hypothesis Testing
– Permutation tests
– Corrections for multiple tests

• Segmentation by posterior optimization
– Priors via shape representation statistics
– Likelihoods via shape-based coordinates

• Longitudinal methods



Euclidean Statistics Methods, 2
• PCA: feature reduction and removal of noise

– Eigenanalysis of covariance
– Features via inner product with eigenvectors
– And other related producers of modes of variation

• Classification
– Producing separation direction

• Distance-Weighted Discrimination
– S 1/r + S misclassification penalties

• Kernels, esp. radial basis functions
• Multi-entity analysis: DIVAS

– Producing & using histograms 
along separation direction 



Euclidean Statistics Methods, 3
• Hypothesis Testing

– Permutation tests
– Corrections for multiple tests

• Segmentation by posterior optimization
– Priors via shape representation statistics
– Likelihoods via shape-based coordinates
– S-reps provide both

• Longitudinal methods
– Variations on the Euclidean space

• Curves over t for intra-subject distances
• Inter-subject distances between intra-subject curves
• Generalized linear models

– Diffeomorphisms’ momenta
• Intra subject diffeos over t
• Inter-subject diffeos



Applicability of Marchenko-Pastur

Analysis on PNS modes [Choi]
• Our “eigenanalysis” is via PNS, i.e., on sphere
• Hyo Young Choi studied this problem

– By producing derived features from the sphere that do 
follow the MP distribution
• But she only studied great subspheres, whereas the common 

analysis uses small subspheres, when hypothesis test supports 
But the open problem remains: How to select the eigenmodesde
by depolluting the MP-plot, given noise properties from high 
eigenvalues which show ~pure noise

– Besides dealing with the actual subsphere approach



Euclidean Statistics Methods, 4
• Multi-entity statistics (DIVAS, AJIVE)

– Noise removal via PCA of each entity
– Space of subjects: tuple of noise-removed features 

based on PCAs
• Subspaces each specified by 

orthogonal linear combinations 
of subjects-space features

– Subspace of joint features 
via Principal Angle Analysis

– Subspaces of individual features for each individual
• Orthogonal to joint subspace
• Not necessarily orthogonal to subspace of other individuals

from Prothero et al.



Shape Representation by Deformations

• Diffeomorphisms: velocities

– Points data

– Currents data

• For landcurves

• For surfaces

• Displacements

– Thin-plate splines

– B-splines

– Elastic deformations

•



Thin Plate Splines Method

• Fast: based on a solution to linear equations
– Typically preceded by optimum affine transformation

• Elastic warp in each variable
– x′(x)=c+Ax+Sj wjU(|x-xj|)
– Basis functions U(|x-xj|) depend on moving image’s landmarks xj

• Radial bases:  U(d) = d2 log d for 2D, d3 for 3D

• Solve linearly for c, A, {wj} based on {Dxj}
• Minimizing Frobenius norm:   space Sall 2nd partial 

derivatives2, so smooth
– 27 terms for 3D: 9 for Dx(x,y,z), 9 for Dy(x,y,z), 9 for Dz(x,y,z)

• Not necessarily diffeomorphic; may produce folding
– Normally OK if displacements << inter-landmark spacing

• Not symmetric, not affine invariant



Large Deformation Diffeometric Metric 

Mapping (LDDMM) Methods

• Consider the shape space of diffeomorphisms
• Let metric on that space measure spatial smoothness within 

a velocity image
• We want the shortest geodesic from Identity mapping to the 

diffeomorphism that maps the corresponding points onto 
each other

• Typically requires iterative optimization
• Implementations

– Deformetrica
• Can also use corresponding space curves

– Joshi



Statistics on Curved Manifolds
[Esp. Fletcher lecture]

• Expp and Logp

• Fréchet and backwards means
• Geodesics

– And other polynomial generalizations

• Shape spaces, esp. spheres and polyspheres: PNS
• Classification via separating directions

– Esp. DWD
• Advantage over SVM

• Longitudinal statistics 
– See later: longitudinal stats via diffeomorphisms



Statistics on Curved Manifolds, 2
[Esp. Fletcher lecture]

• Geodesics
– Representation by point and direction
– Generalization of line in Euclidean space
– Yielding distances, thus Fréchet mean, principal 

directions
– Polynomial generalizations

• Shape spaces, esp. spheres and polyspheres: PNS
• Classification via separating directions

– Esp. DWD
• Advantage over SVM

• Longitudinal statistics
– Like Euclidean, but using geodesics, etc. 
– See later: longitudinal stats via diffeomorphism



Statistics in Shape Spaces

• Commensuration: scaling and weighting

• Euclideanization
–Positive scalars
–Directions
–Normalized PDMs

• Directly on curved manifold



Gaussians

• Importance
• Relation to PCA
• Production

– Analytic form in Euclidean space
• Given Principal frame R and eigenvalues L

– Diffusion: f(x,t)/t = 2f with f(x,0)=d(x) with t=s2/2
– Brownian motion 

• On curved surfaces, esp. spheres
– Wrapped Gaussian
– von Mises distribution 

• ~ wrapped Gaussian on sphere
• With an analytic form not needing sums over wraps
• Most commonly used due to its rather simple form

– Brownian motion (random walks)
• Moving frames [Sommer]



Statistics on PDMs

• Procrustes alignment
– Centering
– Scaling via S squares
– Rotation via 2nd moments

• Principal nested spheres
for feature reduction

• Transformation to spherical harmonics coefficients



Statistics on PDMs Transformed into 

Spherical Harmonics Coefficents
• Each object mapped from sphere: x(q,f)=Si bi i(q,f)

– Discretized with equal area spherical triangles
– Can do Euclidean statistics of the b values over a population
– b values are determined globally

• Object features: coefficients of basis functions on the sphere
– Basis functions organized by frequency in latitude and longitude
– From x(q,f), coefficients easily obtained by dot product w/ basis
– For any (q,f), x(q,f) (e.g., mean) can be computed from coefficients

• Correspondence via (q,f), but empirically not always adequate



How to get the point coordinates 

on the object onto the sphere
• Equal area mapping [Brechbuehler]

– Or alternative of conformal mapping, which is angle preserving

• North pole and Greenwich meridian via best fitting ellipsoid
– Might need straightening as a preprocessing

• Possible use of s-reps implied spacing



Correspondence

• Approaches
– Via entropy: produce 

tightest ensemble p(𝒙)
• Possibly also including 

C, S as features [Oguz]

– Registration
• Via landmarks 

– thin plate splines
– diffeo guaranteeing 

methods

• Via transformation from 
basic object reflecting 
richer geometry, 
such as skeletal

Low surface entropy
(uniformity)

High surface entropy

Tight distr’n 
(low ensemble 

entropy)

Non-tight 
distr’n 

(high ensemble 
entropy)



Correspondence via Entropy of PDMs

• Shapeworks [Cates, Whitaker]
– Ensemble entropy H(ensemble) should 

be low (p(x) tight)
– Entropy H(point positions along 

boundary for each case) should be high 
(uniformly distributed)

– So minx [Htraining cases(geometry) –
Straining cases H(points on training case)]

– Entropy via PCA: H(nD Gaussian) = 
(n/2) [1+ ln(2p) + avg ln l]

– Optimize by successively doubling 
number of points
• Slow and often finds local optimum



Correspondence via 

Skeletal Mapping from Ellipsoid to Object
• Mapping via diffeomorphism such that

– Vertices, crests  map onto vertices
– Crests map onto crests, crests
– Straight spokes, radial distances map onto 

straight spokes, radial distances

• Defines a fitted frame at every sampled spoke point
– i.e., on onion skins

• [Pizer, Skeletons, Object Shape Statistics, 

Frontiers in Computer Science, 2023, on
google drive for Pizer, Comp 790-6



Srivastava boundary geometry

modulo correspondence

• Want representation independent of 
boundary parameterization
– So inter-object distances are between equivalence 

classes over alignment in Rn and reparameterization 
should be

– 𝑞1 , 𝑞2 k

• ||A,B|| = distance2 between A and B
• [qi] = equivalence class of G = rep’ns qi that are 

reparameterizations g of boundary of object i
• dC is L2 norm on boundary representation (normal)
• O is orbit over reparameterizations

– = k(g)



Kurtek 2D boundary geometry in 3D

modulo correspondence, 3

• Want representation independent of 
boundary parameterization
– So inter-object distances are between equivalence 

classes over alignment in Rn and reparameterization

– d([q1],[q2]) = min OSO(3),g G || q1 – Og q2 ||

• d(A,B) = distance between A and B
• [qi] = equivalence class of G = rep’ns qi that are 

reparameterizations g of boundary of object i
• Og is orbit over reparameterizations
• In q1 and q2 scaled versions of the objects are used
• Minimization of the reparameterizations needs to use its 

Jacobian, which captures the  geometry through its fitted 
frames



Skeletal Representations
• Conceptually, skeletal 

representations have the following 
major advantages over other 
representations:
– For correspondence reflect

• Object width
• Curvature and direction of the object 

interior

– Ideally, capture division of object into 
a tree of protrusions and indentations

– Separate width and bending features



Medial and Skeletal Mathematics

• Blum Medial representation
– Skeleton (medial locus) x(u,v), 

spoke length r(u,v)
• Bitangent spheres entirely in 

object interior with centers x, radii r
• Implies spoke rU, 

orthogonal to boundary
where U gives spoke direction
–Computed by grassfire

• Folded skeleton: (u,v) spherical
• Interior and boundary positions are 

parameterized by figural coordinates 
(u,v,t2), with t2 = (radial distance)
fraction of spoke from x(u,v)
– bt2 = (x,t2) = x + t2rU

• Branch (A1
3) and endpoints (A3)



Blum Ends (Folds) in 2D

• Fold (end) atom
–Zero object angle

–Multiplicity 3 tangency, i.e., osculation

–q=0, so dr/dx = -cos(0) = -1

– Infinitely fast spoke swing in limit



Medial Mathematics in 3D

• Medial representation singularities
– Normal point (no singularity; 2D or 3D): 

A1
2 (bitangent)

– Point on branch curve (point for 2D): 
A1

3 (tritangent)
– Point on fold curve (point for 2D): 

A3 (tangent of order 3 at 1 point)
• Surprisingly 3rd order touching at crest

– 4 point contact not generic in 2D 
but is generic in 3D:  A1

4

– Ends of branch curves in 3D mix 
normal point and fold of branch : A1A3



Radial Shape Operator [Damon]

• Srad = 22 matrix of negative of orthogonal (eu, ev) 
coefficients for walking directions
– Srad w analyzes swing of spoke direction U for any 

walking direction w on the skeletal tangent plane
• Radial curvatures kr are eigenvalues of Srad

– r <  1/k𝑟𝑖 for all positive radial curvatures and all skeletal points

to prevent spoke crossing in closed object interior
– Boundary curvatures: k= kr /(1- kr)
– Similar formula for onion skins (which have same skeleton)



Among Objects with with Spherical Topology,

The Ellipsoid: The Primordial Shape 

• Ellipsoid with principal radii  
rx>ry>rz is simplest shape with a 
skeleton in the form of a folded surface
– Blum skeleton is ellipse in (x,y) plane with principal radii: 

(rx
2+ rz

2)/rx in x direction ; 
(ry

2+ rz
2)/ ry in y direction

– Crest of boundary
• Medial spokes are from fold 

• Relative max of k1 in p1 direction
• On ellipsoid is an ellipse in the (x,y) plane

– It has two opposing vertices



Objects with Spherical Topology 

and No Protrusions or Indentations
• Can be understood as 

diffeomorphism of the ellipsoid
– It will have at least two opposing vertices 

and at least one closed crest

• Want to carry all the basic skeletal geometry 
into the object throughout the diffeomorphism

• Designed to yield a 
strong correspondence 

in and near objects’ interiors
across objects in a population 

via (q, t1 , t2)



Single Figure Objects with Spherical 

Topology via Diffeomorphism of Ellipsoid 

• For correspondence, want the diffeomorphism 
to carry the basic skeletal geometry of the 
ellipsoid into the target object

• Because the skeleton is designed to carry 
the curvature of the interior of  the object, 
it appears not possible for the spokes 
across the skeleton (with their 
radial distance t1), which are straight 
in the ellipsoid’s skeleton to remain 
straight in target object skeleton.
– But  in Taheri’s swept plane skeleton 

coplanar spokes from skeleton 
with common spine point



Single Figure Objects with Spherical 

Topology via Diffeomorphism of Ellipsoid, 2
• Computation of diffeomorphism from ellipsoid to object 

can be initialized with curvature-smoothing flow of 
target object boundary, which will approach ellipsoid

– Before it approaches its limiting sphere
– By conformalized mean curvature flow [Kazhdan]

• But produces poor correspondence 
for skeletal geometry maintenance

– Will collapse protrusions and indentations early
(see subfigure discussion)

– Its inverse, the desired diffeomorphism, needs to 
be modified to maintain the basic ellipsoidal 
skeletal geometry for the object



Conformalized Mean Curvature Flow 

of an Object Boundary

• Original idea was mean curvature flow: 
– db/dt = H(b, t) N(b, t) 

• t is time of flow

– Though it does deform boundary 
into a near ellipsoid, it collapses 
regions of high curvature into a point, 
• i.e., has singularities

• Improved method does not have 
singularities: conformalized 
mean curvature flow 
[Kazhdan]
– Changes the metric for the flow: 

• Metric is in principal coordinates
• Metric changes with deformation time t



Fitted Frames for 

Single-Figure Objects
• Objective

– Like fitted frames for boundary (Cartan), 
carry local geometry, 
• But here of the closure of interior, not just the boundary
• Like boundary fitted frames, 

capture local curvatures,

– Provides a coordinate 
system for inter-point geometry
• Rotations: curvature
• Inter-point vectors

– Do it with good correspondence 
across the object population

• Avoids need for alignment
– No dependence on alignment scale



Fitted Frames for Ellipsoid, 3
• On onion skins

– Thus on skeleton (t2=0)
• Respecting side of fold, dependent on q
• And thus on spine (t1= t2=0)

– Thus on boundary (t2=1)
– In 2D normal and tangent to onion skin form frame
– In 3D

• Third frame vector f3 is 
normal to onion skin

• Second frame vector f2 is 
along fixed t1 as q varies

• f1 = f2  f3

• Allows spoke interpolation
– Rotations of frame
– r interpolation recognizing dr properties



Fitted Frames for 3D,  Single Figure 

Object of Spherical Topology

• With proper diffeomorphism, 
same definition as from ellipsoid
– In 3D

• Third frame vector f3 is 
normal to onion skin

• Second frame vector f2 is 
along fixed t1 as q varies

• f1 = f2  f3

• Approximation by 

carrying f1 and f2

by diffeomorphism

from ellipsoid



Affine Fitted Frames for 3D Single 

Figure Object of Spherical Topology

• Carry f1, f2, and f3

by diffeomorphism
from ellipsoid
• Will no longer have 

unit lengths

• Lengths form features

• Will no longer be 

mutually orthogonal

• Angles form features

Affine fitted frames to a 

hippocampus skeleton [Z Liu]



Skeletal Features for 

Single Figure Object
• Skeletal positions

– Ideally relative to
• Center point frame, or
• Neighbor skeletal position frame

• Spoke lengths
• Affine frame lengths
• Directions

– Frame vector directions
– Affine frame directions
– Ideally, all relative to local frame

• For statistics, spoke directions 
and frame rotations are 
Euclideanized using PNS Affine fitted frames to a 

hippocampus skeleton [Z Liu]



Summary of  Production of Skeletal 

Features with Correspondence
• Let rep’n of each training sample come from 

diffeomorphism of the same ellipsoid, recognizing
– Vertices and crests
– Boundaries, using CMC flow
– Spoke loci and radial lengths

• From skeleton to boundary
• From spine to skeletal fold

• And producing correspondence 
via skeletal coordinates (q, t1 , t2)
– Achieved by fitted frames via onions skins

• With directions and positions measured via local frames

• Avoids alignment by use of frames fitted to 
onion skins



Fitting  an S-rep to a Boundary Mesh

• Fitting rather than generated from boundary to fix 
branching topology

• Fitting to boundaries
– Optimization [Z Liu]

• Stage 1: approximate diffeomorphism to yield correspondence
• Stage 2: Refinement optimization: Penalties:

– 1) foremost, a term heavily penalizing crossing of the spokes, via k𝑟𝑖
» Could be a hard constraint

– 2) the deviation of the implied boundary from 
the target object boundary;

– 3) the deviation of the angle of the spokes from 
the corresponding boundary normal

– Could use the difference in corresponding spoke lengths

• Code at slicersalt.org

– Alternatives on next slides



Fitting  an S-rep to 

a Boundary Mesh, 3
• By temporal stages producing 

reverse diffeomorphsisms to 
yield stage to stage …
small deformations
– Each of these is an optimization: Penalties:

• 1) foremost, a term heavily penalizing crossing 
of the spokes, via k𝑟𝑖
– Could be a hard constraint

• 2) the deviation of the implied boundaries between stages
• 3) the deviation of the angle of the spokes from 

the corresponding boundary normal
• 4) the deviation of the implied crest to the later stage crest

– Also for vertices

• 5) the difference in corresponding spoke lengths

– In late stages of development [Tapp-Hughes]



Taheri Computing a Plane-Sweep 

S-rep from a Boundary Mesh
• Find shortest spokes to boundary 

from each interior point
– Find pairs with largest angles

• Classify paired spokes into top 
and bottom
– Straighten and fit planes

• Compute spine
– Requiring relative curvature 

criterion

• Optimize volume coverage,
skeletal symmetry, and
lowered curvature



Cm-reps via PDE [Yushkevich]



Cm-reps via PDE [Yushkevich], 2



Cm-reps via PDE [Yushkevich], 3



Cm-reps via Medial Linkage 

Preservation [Yushkevich]



Univariate Hypothesis Testing on a 

Curved Surface 

• Test is by DOUBLE NEGATIVE: 

Reject (null) hypothesis that the two classes are not different

– I.e., reject hypothesis that two classes are the same, i.e., 

observed differences come from random sampling 

• Typically tests on magnitude of differences 

between class means: mA and mB

– T0 = d(mA , mB | / (sA
2/nA + sB

2/nB )½

• Create distribution of T 

under null hypothesis empirically

– Under null hypothesis groups are not different, 

any permutation produces an equivalent T (normalized mean diff.)

– Over all permutations produces empirical T distribution

– With that distribution see percentile of T0 in 

that distribution: p-value = 

#Perms larger  /  #Perms total



Hypothesis Testing of Shape 

with Locality
• Goal: given training data sets of objects zk in two classes, 

determine whether there are significant differences 
between the classes and if so, where

– Where (locality): positions or other parameters

– Training data: {zk |1 ≤ k ≤ nA; nA+1 ≤ k ≤nA + nB}

• Method: Hypothesis test with initial Geometric Object 
Property(ies) (GOPs) at each location

– A GOP may be a tuple, e.g., object normal direction

– With corrections for  multiple comparisons, which will lead to a 
different  threshold for each location  GOP

• Commensuration by turning T values into p values

• Making p values for each feature std Gaussian

• Then decorrelation via PCA



Permutation Tests on >1 Variable 

m-diff fixup
• Commensurate by transforming each 

mean difference into a probability via 
its histogram

• Make distributions same and joint 
distribution Gaussian by turning each 
distribution into a standard Gaussian

• Two cumulative histogram 

transformations: quantiles have uniform 

probability

• Cumulative dist. of v’ble → uniform

• Quantile f’n of normal → st’d Gaussian

• What’s left is handling covariance of 

transformed variables



Decorrelating the 

Standard Normal Variables

• Note that all hyperplanar (including dimension 1) cross-
sections through the mean of a Gaussian are Gaussian

– Also, the principal dimension-1 cross-sections yield 
uncorrelated variables

• SU is made up or correlated standard 1-dimensional 
Gaussians

– So the cross-sections are not principal (nor orthogonal)

• Use PCA on SU to produce new, uncorrelated variables 
formed as the eigenvector directions

– Multiple test correction assuming non-correlation is applicable

– For shapes (U formed from GOPs) there will be few such 
variables (ones with low eigenvalues can be cut out)



P-value correction via FDR or FWER

• False Discovery Rate (FDR)

– More relaxed assumptions

• More power than Bonferroni, higher specificity than uncorrected

– Used in fMRI, VBM and Deformation field analysis

• FDR: Proportion of false positive tests among those test for 
which H0 is rejected

– Bounds expected rate among those tests that show significance 
only.

• FWER correction: Rate of false positives among all tests, 
whether or not H0 is rejected

1. Controlling False Discovery Rate: A practical and powerful approach to multiple 

testing, Y Benjamini, Y Hochberg, J.R. Stat Soc Ser B 57 1995

2. Thresholding of Statistical Maps in Functional Neuroimaging Using the False 

Discovery Rate, CR Genovese, NA Lazar, T Nichols, NeuroImage 15 2002

Slide: M. Styner



Corrected Multivariate Hypothesis Testing: by 

Permutation Tests [Pizer]
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ROC Analysis
• An important means of evaluating any medical procedure 

involving a detection of a signal

– Signal can be classification of voxel 
as the object to be segmented

• True positive rate (sensitivity) plotted 
against false positive rate (1-specificity)

– TPR: P(correct decision | signal present)

– FPR: P(wrong decision | signal absent); 
a measure of conservatism

– Common measure: area under ROC (AUC)

• Equivalent to 2-alternative forced-choice
fraction correct



AUC by Random Holdouts

• Assume data has Ni in class i
• Pick a subdivision fraction: 

f = # training cases / N = # all cases, e.g., 80%
– # test cases is complement
– In each holdout # of test cases is (1-f) N1 in class 1 and 

(1-f) N2 in class 2, with the cases chosen at random

• Run the experiment many times
– Each test case yields a d value, leading 

to a class choice, given a threshold
– Yield TPR and FPR for various thresholds

• Two options for combining trials
– Average AUCs per random set
– Combine FPR,TPR data over sets, 

to yield a single AUC



Combining random holdouts results 

into an AUC

• Each test case yields a d value 
along separation direction

• But d values are not commensurate 
across random holdouts
– They have different separation directions

• So turn d values into p values 
via Bayesian analysis
– Then the set of p values for each class can be coalesced 

to produce 2 histograms, which can yield an ROC and 
thus an AUC



Going from histograms on d

to P(schizo | D) function

• Bayesian formulation

– Two histograms are Gaussians 

with common variance from histo’s

P(d | schizo) and P(d | control)

• 𝑃 𝑠𝑐ℎ𝑖𝑧𝑜| 𝑑 =
𝑝𝑠 𝑝 𝑑|𝑠𝑐ℎ𝑖𝑧𝑜

𝑝𝑠 𝑝 𝑑|𝑠𝑐ℎ𝑖𝑧𝑜 + 1 − 𝑝𝑠 𝑝 𝑑|𝑐𝑜𝑛𝑡𝑟𝑜𝑙

– There is a parameter, Ps, the prior 

probability of being schizo

• Each value of Ps yields a different  

P(schizo | d) function

• Applied to test data, each value of Ps

yields a different true positive rate and 

true negative rate

• These rate curves yield an ROC

d

Ps

P(schizo|D) 

for 2 different 

values of Ps



Longitudinal Analysis of Shape

• How does shape change over time?
• Longitudinal data set:

– Set of homologous objects (e.g., anatomical structures), each object 
being observed repeatedly at several time points; for now non-

cyclic, e.g., aging

– Shape varies across individuals
– For each individual shape temporal paths differ

• Temporal sampling may differ among individuals
• Initial times and rates of changes of shape longitudinal changes may differ 

among individuals

• Two approaches

– Use object features z on curved manifold and study z(t)
• See Fletcher lectures in this course and his papers

• Schiratti, …, Durrleman, for mixed effects models on manifolds: 
“Learning spatiotemporal trajectories from manifold-valued long’l data”

– Study deformations in time: f(x,t).     See upcoming slides



Longitudinal Analysis of Shape

via Space Deformations

• Data

• Issues
– Need to do subject by subject deformations across time: 

– Need to do subject by subject temporal deformations from atlas

• Time passes on differently for different subjects

– Need to do inter-subject deformations from atlas

• Thus need an atlas, M(t), typically a kind of mean

– Want to include covariates such as age (especially) 
and gender in the analysis



Longitudinal Analysis of Shape

via Space Deformations, 3

• Issues
– Need to do subject by subject 

deformations across time: Si(t)

– Need to do subject by subject 
temporal deformations from atlas

• Time passes on differently for different subjects

– Need to do inter-subject deformations from atlas

• Thus need an atlas, M(t), typically a kind of mean



Subject-specific Longitudinal Analysis of 

Shape via Space Deformations

• Let (t) be deformation of shape across time of atlas
– Let j(t) be deformation of shape across time of subject j
– Let fjt(x) be deformation of shape at time t from the atlas 

of subject j

• Via LDDMM approach minimize



Subject-specific Longitudinal Analysis of 

Shape via Space Deformations

• Let (t) be deformation of shape across time of atlas
– Let j(t) be deformation of shape across time of subject j

• But time runs differently for each subject
– Let (t) deform time: 

where the geometrical part has the form

• Via LDDMM approach minimize

– where Utj is the shape of object j at time t
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