Summary:

Shape Representations and Statistics

- Shape Representations
- Local Properties
- Shape Spaces
- Object vs. Diffeomorphism representations

- Multi-entity objects, shape over time
- Shape statistics
- Over Euclidean spaces
- PCA, DWD, Permutation methods of hypothesis testing
- Over diffeomorphism momenta
- Euclideanization, esp. PNS, log (positive feature)
- Over curved manifolds
- Correspondence

Local Properties

- Normal directions

 and tangent directions- Fitted frames to boundary
- Later: to interior via s-reps onion skins
- Space curves: Frenet frames, curvature, torsion
- Curvatures: curves and surfaces
- Esp. vertices and crests
- Curvedness (C) and shape type (S)
- Manifolds and geodesics
- Distance measures
- Riemannian metrics

- Metric tensor: M_{II}

Shape Representation Categories

- Landmarks
- Objects
- Boundaries
- Points
- Normals
- Spherical harmonics
- Signed distance images
- Skeletal models
- Multifigure models
- Landcurves: currents
- Multi-object representations
- Diffeos from a central example

- From boundaries of mean
- From s-reps of ellipsoid

Shape Representation by Boundary Points

- Points in correspondence (PDM); or Meshes

- Correspondence produced by
- Diffeomorphisms
- Skeletal models
- Entropy minimization
- Spherical harmonics

- Points with on landcurves (Currents)
- Normals with correspondence mod-ed out
- Signed distance images, esp. for 3D visualization
- Alignment by Procrustes
- Aligned PDMs on high-dimensional sphere

Shape Representation Designed for Correspondence

- Normals with correspondence mod-ed out [Srivastava, Kurtek]
- Skeletal models fit from ellipsoid
- Interior positions correspondence
- ?? Diffeomorphisms based on boundaries
- Points
- Curves, e.g., crests

Shape Representation by Skeletal Models

- Medial and skeletal mathematics
- Blum medial axis: bitangent spheres
- Geometric relations among axis and width
- Singularities: branching, ends, etc.
- Radial shape operator $S_{\text {rad }}$
- Radial distance
- Geometry of onion skins
- Cm-reps based on Blum math
- Skeletal generalization: S-reps
- Skeleton and spokes
- Discrete s-reps
- Deformation from ellipsoids
- Alignment-free coordinates
- Fitted frames
- Slabular planar cross-section sweeping
- Taheri s-reps: spine

Shape Representation by Skeletal Models

Bdry implied Target object by s-rep

- Cm-reps [2 lectures by P. Yushkevich]
- Based on mesh and Blum conditions
- Explicit: inverse skeletonization using biharmonic PDE
- Implicit: deformation of boundary \& medial locus preserving medial linkages to boundary
- Like s-reps, starts from model with known branching topology and medial locus
- Based on splines in \underline{x} and width

parametric medial model

Euclidean Statistics Methods

- Means
- PCA: feature reduction and removal of noise
- Classification
- Producing separation direction
- Multi-entity analysis: DIVAS
- Hypothesis Testing
- Permutation tests
- Corrections for multiple tests
- Segmentation by posterior optimization
- Priors via shape representation statistics
- Likelihoods via shape-based coordinates
- Longitudinal methods

Euclidean Statistics Methods, 2

- PCA: feature reduction and removal of noise
- Eigenanalysis of covariance
- Features via inner product with eigenvectors
- And other related producers of modes of variation
- Classification
- Producing separation direction
- Distance-Weighted Discrimination
$-\Sigma 1 / r+\Sigma$ misclassification penalties
- Kernels, esp. radial basis functions
- Multi-entity analysis: DIVAS
- Producing \& using histograms along separation direction

Euclidean Statistics Methods, 3

- Hypothesis Testing
- Permutation tests
- Corrections for multiple tests
- Segmentation by posterior optimization
- Priors via shape representation statistics
- Likelihoods via shape-based coordinates
- S-reps provide both
- Longitudinal methods
- Variations on the Euclidean space
- Curves over t for intra-subject distances
- Inter-subject distances between intra-subject curves
- Generalized linear models
- Diffeomorphisms' momenta
- Intra subject diffeos over t
- Inter-subject diffeos

Applicability of Marchenko-Pastur Analysis on PNS modes [Choi]

- Our "eigenanalysis" is via PNS, i.e., on sphere
- Hyo Young Choi studied this problem
- By producing derived features from the sphere that do follow the MP distribution
- But she only studied great subspheres, whereas the common analysis uses small subspheres, when hypothesis test supports But the open problem remains: How to select the eigenmodesde by depolluting the MP-plot, given noise properties from high eigenvalues which show ~pure noise
- Besides dealing with the actual subsphere approach

Euclidean Statistics Methods, 4

- Multi-entity statistics (DIVAS, AJIVE)
- Noise removal via PCA of each entity
- Space of subjects: tuple of noise-removed features based on PCAs
- Subspaces each specified by orthogonal linear combinations of subjects-space features
- Subspace of joint features via Principal Angle Analysis

from Prothero et al.
- Subspaces of individual features for each individual
- Orthogonal to joint subspace
- Not necessarily orthogonal to subspace of other individuals

Shape Representation by Deformations

- Diffeomorphisms: velocities
- Points data
- Currents data
- For landcurves
- For surfaces

- Displacements
- Thin-plate splines
- B-splines
- Elastic deformations •

Thin Plate Splines Method

- Fast: based on a solution to linear equations
- Typically preceded by optimum affine transformation
- Elastic warp in each variable
$-\underline{\mathbf{x}^{\prime}}(\underline{\mathbf{x}})=\underline{\mathbf{c}}+\mathbf{A} \underline{\underline{x}}+\Sigma_{j} \frac{\mathbf{w}_{\mathbf{j}}}{\mathbf{U}} \mathbf{U}\left(\left|\underline{\underline{x}}-\underline{x}^{j}\right|\right)$
- Basis functions $U\left(\left|\underline{\mathbf{x}}-\underline{x}^{j}\right|\right)$ depend on moving image's landmarks $\underline{\mathbf{x}}^{\mathbf{j}}$
- Radial bases: $U(d)=d^{2} \log d$ for 2D, d^{3} for 3D
- Solve linearly for $\mathrm{c}, \mathrm{A},\left\{\underline{\mathbf{w}}_{\mathrm{j}}\right\}$ based on $\left\{\underline{\Delta \mathbf{x}^{\mathbf{j}}}\right\}$
- Minimizing Frobenius norm: $\int \infty$ space $\Sigma_{\text {all }}$ 2nd partial derivatives ${ }^{2}$, so smooth
- 27 terms for 3D: 9 for $\Delta x(x, y, z), 9$ for $\Delta y(x, y, z), 9$ for $\Delta z(x, y, z)$
- Not necessarily diffeomorphic; may produce folding
- Normally OK if displacements << inter-landmark spacing
- Not symmetric, not affine invariant

Large Deformation Diffeometric Metric Mapping (LDDMM) Methods

Consider the shape space of diffeomorphisms

- Let metric on that space measure spatial smoothness within a velocity image
- We want the shortest geodesic from Identity mapping to the diffeomorphism that maps the corresponding points onto each other
- Typically requires iterative optimization
- Implementations
- Deformetrica
- Can also use corresponding space curves
- Joshi

Statistics on Curved Manifolds [Esp. Fletcher lecture]

- $\operatorname{Exp}_{\mathrm{p}}$ and $\log _{\mathrm{p}}$
- Fréchet and backwards means
- Geodesics
- And other polynomial generalizations
- Shape spaces, esp. spheres and polyspheres: PNS
- Classification via separating directions
- Esp. DWD
- Advantage over SVM
- Longitudinal statistics
- See later: longitudinal stats via diffeomorphisms

Statistics on Curved Manifolds, 2 [Esp. Fletcher lecture]

- Geodesics
- Representation by point and direction
- Generalization of line in Euclidean space
- Yielding distances, thus Fréchet mean, princi, directions
- Polynomial generalizations
- Shape spaces, esp. spheres and polyspheres: PNS
- Classification via separating directions
- Esp. DWD
- Advantage over SVM
- Longitudinal statistics
- Like Euclidean, but using geodesics, etc.
- See later: longitudinal stats via diffeomorphism

Statistics in Shape Spaces

- Commensuration: scaling and weighting
- Euclideanization
- Positive scalars
-Directions
- Normalized PDMs
- Directly on curved manifold

Gaussians

- Importance
- Relation to PCA
- Production
- Analytic form in Euclidean space
- Given Principal frame R and eigenvalues Λ
- Diffusion: $\partial \mathrm{f}(\underline{\mathrm{x}}, \mathrm{t}) / \partial \mathrm{t}=\nabla^{2} \mathrm{f}$ with $\mathrm{f}(\underline{\mathrm{x}}, 0)=\delta(\underline{\mathrm{x}})$ with $\mathrm{t}=\sigma^{2} / 2$
- Brownian motion
- On curved surfaces, esp. spheres
- Wrapped Gaussian
- von Mises distribution
- ~ wrapped Gaussian on sphere
- With an analytic form not needing sums over wraps
- Most commonly used due to its rather simple form
- Brownian motion (random walks)
- Moving frames [Sommer]

Statistics on PDMs

- Procrustes alignment
- Centering
- Scaling via Σ squares

- Rotation via $2^{\text {nd }}$ moments
- Principal nested spheres for feature reduction
- Transformation to spherical harmonics coefficients

Statistics on PDMs Transformed into

Spherical Harmonics Coefficents

Each object mapped from sphere: $\underline{x}(\theta, \phi)=\Sigma_{i} \underline{b}_{i} \quad \psi^{i}(\theta, \phi)$

- Discretized with equal area spherical triangles
- Can do Euclidean statistics of the \underline{b} values over a population
- $\underline{\mathrm{b}}$ values are determined globally

Object features: coefficients of basis functions on the sphere

- Basis functions organized by frequency in latitude and longitude
- From $\underline{x}(\theta, \phi)$, coefficients easily obtained by dot product w/ basis
- For any $(\theta, \phi), \underline{x}(\theta, \phi)$ (e.g., mean) can be computed from coefficients
- Correspondence via (θ, ϕ), but empirically not always adequate

How to get the point coordinates on the object onto the sphere

- Equal area mapping [Brechbuehler]
- Or alternative of conformal mapping, which is angle preserving
- North pole and Greenwich meridian via best fitting ellipsoid
- Might need straightening as a preprocessing

- Possible use of s-reps implied spacing

Correspondence

- Approaches

- Via entropy: produce tightest ensemble $\mathrm{p}(\underline{\boldsymbol{x}})$
- Possibly also including C, S as features [Oguz]
- Registration
- Via landmarks
- thin plate splines
- diffeo guaranteeing methods
- Via transformation from basic object reflecting richer geometry, such as skeletal

Correspondence via Entropy of PDMs

- Shapeworks [Cates, Whitaker]
- Ensemble entropy H(ensemble) should be low ($\mathrm{p}(\underline{\mathbf{x}}$) tight)
- Entropy H(point positions along boundary for each case) should be high (uniformly distributed)
- So $\min _{\underline{\mathbf{x}}}\left[\mathrm{H}_{\text {training cases }}\right.$ (geometry) $\Sigma_{\text {training cases }} \mathrm{H}$ (points on training case)]
- Entropy via PCA: H(nD Gaussian) =
 $(\mathrm{n} / 2)[1+\ln (2 \pi)+\mathrm{avg} \ln \lambda]$
- Optimize by successively doubling number of points
- Slow and often finds local optimum

Correspondence via

Skeletal Mapping from Ellipsoid to Object

- Mapping via diffeomorphism such that
- Vertices, crests map onto vertices
- Crests map onto crests, crests
- Straight spokes, radial distances map onto straight spokes, radial distances

- Defines a fitted frame at every sampled spoke point
- i.e., on onion skins

[Pizer, Skeletons, Object Shape Statistics, Frontiers in Computer Science, 2023, on google drive for Pizer, Comp 790-6

Srivastava boundary geometry modulo correspondence

- Want representation independent of boundary parameterization
- So inter-object distances are between equivalence classes over alignment in R^{n} and reparameterization should be
$-\left\|\left[q_{1}\right],\left[q_{2}\right]\right\|=\min _{O \in S O^{n}, \gamma \in \Gamma} d_{c}\left(q_{1}, O\left(q_{2} \circ \gamma\right)\right) / \sqrt{\dot{\gamma}}$,
- $\|\mathrm{A}, \mathrm{B}\|=$ distance 2 between A and B
- $\left[q_{i}\right]=$ equivalence class of $\Gamma=$ rep'ns q_{i} that are reparameterizations γ of boundary of object i
- d_{C} is L^{2} norm on boundary representation (normal)
- O is orbit over reparameterizations
$-=\min _{O \in S O^{n}, \gamma \in \Gamma} d_{c}\left(q_{1}, O\left(q_{2} \circ \gamma\right)\right) / V(\gamma)$

Kurtek 2D boundary geometry in 3D modulo correspondence, 3

- Want representation independent of boundary parameterization
- So inter-object distances are between equivalence classes over alignment in R^{n} and reparameterization
$-\mathrm{d}\left(\left[\mathrm{q}_{1}\right],\left[\mathrm{q}_{2}\right]\right)=\min _{O \in S O(3), \gamma \in \Gamma}\left\|\mathrm{q}_{1}-O_{\gamma} \mathrm{q}_{2}\right\|$
- $d(A, B)=$ distance between A and B
- $\left[q_{i}\right]=$ equivalence class of $\Gamma=$ rep'ns q_{i} that are reparameterizations γ of boundary of object i
- O_{γ} is orbit over reparameterizations
- In q_{1} and q_{2} scaled versions of the objects are used
- Minimization of the reparameterizations needs to use its Jacobian, which captures the geometry through its fitted frames

Skeletal Representations

- Conceptually, skeletal representations have the following major advantages over other representations:
- For correspondence reflect
- Object width
- Curvature and direction of the object interior
- Ideally, capture division of object into a tree of protrusions and indentations
- Separate width and bending features

Medial and Skeletal Mathematics

- Blum Medial representation
- Skeleton (medial locus) $\underline{x}(u, v)$, spoke length $r(u, v)$

- Bitangent spheres entirely in object interior with centers \underline{x}, radii r
- Implies spoke rU, orthogonal to boundary where \mathbf{U} gives spoke direction
- Computed by grassfire
- Folded skeleton: (u,v) spherical
- Interior and boundary positions are parameterized by figural coordinates (u, v, τ_{2}), with $\tau_{2}=$ (radial distance) fraction of spoke from $\underline{x}(u, v)$
$-\underline{\mathrm{b}}_{\tau 2}=\psi\left(\underline{\mathrm{x}}, \tau_{2}\right)=\underline{\mathrm{x}}+\tau_{2} \mathrm{I} \mathbf{U}$
- Branch $\left(\mathrm{A}_{1}{ }^{3}\right)$ and endpoints $\left(\mathrm{A}_{3}\right)$

Blum Ends (Folds) in 2D

- Fold (end) atom
-Zero object angle
-Multiplicity 3 tangency, i.e., osculation
$-\theta=0$, so $d r / d x=-\cos (0)=-1$
- Infinitely fast spoke swing in limit

Medial Mathematics in 3D

- Medial representation singularities
- Normal point (no singularity; 2D or 3D): $\mathrm{A}_{1}{ }^{2}$ (bitangent)
- Point on branch curve (point for 2D): $\mathrm{A}_{1}{ }^{3}$ (tritangent)
- Point on fold curve (point for 2D): A_{3} (tangent of order 3 at 1 point)
- Surprisingly $3{ }^{\text {rd }}$ order touching at crest

-4 point contact not generic in 2D but is generic in $3 \mathrm{D}: \mathrm{A}_{1}{ }^{4}$
- Ends of branch curves in 3D mix normal point and fold of branch : $\mathrm{A}_{1} \mathrm{~A}_{3}$

Radial Shape Operator [Damon]

- $S_{\text {rad }}=2 \times 2$ matrix of negative of orthogonal $\left(\mathbf{e}_{u}, \mathbf{e}_{\mathrm{v}}\right)$ coefficients for walking directions
$-\mathrm{S}_{\text {rad }} \underline{\mathrm{W}}$ analyzes swing of spoke direction \mathbf{U} for any walking direction $\underline{\mathrm{w}}$ on the skeletal tangent plane
- Radial curvatures κ_{r} are eigenvalues of $\mathrm{S}_{\mathrm{rad}}$
$-\mathrm{r}<1 / \kappa_{r_{i}}$ for all positive radial curvatures and all skeletal points to prevent spoke crossing in closed object interior
- Boundary curvatures: $\kappa=\kappa_{\mathrm{r}} /\left(1-\kappa_{\mathrm{r}}\right)$
- Similar formula for onion skins (which have same skeleton)

Among Objects with with Spherical Topology, The Ellipsoid: The Primordial Shape

- Ellipsoid with principal radii
$\mathrm{r}_{\mathrm{x}}>\mathrm{r}_{\mathrm{y}}>\mathrm{r}_{\mathrm{z}}$ is simplest shape with a
skeleton in the form of a folded surface
- Blum skeleton is ellipse in (x, y) plane with principal radii: $\left(\mathrm{r}_{\mathrm{x}}^{2}+\mathrm{r}_{\mathrm{z}}^{2}\right) / \mathrm{r}_{\mathrm{x}}$ in x direction ;
$\left(\mathrm{r}_{\mathrm{y}}{ }^{2}+\mathrm{r}_{\mathrm{z}}{ }^{2}\right) / \mathrm{r}_{\mathrm{y}}$ in y direction
- Crest of boundary
- Medial spokes are from fold
- Relative max of κ_{1} in \mathbf{p}_{1} direction
- On ellipsoid is an ellipse in the (x, y) plane
- It has two opposing vertices

Objects with Spherical Topology and No Protrusions or Indentations

Can be understood as
diffeomorphism of the ellipsoid

- It will have at least two opposing vertices and at least one closed crest
- Want to carry all the basic skeletal geometry into the object throughout the diffeomorphism

- Designed to yield a strong correspondence in and near objects' interiors across objects in a population $\operatorname{via}\left(\theta, \tau_{1}, \tau_{2}\right)$

Single Figure Objects with Spherical Topology via Diffeomorphism of Ellipsoid

- For correspondence, want the diffeomorphism to carry the basic skeletal geometry of the ellipsoid into the target object
- Because the skeleton is designed to carry the curvature of the interior of the object, it appears not possible for the spokes across the skeleton (with their radial distance τ_{1}), which are straight in the ellipsoid's skeleton to remain straight in target object skeleton.
- But in Taheri's swept plane skeleton coplanar spokes from skeleton with common spine point

Single Figure Objects with Spherical

 Topology via Diffeomorphism of Ellipsoid, 2- Computation of diffeomorphism from ellipsoid to object can be initialized with curvature-smoothing flow of target object boundary, which will approach ellipsoid

- Before it approaches its limiting sphere
- By conformalized mean curvature flow [Kazhdan]
- But produces poor correspondence for skeletal geometry maintenance
- Will collapse protrusions and indentations early (see subfigure discussion)
- Its inverse, the desired diffeomorphism, needs to be modified to maintain the basic ellipsoidal skeletal geometry for the object

Conformalized Mean Curvature Flow of an Object Boundary

Original idea was mean curvature flow:
$-\mathrm{d} \underline{\mathrm{b}} / \mathrm{dt}=\mathrm{H}(\underline{\mathrm{b}}, \mathrm{t}) \mathbf{N}(\underline{\mathrm{b}}, \mathrm{t})$

- t is time of flow
- Though it does deform boundary into a near ellipsoid, it collapses regions of high curvature into a point,
- i.e., has singularities
- Improved method does not have singularities: conformalized mean curvature flow

[Kazhdan]

- Changes the metric for the flow: $\tilde{g}_{t}=\sqrt{\left|g_{0}^{-1} g_{t}\right|} \mid g_{0}$.
- Metric is in principal coordinates
- Metric changes with deformation time t

Fitted Frames for

Single-Figure Objects

- Objective
- Like fitted frames for boundary (Cartan), carry local geometry,
- But here of the closure of interior, not just the boundary
- Like boundary fitted frames, capture local curvatures,
- Provides a coordinate system for inter-point geometry

- Rotations: curvature
- Inter-point vectors
- Do it with good correspondence across the object population
- Avoids need for alignment
- No dependence on alignment scale

Fitted Frames for Ellipsoid, 3

- On onion skins
- Thus on skeleton ($\tau_{2}=0$)
- Respecting side of fold, dependent on θ
- And thus on spine $\left(\tau_{1}=\tau_{2}=0\right)$
- Thus on boundary $\left(\tau_{2}=1\right)$

- In 2D normal and tangent to onion skin form frame
- In 3D
- Third frame vector \mathbf{f}^{3} is normal to onion skin
- Second frame vector \mathbf{f}^{2} is along fixed τ_{1} as θ varies

- $\mathbf{f}^{1}=\mathbf{f}^{2} \times \mathbf{f}^{3}$
- Allows spoke interpolation
- Rotations of frame
- r interpolation recognizing dr properties

Fitted Frames for 3D, Single Figure Object of Spherical Topology

- With proper diffeomorphism, same definition as from ellipsoid
- In 3D
- Third frame vector \mathbf{f}^{3} is normal to onion skin
- Second frame vector \mathbf{f}^{2} is along fixed τ_{1} as θ varies
- $\mathbf{f}^{1}=\mathbf{f}^{2} \times \mathbf{f}^{3}$
- Approximation by carrying \mathbf{f}^{1} and \mathbf{f}^{2} by diffeomorphism from ellipsoid

Affine Fitted Frames for 3D Single

 Figure Object of Spherical Topology- Carry $\mathbf{f}^{1}, \mathbf{f}^{2}$, and \mathbf{f}^{3} by diffeomorphism from ellipsoid
- Will no longer have unit lengths
- Lengths form features
- Will no longer be mutually orthogonal
- Angles form features

Affine fitted frames to a
hippocampus skeleton [Z Liu]

Skeletal Features for Single Figure Object

- Skeletal positions
- Ideally relative to
- Center point frame, or
- Neighbor skeletal position frame
- Spoke lengths
- Affine frame lengths
- Directions
- Frame vector directions
- Affine frame directions
- Ideally, all relative to local frame
- For statistics, spoke directions and frame rotations are Euclideanized using PNS

Affine fitted frames to a hippocampus skeleton [Z Liu]

Summary of Production of Skeletal

 Features with Correspondence- Let rep'n of each training sample come from diffeomorphism of the same ellipsoid, recognizing
- Vertices and crests
- Boundaries, using CMC flow
- Spoke loci and radial lengths
- From skeleton to boundary
- From spine to skeletal fold

- And producing correspondence via skeletal coordinates $\left(\theta, \tau_{1}, \tau_{2}\right)$
- Achieved by fitted frames via onions skins
- With directions and positions measured via local frames
- Avoids alignment by use of frames fitted to onion skins

Fitting an S-rep to a Boundary Mesh

- Fitting rather than generated from boundary to fix branching topology
- Fitting to boundaries
- Optimization [Z Liu]

- Stage 1: approximate diffeomorphism to yield correspondence
- Stage 2: Refinement optimization: Penalties:
$-1)$ foremost, a term heavily penalizing crossing of the spokes, via $\kappa_{r_{i}}$
» Could be a hard constraint
$-2)$ the deviation of the implied boundary from the target object boundary;
-3) the deviation of the angle of the spokes from the corresponding boundary normal
- Could use the difference in corresponding spoke lengths
- Code at slicersalt.org
- Alternatives on next slides

Fitting an S-rep to a Boundary Mesh, 3

- By temporal stages producing reverse diffeomorphsisms to yield stage to stage small deformations

- Each of these is an optimization: Penalties:
- 1) foremost, a term heavily penalizing crossing of the spokes, via $\kappa_{r_{i}}$
- Could be a hard constraint
- 2) the deviation of the implied boundaries between stages
-3) the deviation of the angle of the spokes from the corresponding boundary normal
- 4) the deviation of the implied crest to the later stage crest - Also for vertices
- 5) the difference in corresponding spoke lengths
- In late stages of development [Tapp-Hughes]

Taheri Computing a Plane-Sweep S-rep from a Boundary Mesh

- Find shortest spokes to boundary from each interior point - Find pairs with largest angles
- Classify paired spokes into top and bottom
- Straighten and fit planes
- Compute spine
- Requiring relative curvature criterion
- Optimize volume coverage, skeletal symmetry, and lowered curvature

Cm-reps via PDE [Yushkevich]

Biharmonic (Laplace-Beltrami) ${ }^{2}$ operator offers an elegant solution

Solve:

$$
\nabla_{\mathrm{x}}^{4} R^{2}=\rho
$$

subject to:
$\left\{\begin{array}{rll}R & =R_{0} \\ D_{\perp \partial \mathbf{x}} R & =\sqrt{1-\left(D_{\| \partial \mathbf{x}} R_{0}\right)^{2}} & \text { on } \partial \mathbf{x}\end{array}\right.$

- The $4^{\text {th }}$ order PDE admits two boundary conditions
- Dirichlet and von Neumann
- The non-linear constraint can be made linear w.r.t. the unknown function R by introducing new parameter function R_{0}

Cm-reps via PDE [Yushkevich], 2

Example of medial model fitting (hippocampus)

Fit to Target Object

Cm-reps via PDE [Yushkevich], 3

Limitations of the PDE-based approach

- Computationally expensive
- Must solve a PDE (large sparse linear system) every iteration
- R, \mathbf{y} depend on ρ globally (lots of derivatives to compute)
- Does not handle tubular structures in 3D
- Limited to simple branching configurations
- How to handle seam-edge and seam-seam intersections?

Cm-reps via Medial Linkage Preservation [Yushkevich]

The boundary-first approach, for the first time, allows deformable medial modeling of objects with branching Blum medial axis

It also has the potential to model tubular and part-sheet/part-tube objects

Univariate Hypothesis Testing on a Curved Surface

- Test is by DOUBLE NEGATIVE:

Reject (null) hypothesis that the two classes are not different

- I.e., reject hypothesis that two classes are the same, i.e., observed differences come from random sampling
- Typically tests on magnitude of differences between class means: m_{A} and m_{B}

Group A Group B
पПП1
Wाए
$-\mathrm{T}_{0}=\mathrm{d}\left(\mu_{\mathrm{A}}, \mu_{\mathrm{B}} \mid /\left(\mathrm{s}_{\mathrm{A}}^{2} / \mathrm{n}_{\mathrm{A}}+\mathrm{s}_{\mathrm{B}}^{2} / \mathrm{n}_{\mathrm{B}}\right)^{1 / 2}\right.$

- Create distribution of T under null hypothesis empirically
- Under null hypothesis groups are not different, any permutation produces an equivalent T (normalized
- Over all permutations produces empirical T distribution
- With that distribution see percentile of T_{0} in that distribution: p-value = \#Perms larger / \#Perms total

Hypothesis Testing of Shape with Locality

- Goal: given training data sets of objects \mathbf{z}^{k} in two classes, determine whether there are significant differences between the classes and if so, where
- Where (locality): positions or other parameters
- Training data: $\left\{\underline{\mathbf{z}}^{\mathrm{k}} \mid 1 \leq \mathrm{k} \leq \mathrm{n}_{\mathrm{A}} ; \mathrm{n}_{\mathrm{A}}+1 \leq \mathrm{k} \leq \mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}\right\}$
- Method: Hypothesis test with initial Geometric Object Property(ies) (GOPs) at each location
- A GOP may be a tuple, e.g., object normal direction
- With corrections for multiple comparisons, which will lead to a different threshold for each location \times GOP
- Commensuration by turning T values into p values
- Making p values for each feature std Gaussian
- Then decorrelation via PCA

Permutation Tests on >1 Variable μ-diff fixup

- Commensurate by transforming each mean difference into a probability via its histogram
- Make distributions same and joint distribution Gaussian by turning each distribution into a standard Gaussian
- Two cumulative histogram transformations: quantiles have uniform
 probability
- Cumulative dist. of v'ble \rightarrow uniform
- Quantile f'n of normal \rightarrow st'd Gaussian
- What's left is handling covariance of transformed variables

Decorrelating the Standard Normal Variables

- Note that all hyperplanar (including dimension 1) crosssections through the mean of a Gaussian are Gaussian
- Also, the principal dimension-1 cross-sections yield uncorrelated variables
- Σ_{U} is made up or correlated standard 1-dimensional Gaussians
- So the cross-sections are not principal (nor orthogonal)
- Use PCA on Σ_{U} to produce new, uncorrelated variables formed as the eigenvector directions
- Multiple test correction assuming non-correlation is applicable
- For shapes (U formed from GOPs) there will be few such variables (ones with low eigenvalues can be cut out)

P-value correction via FDR or FWER

- False Discovery Rate (FDR)
- More relaxed assumptions
- More power than Bonferroni, higher specificity than uncorrected
- Used in fMRI, VBM and Deformation field analysis
- FDR: Proportion of false positive tests among those test for which H_{0} is rejected
- Bounds expected rate among those tests that show significance only.
- FWER correction: Rate of false positives among all tests, whether or not H_{0} is rejected

1. Controlling False Discovery Rate: A practical and powerful approach to multiple testing, Y Benjamini, Y Hochberg, J.R. Stat Soc Ser B 571995
2. Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate, CR Genovese, NA Lazar, T Nichols, NeuroImage 152002

Corrected Multivariate Hypothesis Testing: by Permutation Tests [Pizer]

ROC Analysis

An important means of evaluating any medical procedure involving a detection of a signal

- Signal can be classification of voxel as the object to be segmented

True positive rate (sensitivity) plotted against false positive rate (1-specificity)

- TPR: P(correct decision | signal present)
- FPR: P(wrong decision | signal absent);
 a measure of conservatism
- Common measure: area under ROC (AUC)
- Equivalent to 2-alternative forced-choice fraction correct

AUC by Random Holdouts

- Assume data has N_{i} in class i
- Pick a subdivision fraction: $\mathrm{f}=\#$ training cases $/ \mathrm{N}=\#$ all cases, e.g., 80%
- \# test cases is complement
- In each holdout \# of test cases is (1-f) N_{1} in class 1 and (1-f) N_{2} in class 2 , with the cases chosen at random
- Run the experiment many times
- Each test case yields a d value, leading to a class choice, given a threshold
- Yield TPR and FPR for various thresholds
- Two options for combining trials
- Average AUCs per random set
- Combine FPR,TPR data over sets, to yield a single AUC

Combining random holdouts results into an AUC

- Each test case yields a d value along separation direction
- But d values are not commensurate across random holdouts
- They have different separation directions
- So turn d values into p values via Bayesian analysis

- Then the set of p values for each class can be coalesced to produce 2 histograms, which can yield an ROC and thus an AUC

Going from histograms on d to $P($ schizo $\mid \mathbf{D})$ function

P(schizo|D)

- Bayesian formulation
- Two histograms are Gaussians with common variance from histo's $\mathrm{P}(d \mid$ schizo $)$ and $\mathrm{P}(d \mid$ control $)$
- $P($ schizo $\mid d)=$

$$
\frac{p_{s} p(d \mid \text { schizo })}{p_{s} p(d \mid \text { schizo })+\left(1-p_{s}\right) p(d \mid \text { control })}
$$

- There is a parameter, P_{s}, the prior probability of being schizo
- Each value of P_{s} yields a different P(schizo $\mid d$) function
- Applied to test data, each value of P_{s} yields a different true positive rate and true negative rate
- These rate curves yield an ROC

Longitudinal Analysis of Shape

- How does shape change over time?
- Longitudinal data set:
- Set of homologous objects (e.g., anatomical structures), each object being observed repeatedly at several time points; for now noncyclic, e.g., aging
- Shape varies across individuals
- For each individual shape temporal paths differ
- Temporal sampling may differ among individuals
- Initial times and rates of changes of shape longitudinal changes may differ among individuals
- Two approaches
- Use object features $\underline{\mathbf{z}}$ on curved manifold and study $\underline{\mathbf{z}}(\mathrm{t})$
- See Fletcher lectures in this course and his papers
- Schiratti, ..., Durrleman, for mixed effects models on manifolds:
"Learning spatiotemporal trajectories from manifold-valued long'l data"
- Study deformations in time: $\phi(\underline{x}, \mathrm{t})$. See upcoming slides

Longitudinal Analysis of Shape via Space Deformations
 - Data

- Need to do subject by subject deformations across time:
- Need to do subject by subject temporal deformations from atlas
- Time passes on differently for different subjects
- Need to do inter-subject deformations from atlas
- Thus need an atlas, $\mathrm{M}(\mathrm{t})$, typically a kind of mean
- Want to include covariates such as age (especially) and gender in the analysis

Longitudinal Analysis of Shape via Space Deformations, 3

- Issues
- Need to do subject by subject deformations across time: $\mathrm{S}_{\mathrm{i}}(\mathrm{t})$
- Need to do subject by subject temporal deformations from atlas

- Time passes on differently for different subjects
- Need to do inter-subject deformations from atlas
- Thus need an atlas, $\mathrm{M}(\mathrm{t})$, typically a kind of mean

Subject-specific Longitudinal Analysis of Shape via Space Deformations

Let $\chi(\mathrm{t})$ be deformation of shape across time of atlas

- Let $\chi_{j}(\mathrm{t})$ be deformation of shape across time of subject j
- Let $\phi_{\mathrm{jt}}(\underline{\mathrm{x}})$ be deformation of shape at time t from the atlas of subject j

- Via LDDMM approach minimize

$$
E(\chi)=\sum_{t_{i}} \mathrm{~d}\left(\chi_{t_{i}}\left(M_{0}\right), S_{i}\right)^{2}+\gamma^{\chi} \operatorname{Reg}(\chi)
$$

Subject-specific Longitudinal Analysis of Shape via Space Deformations

- Let $\chi(\mathrm{t})$ be deformation of shape across time of atlas - Let $\chi_{j}(\mathrm{t})$ be deformation of shape across time of subject j
- But time runs differently for each subject
- Let $\psi(\mathrm{t})$ deform time:

$$
\Phi(x, y, z, t)=(\phi(x, y, z, \psi(t)), \psi(t))
$$

where the geometrical part has the form

$$
\phi(x, y, z, t)=\chi_{t} \bigcirc \phi_{0} \bigcirc \chi_{t}^{-1}(x, y, z)
$$

Via LDDMM approach minimize

$$
E(\phi, \psi)=\sum_{t_{j}} \mathrm{~d}\left(\phi\left(S\left(\psi\left(t_{j}\right)\right)\right), U_{t_{j}}\right)^{2}+\gamma^{\phi} \operatorname{Reg}(\phi)+\gamma^{\psi} \operatorname{Reg}(\psi)
$$

- where $U_{t j}$ is the shape of object j at time t

